Joint meeting of Division of Nuclear Physics of APS and JPS at Hawaii

Introduction to '100 Years of Spin Physics'

Toshi-Aki Shibata

Why 100 years?
In 1920's, there were lots of efforts and discussions on a possible new intrinsic degree of freedom of the particles.
The concept of spin emerged and was established.
In 1928, Dirac equation was formulated. $\quad\left(i \hbar \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$.
a free particle
If we use α_{i} and β for the coefficients, it can be written as

$$
i \hbar \frac{\partial}{\partial t} \psi=\hat{H} \psi, \quad \hat{H}=\sum_{i=1}^{3} \alpha_{i} \hat{p}_{i}+m \beta
$$

This equation has to be consistent with Klein-Gordon equation which is based on $E^{2}=p^{2}+m^{2}$:

$$
\left(i \hbar \frac{\partial}{\partial t}\right)^{2} \psi=\left[\sum_{i=1}^{3} \hat{p}_{i}^{2}+m^{2}\right] \psi .
$$

The conditions on the coefficients α_{i}, β are then

$$
\begin{align*}
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i} & =0 & (i \neq j), \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \tag{1}\\
\alpha_{i}^{2} & =I, \quad \beta^{2}=I . & \tag{2}
\end{align*}
$$

1) Eq.1: α_{i} and β are not just numbers, but matrices.
2) Eq.2: The eigenvalues of the matrices α_{i}, β are +1 and -1 .
3) Eq.1: α_{i} and β are traceless. $\operatorname{tr}\left(\alpha_{i}\right)=\operatorname{tr}(\beta)=0$: the sum of the diagonal elements is $0 . \quad(\rightarrow$ note 1$)$
4) Four independent matrices α_{i}, β are needed.
\longrightarrow The size of matrices is $4 \times 4,6 \times 6$, or \ldots
The 2×2 matrix such as Pauli matrix has only three independent matrices, and does not satisfy the condition.

The matrices α_{i} and β have, when diagonalized, +1 and -1 as the diagonal elements

$$
\left[\begin{array}{ccccc}
+1 & & & & \\
& +1 & & & \\
& & -1 & & \\
& & & -1 & \\
& & & & \ldots
\end{array}\right]
$$

for example. The numbers of +1 's and -1 's have to be equal in order to be traceless.
The minimum is 4×4 matrix.

If we adopt 4×4 matrices for α_{i} and β, the Hamiltonian becomes a 4×4 matrix:

$$
\hat{H}=\alpha \cdot \hat{p}+m \beta=\left[\begin{array}{cc}
m l & \sigma \cdot \hat{p} \\
\sigma \cdot \hat{p} & -m l
\end{array}\right]
$$

This is the Pauli-Dirac representation. σ is the Pauli matrix. The Hamiltonian can be equivalently expressed by other representations as well.

As a result, the wave function has four components.
The plane wave is expressed as

$$
\psi=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right] e^{i(k \cdot x-\omega t)}, \quad k=p / \hbar, \quad \omega=E / \hbar
$$

spinor and space-time wave function
In this case, the momentum operator $\hat{p}_{i}=\frac{\hbar}{i} \frac{\partial}{\partial x_{i}}$ and the energy operator $\hat{E}=i \hbar \frac{\partial}{\partial t}$ act on $e^{i(k \cdot x-\omega t)}$. After these operations,

$$
E\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{cc}
m l & \sigma \cdot p \\
\sigma \cdot p & -m l
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right] .
$$

The Hamiltonian can have four eigenvalues.
The condition

$$
\operatorname{det}(E I-H)=0, \quad \text { where } H=\left[\begin{array}{cc}
m l & \sigma \cdot p \\
\sigma \cdot p & -m l
\end{array}\right]
$$

leads to the eigen-function which is a quartic equation of E :

$$
\left\{E^{2}-\left(p^{2}+m^{2}\right)\right\}^{2}=0 .
$$

The eigenvalues are $E=\sqrt{p^{2}+m^{2}}, \quad E=-\sqrt{p^{2}+m^{2}}$.
Two states are degenerate at $E=\sqrt{p^{2}+m^{2}}$, and two other states are degenerate at $E=-\sqrt{p^{2}+m^{2}}$.
The Dirac equation contains a new intrinsic degree of freedom of the particle.

The electromagnetic potentials $\left(\phi, A_{x}, A_{y}, A_{z}\right)$ are included by replaceing the operators $\hat{p} \rightarrow \hat{p}-q A, \hat{E} \rightarrow \hat{E}-q \phi$.
In the low energy limit, the Dirac equation is reduced to

$$
T u_{A}=\left\{\frac{1}{2 m}(p-q A)^{2}+q \phi-\frac{q \hbar}{2 m} \sigma \cdot B\right\} u_{A}
$$

u_{A} : upper two components,
T : kinetic energy, $E=m+T$, $q=-e>0$ for electron, $e>0$.

$$
\mu=\frac{q \hbar}{2 m} \sigma=g \frac{q}{2 m} \cdot \frac{\hbar}{2} \sigma=g \frac{q}{2 m} s, \quad s=\frac{\hbar}{2} \sigma, \quad g=2 .
$$

The $-\mu \cdot B$ term causes the energy split.
The Dirac equation describes the spin- $\frac{1}{2}$ particle. Spin physics has made a big progress since then.
note 1
When $C D+D C=0$ holds,

$$
\begin{aligned}
& D^{-1} C D+D^{-1} D C=D^{-1} C D+C=0 \\
& \operatorname{Tr}\left(D^{-1} C D+C\right)=0 \\
& \operatorname{Tr}\left(D^{-1} C D\right)+\operatorname{Tr}(C)=0 \\
& \operatorname{Tr}\left(C D D^{-1}\right)+\operatorname{Tr}(C)=0 \\
& \longrightarrow 2 \operatorname{Tr}(C)=0
\end{aligned}
$$

