Joint meeting of Division of Nuclear Physics of APS and JPS at Hawaii

Introduction to '100 Years of Spin Physics'

Toshi-Aki Shibata

Why 100 years?

In 1920's, there were lots of efforts and discussions on a possible new intrinsic degree of freedom of the particles.

The concept of spin emerged and was established.

In 1928, Dirac equation was formulated. $(i\hbar\gamma^{\mu}\partial_{\mu}-m)\psi=0.$ a free particle

If we use α_i and β for the coefficients, it can be written as

$$i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi, \qquad \hat{H} = \sum_{i=1}^{3} \alpha_i \,\hat{p}_i + m\beta$$
1/8

This equation has to be consistent with Klein-Gordon equation which is based on $E^2 = p^2 + m^2$:

$$\left(i\hbar\frac{\partial}{\partial t}\right)^2\psi=\left[\sum_{i=1}^3\hat{p}_i^2+m^2\right]\psi.$$

The conditions on the coefficients α_i , β are then

$$\alpha_i \, \alpha_j + \alpha_j \, \alpha_i = 0 \quad (i \neq j), \qquad \alpha_i \, \beta + \beta \, \alpha_i = 0, \qquad (1)$$
$$\alpha_i^2 = I, \quad \beta^2 = I. \qquad (2)$$

- 1) Eq.1: α_i and β are not just numbers, but matrices.
- 2) Eq.2: The eigenvalues of the matrices α_i , β are +1 and -1.
- 3) Eq.1: α_i and β are traceless. tr (α_i) =tr (β) = 0: the sum of the diagonal elements is 0. (\rightarrow note 1)
- 4) Four independent matrices α_i , β are needed.

 \longrightarrow The size of matrices is 4x4, 6x6, or \ldots

The 2x2 matrix such as Pauli matrix has only three independent matrices, and does not satisfy the condition.

The matrices α_i and β have, when diagonalized, +1 and -1 as the diagonal elements

$$egin{bmatrix} +1 & & & \ & +1 & & \ & & -1 & \ & & & -1 & \ & & & & \dots \end{bmatrix}$$

for example. The numbers of +1's and -1's have to be equal in order to be traceless. The minimum is 4x4 matrix.

If we adopt 4x4 matrices for α_i and β , the Hamiltonian becomes a 4x4 matrix:

$$\hat{H} = \alpha \cdot \hat{p} + m\beta = \begin{bmatrix} ml & \sigma \cdot \hat{p} \\ \sigma \cdot \hat{p} & -ml \end{bmatrix}$$

This is the Pauli-Dirac representation. σ is the Pauli matrix. The Hamiltonian can be equivalently expressed by other representations as well.

As a result, the wave function has four components.

The plane wave is expressed as

$$\psi = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} e^{i(k \cdot x - \omega t)}, \quad k = p/\hbar, \quad \omega = E/\hbar.$$

spinor and space-time wave function

In this case, the momentum operator $\hat{p}_i = \frac{\hbar}{i} \frac{\partial}{\partial x_i}$ and the energy operator $\hat{E} = i\hbar \frac{\partial}{\partial t}$ act on $e^{i(k \cdot x - \omega t)}$. After these operations,

$$E\begin{bmatrix}u_1\\u_2\\u_3\\u_4\end{bmatrix} = \begin{bmatrix}ml & \sigma \cdot p\\\sigma \cdot p & -ml\end{bmatrix}\begin{bmatrix}u_1\\u_2\\u_3\\u_4\end{bmatrix}$$

٠

The Hamiltonian can have four eigenvalues. The condition

$$\det(EI - H) = 0, \text{ where } H = \begin{bmatrix} mI & \sigma \cdot p \\ \sigma \cdot p & -mI \end{bmatrix}$$

leads to the eigen-function which is a quartic equation of E:

$${E^2 - (p^2 + m^2)}^2 = 0.$$

The eigenvalues are $E = \sqrt{p^2 + m^2}$, $E = -\sqrt{p^2 + m^2}$. Two states are degenerate at $E = \sqrt{p^2 + m^2}$, and two other states are degenerate at $E = -\sqrt{p^2 + m^2}$.

The Dirac equation contains a new intrinsic degree of freedom of the particle.

The electromagnetic potentials (ϕ, A_x, A_y, A_z) are included by replaceing the operators $\hat{p} \rightarrow \hat{p} - qA$, $\hat{E} \rightarrow \hat{E} - q\phi$.

In the low energy limit, the Dirac equation is reduced to

$$T u_A = \left\{ \frac{1}{2m} (p - qA)^2 + q\phi - \frac{q\hbar}{2m} \sigma \cdot B \right\} u_A$$

$$\begin{array}{l} u_A : \text{ upper two components,} \\ T : \text{ kinetic energy, } E = m + T, \\ q = -e > 0 \text{ for electron, } e > 0. \\ \mu = \frac{q \hbar}{2m} \sigma = g \frac{q}{2m} \cdot \frac{\hbar}{2} \sigma = g \frac{q}{2m} s, \qquad s = \frac{\hbar}{2} \sigma, \quad g = 2. \end{array}$$

The $-\mu \cdot B$ term causes the energy split.

The Dirac equation describes the spin- $\frac{1}{2}$ particle. Spin physics has made a big progress since then. note 1

When CD + DC = 0 holds,

$$D^{-1}CD + D^{-1}DC = D^{-1}CD + C = 0,$$

$$Tr(D^{-1}CD + C) = 0,$$

$$Tr(D^{-1}CD) + Tr(C) = 0,$$

$$Tr(CDD^{-1}) + Tr(C) = 0,$$

$$\longrightarrow 2Tr(C) = 0.$$