Spin in Fundamental Physics

Kenji Mishima

KEK IMSS J-PARC center

Spin in Symmetry

Kenji Mishima

KEK IMSS J-PARC center

Spin in Symmetry

Masaaki Kitaguchi

Kobayashi-Maskawa Institute (KMI)

Laboratory for Particle Properties (Φ-Lab.), Department of Physics

Nagoya University

Why is there far more matter than antimatter?

Sakharov conditions

- Baryon number violation
- Departure from thermal equilibrium
- C- and **CP-violation**

 $n_{\rm b}/n_{\gamma} = (0.61 \pm 0.02) \times 10^{-9}$

Standard Model

More CP-violation (from unknown source) is required !

Spin for CP-violation search

Time reversal symmetry violation is equivalent to CP violation using CPT theorem.

T-violation search experiments (EDM)

Various EDM search experiments

No finite value of EDM detected in various systems

K. Kirch and P. Schmidt-Wellenburg EPJ Web of Conferences 234, 01007 (2020) Upper limits :

electron EDM $|d_e| < 1.6 \times 10^{-27}$ ecm Tl $|d_e| < 1.1 \times 10^{-29}$ ecm ThO $|d_e| < 4.1 \times 10^{-30}$ ecm HfF⁺ muon EDM $|d_{\mu}| < 1.5 \times 10^{-19} \text{ ecm g-2}$ neutron EDM $|d_n| < 1.8 \times 10^{-26} \text{ ecm UCN}$ atomic EDM $|d_{Xe}| < 1.2 \times 10^{-27} \text{ ecm } {}^{129}\text{Xe}$ $|d_{Hg}| < 6.3 \times 10^{-30} \text{ ecm}^{199} \text{Hg}$ **Standard Model prediction** neutron : $d_n \approx 10^{-32}$ ecm electron : $d_e \simeq 10^{-38}$ ecm

-> If finite EDMs are found, it is due to the physics beyond the standard model !!

Neutron EDM

Ultra cold neutron

 $|d_{\rm n}| < 1.5 \times 10^{-27} \ e {\rm cm}$

PSI (Switzerland) C. Abel et al., Phys. Rev. Lett124, 081803 (2020)

Spin in Basic Science Hawaii 2023, 29 Nov. 2023, Kenji Mishima, KEK, (Masaaki Kitaguchi, Nagoya University)

Atomic EDM (diamagnetic)

$$|d_{\rm Hg}| < 7.4 \times 10^{-30} \ e {\rm cm}$$

Seattle (USA)

Graner et al., Phys. Rev. Lett. 116,161601 (2016) .

Munchen/Michigan/Berlin/Julich

$$d_{\rm Xe} | < 4.8 \times 10^{-27} \ e {\rm cm}$$

Sachdeva et al., arXiv 1902.02864

Meinz/Julich/Heidelberg

 $|d_{\rm Xe}| < 1.5 \times 10^{-27} \ e {\rm cm}$

Allmendinger et al., arXiv 1904.12295

Spin in Basic Science Hawaii 2023, 29 Nov. 2023, Kenji Mishima, KEK, (Masaaki Kitaguchi, Nagoya University)

T violating coupling constants in nucleus

EDM measurements with various system (nucleon, nuclei, atom, molecules) are needed to deconvolute the couplings.

$$\begin{aligned} ucleon EDMs & Nucleon-electron int. \\ d_{dia} = \alpha_{Sch}S_{Sch} + \alpha_{d_p}d_p + \alpha_{d_n}d_n + \alpha_{C_T^{(0)}}C_T^{(0)} + \alpha_{C_T^{(1)}}C_T^{(1)} \\ d_{Hg} & : Vanishingly small contribution from $\overline{g}_{\pi NN}^{(1)} \\ d_{Hg} = -\left(0.38^{+2.3}_{-0.19} \times 10^{-17}\right) \cdot \overline{g}_{\pi NN}^{(0)} + \left(0^{+1.6}_{-4.9} \times 10^{-17}\right) \cdot \overline{g}_{\pi NN}^{(1)} - \left(2.0^{+3.9}_{-0.0} \times 10^{-20}\right) \cdot C_T \\ d_{Xe} = -\left(0.29^{+2.3}_{-0.11} \times 10^{-18}\right) \cdot \overline{g}_{\pi NN}^{(0)} - \left(0.22^{+1.7}_{-0.11} \times 10^{-18}\right) \cdot \overline{g}_{\pi NN}^{(1)} + \left(4^{+2}_{-0} \times 10^{-21}\right) \cdot C_T \\ d_n = -\left(1.5 \times 10^{-14}\right) \cdot \overline{g}_{\pi NN}^{(0)} + \left(1.4 \times 10^{-16}\right) \cdot \overline{g}_{\pi NN}^{(1)} \\ d_n & : \text{No contribution from } C_T \end{aligned}$$$

Paramagnetic Atom EDM / Molecules

Diamagnetic

Atom

EDM

Hawaii 2023, 29 Nov. 2023, Kenji Mishima, KEK, (Masaaki Kitaguchi, Nagoya University)

e-N int

N EDM

N-N int

**• MQM

Schiff moment

Atomic and molecular EDM

EDM measurement with polar molecules has been realized since 2010. Measurement sensitivity has been greatly improved by using the large

effective electric field inside molecules.

molecular EDM

ACME III experiment

Atomic EDM (isotope)

210**F**r **Electron EDM enhanced** Nuclear EDM enhanced 211**Fr** with Octupole deformation T_{1/2}~3min T_{1/2}~5min Fr Rb Cs enhanced factor 27.5 114 799 Shitara, N., et al., J. High Energ. Phys. 2021(2021)124. Fr isotopes are produced by beam, Fr MOT/LO **Optical lattice** laser-cooled, and trapped in optical lattice. Spevak, V., N. Auerbach, and V. V. Flambaum... The spin of the trapped Fr atom can Physical Review C 56.3 (1997): 1357. be precisely measured. High intensity ¹⁸O⁶⁺ beam from RIKEN AVF cyclotron Fr⁺ beam production

Hawaii 2023, 29 Nov. 2023, Kenji Mishima, KEK, (Masaaki Kitaguchi, Nagoya University)

 β_2

 β_3

 β_4

 β_5

 β_6

 E_c (keV)

Muon g-2/EDM

T-violating nuclear interaction

CP-odd in nuclear interaction is also good probe.

J. de Vries et al., PRC 84, 065501 (2011)

Illustrated by N. Yamanaka

T-violating nuclear interaction

CP-odd in nuclear interaction is also good probe.

J. de Vries et al., PRC 84, 065501 (2011)

Illustrated by N. Yamanaka

Triple correlation with neutron spin - electron - proton

Asymmetry of emitted electrons from polarized ⁸Li.

$$\omega \propto 1 + A \frac{\vec{p_e}}{E_e} \cdot \frac{\langle \vec{J} \rangle}{J} + D \frac{\langle \vec{J} \rangle}{J} \cdot \left(\frac{\vec{p_e}}{E_e} \times \frac{\vec{p_\nu}}{E_\nu} \right) + R \vec{\sigma_e} \cdot \left(\frac{\langle \vec{J} \rangle}{J} \times \frac{\vec{p_e}}{E_e} \right) + \cdots$$

T. E. Chupp et al., PRC 86, 035505 (2012)

Triple correlation with ⁸Li spin - p_e - σ_e

Asymmetry of momentum and polarization direction of emitted electrons from polarized ⁸Li.

Parity violation in compound nucleus reactions

 $\begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & &$ Large party violation was found in angular distribution of 1974年 113 Cd(\vec{n}, γ) 114 Cd for meV neutrons $W(\theta) = \text{const.} (1 + A_{\gamma} \overrightarrow{\sigma_n} \cdot \overrightarrow{k_{\gamma}}) \qquad A_{\gamma} = -(4.1 \pm 0.8) \times 10^{-4}$ P-odd

- Angular distribution of ${}^{117}Sn(\vec{n}, \gamma){}^{118}Sn$ 1976年
- Longitudinal asymmetry in neutron absorption reaction 1981年 for meV neutrons

$$A_{\rm L} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \qquad \begin{array}{c} {}^{139}{\rm La} + \vec{\rm n} \, : \, A_{\rm L} = (34.3 \pm 5.3) \times 10^{-5} \text{ barn} \\ {}^{117}{\rm Sn} + \vec{\rm n} \, : \, A_{\rm L} = (4.6 \pm 0.5) \times 10^{-5} \text{ barn} \\ {}^{81}{\rm Br} + \vec{\rm n} \, : \, A_{\rm L} = (60.6 \pm 6.2) \times 10^{-5} \text{ barn} \\ {}^{A_{\rm L}} \sim 10^{-5} \text{ barn} \end{array}$$

Longitudinal asymmetry in neutron absorption reaction of $^{139}La + \vec{n}$ for 1981年 0.7eV neutrons 2

$$A_{\rm L} = (9.56 \pm 0.35) \times 10^{-2}$$

1990年~ Many isotopes **TRIPLE collaboration at Los Alamos**

> in Basic Science 2023, 29 Nov. 2023. i Mishima, KEK, (Masaaki Kitaguchi, Nagoya University)

P-violation enhancement

P-violation is enhanced in the interference between s-wave and p-wave of compound nuclei.

T-violation in Compound Nuclei

T-violating interaction in nucleon-nucleon interaction

T violation in a compound nucleus

Conversion factorP-violating interaction in nucleon-nucleon interactionfrom P-violation to T-violationV. P. Gudkov. Phys. Rep., 212:77, 1992.

Enhanced P-violation $\Delta \sigma_P \rightarrow$ **Enhanced T-violation** $\Delta \sigma_T$

Angular momentum (recombination) factor

 $\Delta \sigma_{\rm T} =$

$$\kappa(J) = \begin{cases} (-1)^{2I} \left(1 + \frac{1}{2} \sqrt{\frac{2I-1}{I+1}} \frac{y}{x} \right) & (J = I - \frac{1}{2}) \\ (-1)^{2I+1} \frac{I}{I+1} \left(1 - \frac{1}{2} \sqrt{\frac{2I+3}{I}} \frac{y}{x} \right) & (J = I + \frac{1}{2}) \end{cases}$$

 $\frac{\Gamma_{n}^{p,j=\frac{1}{2}}}{\Gamma_{n}^{p}} \quad y = \sqrt{\frac{\Gamma_{n}^{p,j=\frac{3}{2}}}{\Gamma_{n}^{p}}} \quad x^{2} + y^{2} = 1 \quad \begin{array}{c} x = \cos \phi \\ y = \sin \phi \end{array} \quad \textbf{Unknown parameter}$

Spin in Fundamental Physics Hawaii 2023, 29 Nov. 2023, Kenji Mishima, KEK, (Masaaki Kitaguchi, Nagoya University)

P violation

nucleus

in a compound

Setup for T-violation experiment

Simple illustration of T-violation search experiment with polarized neutrons and target.

page 22

T-violation experiment at J-PARC

J-PARC MLF

¹³⁹La (n, γ) measurement

Targets : ^{nat}La 40mm x 40mm x 1mm

T. Okudaira et. al., Phys. Rev. C97 (2018) 034622.

¹³⁹La (n, γ) measurement

Targets : ^{nat}La 40mm x 40mm x 1mm

T. Okudaira et. al., Phys. Rev. C97 (2018) 034622.

(n, γ) measurement with polarized neutrons

¹³⁹La (n, γ) measurement

φ value by ¹³⁹La (n, γ) measurement

→ T-violation is also enhanced 10⁶-fold !

Polarized target R&D

La polarization(~30%) with large LaAlO₃

Experiments with polarized target at J-PARC

68mK, 6.7T \rightarrow ¹³⁹La polarization : 4.3%

³He polarization 85% →Neutron polarization 40%

Experiments with polarized target at J-PARC

Spin-dependent cross section was observed.

arXiv:2309.08905 (2023) Submitted to PRC

Experiments with polarized target at J-PARC


```
68mK, 6.7T
```

 \rightarrow ¹³⁹La polarization : **4.3%**

Asymmetry of transmitted neutrons for parallel and anti-parallel spins

$$A_s = \frac{N_P - N_A}{N_P + N_A}$$

ron momentum

essfully measured spinndent cross section!

> arXiv:2309.08905 (2023) Submitted to PRC

lestone for T-violation search!

φ value

Summary

CP-violation is one of the unsolved problems in particle physics.

EDMs of various systems are complementary and provide a strong limitation to CP violation.

nucleon, atom, molecule

NN interaction is good probe for T-violation search.

triple-vector correlation in beta-decay, resonance capture

Neutron is suitable for spin-experiment, easy to be polarized, controlled.

Discrete symmetry violation is enhanced in Compound States induced by Epithermal Neutron.

US-China-Japan collaboration NOPTREX was started.

