目Cでの物理

Outline 背景:QCD研究の課題 II. 核子の内部構造とFemtography • III. 原子核内でのQCDダイナミクスの研究

渡邊和宏 (Kazuhiro Watanabe) 成蹊大学 (Seikei University)

第22回高エネルギーQCD・核子構造勉強会 03/29/2024, KEK東海キャンパス

> Based on • EIC White Paper • National Academy of Sciences Report • EIC Yellow Report

special thanks for discussion with BNL&JLab Colleagues

宇宙創生と物質の起源

▶ この宇宙の起源は何か?

□宇宙創成直後に存在した物質の性質,相転移 と宇宙の冷却,…などの問題の解明.

➤ 可視物質は何からできているのか?
□周期表元素の性質を, "現代の"周期表元
素から理解する.

"元素"周期表

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3- or 4-star status are included in the Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the table are not established baryons. The names with masses are of baryons that decay strongly. The spin-parity J^P (when known) is given with each particle. For the strongly decaying particles, the J^P values are considered to be part of the names.

	р л М(1440)	$1/2^+$ $1/2^+$ $1/2^+$	**** ****	$\Delta(1232)$ $\Delta(1600)$ $\Delta(1620)$	$3/2^+$ $3/2^+$ $1/2^-$	**** *** ***	Σ^+ Σ^0 Σ^-	$1/2^+$ $1/2^+$ $1/2^+$	**** **** ****	$=^{0}$ $=^{-}$ =(1530)	$\frac{1/2^{+}}{1/2^{+}}$	**** **** ****	A_c^+ : $A_c(2595)^+$: $A_c(2625)^+$:	$1/2^+$ $1/2^-$	**** ***
Particle Data Group	N(1440) N(1520) N(1535) N(1650)	$1/2^{-}$ $3/2^{-}$ $1/2^{-}$ $1/2^{-}$	**** **** ****	$\Delta(1620)$ $\Delta(1700)$ $\Delta(1750)$ $\Delta(1900)$	$\frac{1/2}{3/2^{-}}$ $\frac{1/2^{+}}{1/2^{-}}$	**** * *	Σ Σ (1385) Σ (1480) Σ (1560)	$3/2^+$	**** * *	$\Xi(1530)$ $\Xi(1620)$ $\Xi(1690)$ $\Xi(1820)$	3/2 -	* * *** ***	$\Lambda_c(2625)^+$ $\Lambda_c(2765)^+$ $\Lambda_c(2880)^+$! $\Lambda_c(2940)^+$	3/2 5/2 ⁺	* * *** ***

From Wikimedia commons

Standard Model of Elementary Particles

Baryon Summary Table

Meson Summ

See also the table of suggested $q\overline{q}$ quark-model assignments in the Quark Model section.

• Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being of

LIGHT UNFLAVORED				STR/	ANGE	CHARMED, S		
(S = C = B = 0)				$(S = \pm 1.$	C = B = 0	(C = S =		
	IG (IPC)	, I	IG (IPC)	· · ·	, ,(,(P)	(, IV IPN	
	P°(J [*] °)		P°(J [*] °)		<i>I</i> (<i>J</i> [*])		I(J')	• $\eta_c(1S)$
• π^{\pm}	$1^{-}(0^{-})$	• <i>\(</i> (1680)	0-(1)	• K [±]	$1/2(0^{-})$	• D_s^{\pm}	$0(0^{-})$	• $J/\psi(1S)$
• π^{0}	$1^{-}(0^{-+})$	 <i>ρ</i>₃(1690) 	$1^+(3^{})$	• K ⁰	$1/2(0^{-})$	• $D_s^{*\pm}$	0(??)	• $\chi_{c0}(1P)$
• η	0+(0 - +)	• $ ho$ (1700)	$1^+(1^{})$	• K_S^0	$1/2(0^{-})$	● D [*] _{s0} (2317) [±]	0(0+)	• $\chi_{c1}(1P)$
• $f_0(500)$	$0^+(0^{++})$	$a_2(1700)$	$1^{-}(2^{++})$	• K_L^0	$1/2(0^{-})$	• $D_{s1}(2460)^{\pm}$	$0(1^+)$	• $h_c(1P)$
• ρ (770)	$1^+(1^{})$	• $f_0(1710)$	$0^+(0^{++})$	K ₀ (800)	$1/2(0^+)$	• $D_{s1}(2536)^{\pm}$	$0(1^+)$	• $\chi_{c2}(1P)$

Hadron mass spectrum from lattice QCD

A.S.Kronfeld, Ann. Rev. Nucl. Part. Sci. 62, 265 (2012)

広いエネルギー領域でのQCDの"成功"

素粒子標準模型(EW, QCD摂動計算 + PDFs)が, LHCデータを非常によく記述する.

QCDのパズルと課題 (1/5)

▶ 陽子のスピン(1/2)の起源

• 3次元パートン分布関数と関係 (後述)

▶ 陽子の質量の起源

- クォーク質量(ヒッグス機構)の寄与はわずか1%.
- グルーオンは質量がないが、そのダイナミクスが残り99%の寄 与を与える.
- 軽いハドロン生成ではカイラル対称性の破れがより重要.

1980s

QCDのパズルと課題 (2/5)

>> ハドロンや原子核内部のパートンの3次元分布

- パートン分布関数 (PDFs), 形状因子は1次元の情報.
- 座標空間での分布 (空間的な広がり).
- •運動量空間での分布 (ハドロン内部で閉じた運動).

▶ ハドロンの生成機構

- カラー荷を持つクォークとグルーオンが、どのようにカラー荷を持たないハドロンとなるか.
- カラーの流れとクォーク・グルーオンの相互作用.

QCDのパズルと課題 (3/5)

▶ "カラフルな"粒子と原子核媒質との相互作用

- 原子核媒質は巨大なカラーフィルタ.
- カラー荷を持つクォーク、グルーオン、ジェット粒子は カラフルな媒質中でエネルギーを損失する.
- QCD真空中と核媒質中でのハドロン化機構の違い.

> クォークとグルーオンから原子核束縛状態の形成

- QCDが持つ強い力から原子核束縛状態の形成を理解でき るか.
- Strong (Color) van der Waals Force が核子間に働くはず.

QCDのパズルと課題 (4/5)

https://u.osu.edu/vishnu/2015/07/22/photon-emission-from-relativistic-heavy-ion-collisions/

➤ 高温高密度QCD物質の性質解明

- 衝突前の原子核波動関数が全ての観測量に影響を与える.
- ・生成したQCD物質の性質 (flow, viscosity, vorticity, …)を抽出する逆問題.

decay photons made by Chun She

https://www.bnl.gov/newsroom/news.php?a=121192

QCDのパズルと課題 (5/5)

> グルーオン物質の新しい形態

- Legacy from HERA@DESY:小さなx領域では核子がソフトなグルーオンが増加する.

• 極限的に小さな x では, 核子・ハドロンはグルーオンの稠密状態 (カラーグラス凝縮)となるか. 1

Part II: 核子の内部構造と Femtography

核子内部の多彩な量子構造

フレーバー-スピン量子相関

生成ハドロンの横運動量が大きい場合 (パートンの横運動量は積分):

- 偏極ビームを使用した実験は、カラー量子干渉を研究する機会を提供する.

• $\frac{\sigma(+s) - \sigma(-s)}{\sigma(+s) + \sigma(-s)}$: スピン非対称性

• クォークとグルーオンの量子相関 (カラーローレンツカ):相関関数は確率解釈できない.

TMDs: Transverse Momentum Dependent Distributions

生成ハドロンの横運動量が小さい場合:

• 複数のスケールを利用し、散乱角度を調整するこ とで、TMDsに含まれるフレーバー-スピン相関の 豊富な情報を調べることができる.

横偏極した核子内部の無偏極クォーク分布関数

核子構造の空間依存性の情報

Elastic electric form factor

Elastic scattering: $e + p \rightarrow e' + p'$ $Q^2 = -q^2 = -(p_e - p_{e'})^2$

- 電気形状因子から電荷分布 (半径) がわかる.
- •疑問:カラー形状因子がわかれば,核子内部のカ ラー分布がわかるのでは?
- ハドロンはカラーシングレット, かつグルーオンは カラー荷を運ぶので,カラー形状因子は存在しない.

GPDs: Generalized Parton Distribution Functions

- クォークの質量 (MeVスケール)は陽子の質量 (GeVスケー ル)と比べると圧倒的に軽い.
- これまで様々なアプローチで説明が試みられてきた.
- カイラル対称性の破れの効果は? グルーオンの寄与は?

avor	Mass
u	~ 2 - 2.5 MeV
d	~ 4.5 - 5 MeV
S	~ 90 - 100 MeV
С	~ 1.25 - 1.3 GeV
b	~ 4.15 - 4.2 GeV
t	~ 173 GeV

例:MIT Bag Model

3つのクォークの運動エネルギー

+ Bag constant B (最小化) $\rightarrow M \sim 4/R \sim 1 \text{ GeV}$

A.Chodos, R.L.Jaffe, K.Johnson, C.B.Thorn and V.F.Weisskopf, PRD9, 3471-3495 (1974) K.Johnson, Acta Phys. Polon. B6, 865 (1975)

• • •

QCD energy-momentum tensor $T^{\mu\nu} = \frac{1}{2} \bar{\psi} i D^{\mu} \gamma^{\nu} \psi - g^{\mu\nu} \bar{\psi} (i D^{\mu} \gamma_{\mu} - m) \psi - F^{a\mu\rho} F^{a\nu}_{\rho} + \frac{1}{\Lambda} g^{\mu\nu} F^{a\rho\sigma} F^{a}_{\rho\sigma}$

 $= \overline{T}^{\mu\nu} + \hat{T}^{\mu\nu}$ Traceless + Trace

 $M_p = -\langle \hat{T}^{\mu\mu} \rangle = H_m + H_a \qquad \begin{array}{c} h - \nu z r J - \nu - \mu \\ (\mathcal{I} \nu - \tau \lambda r) - \mu \\ (\mathcal{I} \nu - \tau \lambda r) - \mu \\ \end{array}$ **χ対称性の破れ** (クォーク質量)

右辺はゲージ不変に分解できるがユニークではない. 例) Ji's decomposition

$$M_p = M_E + M_g + M_g + M_a + M_n$$

$$\lim_{x \to x^{-}} \lim_{x \to y^{-}} \lim_{x \to y^{-}} \frac{1}{2\pi}$$

Proton's mass decomposition in the rest frame

Quarkonium production near threshold

- J/ψ や Y(1S) はグルーオンと結合し, 軽い クォークの寄与はない.
- ・閾値近傍での J/ψ photo-production @JLab (Y(1S) @EIC)は, Trace anomalyの情報に敏感.
- Color Van der Waals forceの影響で, J/ψ と核 子が束縛状態を作る可能性がある.
- さらに, GPDsや重力形状因子の情報も抽出
 が可能. (第20回勉強会)

グルーオンの増大と飽和

1/Qが横方向の解像度に対応

*x*が小さい:

縦方向の露光時間が長い

Part III: 原子核内でのQCDダイナ ミクスの研究

グルーオン飽和探索@EIC

$$Q_{sA}^2 \propto A^{1/3} x^{-0.3}$$

- グルーオン飽和スケールは横平面あたりのグルーオン密度に依存.
- 境界領域 ($x = 10^{-3} 10^{-2}$)を調べることができる重要な機会を提供する.

•xが極限的に小さくなくても Q_x が摂動的なスケールになり,様々な観測量に影響を与える.

<u>リッジ構造 (Iong-range rapidity correlation)</u>

- pp, pA, and AA衝突で似たような相関が見える.
- クォーク・グルーオン・プラズマがppやpA衝突でも生成している兆候か?
- 衝突初期の揺らぎ (CGC) or/and 終状態相互作用 (QGP flow) の競合.
- Multi-parton interactions (MPI)の包括的な理解が鍵.

EICへのベンチマーク

A.Badea et al., PRL123, no.21, 212002 (2019)

e^+e^- @ LEPではridgeは見えない (Belleも).

G.Aad et al. [ATLAS], PRC104, no.1, 014903 (2021)

I.Abt et al. [ZEUS], JHEP04, 070 (2020), JHEP12, 102 (2021)

(a) Photoproduction.

(b) NC DIS with $Q^2 > 20 \ GeV^2$.

ep@HERAでもridgeは見えない.

UPCでは何かが見えている.

原子核媒質中でのハドロン化

- 真空中でのハドロン化機構はKEK-Belleを中心 に精力的に進められている(破砕関数の研究)
- 原子核媒質:軽い粒子と重い粒子ではハドロ ン化のメカニズムを調べるための実験室.
- 原子核媒質中ではどのような変更が起こるだ ろうか:エネルギー損失など

gluon radiation

エキゾチックハドロン生成

- EICでは原子核内部でクォーコニウム 束縛状態が形成する.
- 原子核媒質の影響で生成率が変わる.
- •エキゾチック状態も生成するが,束縛 状態の内部構造に応じて,原子核媒質中 で崩壊のしやすさが異なる.

Molecule? or Tetraquark? or perhaps Pentaquark?

- ムを提供する実験室である.

・EICは,原子核物理のフェムトサイエンスに関する非常に豊富でユニークなプログラ

• EICだけでなく、J-PARCを始めとするハドロン・原子核実験を包括的に利用し、様々 なQCD現象を発見・解明することで,カラーやグルーオンの役割の理解を目指す.

Backup

nPDFs

$$R_i^A(x,Q^2) = \frac{f_i^{p/A}(x,Q^2)}{f_i^p(x,Q^2)}$$

- $R^A > 1$ for $x \gtrsim 0.8$: the Fermi motion region.
- $R^A < 1$ for 0.25 or 0.3 $\leq x \leq 0.8$: the EMC region.
- $R^A > 1$ for $0.1 \leq x \leq 0.25$ or 0.3: the antishadowing region.
- $R^A < 1$ for $x \leq 0.1$: the shadowing region.

Low scattering energies: incoherent sum

High scattering energies: coherent multiple scatterings play a role

$$\sigma^A = A\sigma^n$$

ElectroWeak & Beyond Standard Model Physics

G.Gwinner and L.A.Orozco, Quantum Sci. Technol.7, no.2, 024001 (2022)

