第22回高エネルギーQCD・核子構造勉強会

- Friday 29 Mar 2024, 13:00 → 17:00 Asia/Tokyo
- ♥ 東海1号館116号室(KEK 東海キャンパス)
- Shinya Sawada (KEK) , Shunzo Kumano (KEK) , Yuji Goto (RIKEN)

ePIC実験測定器の技術と応用

郡司 卓

東京大学大学院理学系研究科附属原子核科学研究センター

▶ 高エネルギー原子核物理の将来実験と測定器

▶ ePIC実験とALICE3実験

▶ 今後の基盤となる測定器技術やシステム

- ► MAPS
- LGAD
- Streaming DAQ

<u>高エネルギー原子核物理の将来実験</u>

▶ ePIC実験@EIC (2030-)

▶ ALICE3実験@CERN-LHC (2035-)

▶ ePIC実験@EIC (2030-)

▶ ALICE3実験@CERN-LHC (2035-)

4

・ 飛跡と衝突点同定のためのシリコンピクセル検出器

- PIDのための飛行時間検出器(TOF)
- PIDのためのRICH検出器
- ・ 電磁カロリメーター
- (ハドロンカロリメータ)

<u>高エネルギー原子核物理の将来実験</u>

▶ ePIC実験@EIC (2030-)

▶ ALICE3実験@CERN-LHC (2035-)

radius [n

Layer	Material	Intrinsic	Barrel	layers	Forward discs			
	thickness $(\%X_0)$	resolution (µm)	Length (±z) (cm)	Radius (r) (cm)	$\frac{1}{(cm)}$	R _{in} (cm)	R _{out} (cm)	
0	0.1	2.5	50	0.50	26	0.50	3	
1	0.1	2.5	50	1.20	30	0.50	3	
2	0.1	2.5	50	2.50	34	0.50	3	
3	1	10	124	3.75	77	5	35	
4	1	10	124	7	100	5	35	
5	1	10	124	12	122	5	35	
6	1	10	124	20	150	5	80	
7	1	10	124	30	180	5	80	
8	1	10	264	45	220	5	80	
9	1	10	264	60	279	5	80	
10	1	10	264	80	340	5	80	
11	1				400	5	80	

5

・ 飛跡と衝突点同定のためのシリコンピクセル検出器
 → 出来るだけ衝突点近傍に置きたい。
 → 高精細なシリコンピクセル検出器が必要

- ▶ pn 接合に逆バイアス電圧を印加すると空乏層ができる
- ▶ 荷電粒子が空乏層領域を通過すると飛跡に沿って電子・ホール対を生成する
- ▶ 300 µm 厚センサー ~32,000 e-h ペア生成
- ▶ 電子とホールは電場に従って収集される
- ▶ 電荷を収集する電極を工夫すれば、一次元(ストリップ)、二次元(ピクセル)の位置情報を得ることができる

Hybrid ピクセルセンサー

現在の主流はハイブリッド型ピクセル検出器(ATLAS 実験など)

- ▶ センサーと信号読み出し回路を別々に作り、バンプボンディングにより接合する。
- ▶ バンプの大きさは数十µm 程度 → 最小のピクセルサイズは50 µm程度

<u>モノリシック ピクセルセンサー</u>

▶ 一枚のSiウェハーで、センサー部も読み出し回路も作ってしまう。

- バンブボンディングが不要なのでピクセルサイズを小さくできる
- ▶ しかし、ピクセル部の信号処理回路規模とトレードオフ。
- 簡単なアナログ回路だけならトランジスタ数個~10個程度で実現可能。高度な信号処理回路(アナログとデジタルとか)を入れようとするとトランジスタ数は増える。

CMOS imaging sensor (CIS)

Global Top 10 CMOS Foundries - Market Share

VIS, Tower, 1.20%

FSMC.

1.60%

UMC, 6.90%

Samsung,

1.20%

HuaHong

Nexchip, 1%

TSMC, 56.10%

Global Top 10 CIS **Companies** - Market Share

- camera phones, vehicles, machine vision, human recognition and security, scientific/medical
- cellular camera phones account for 60% of the sales

CMOS imaging sensors

The inception of CMOS APS for charged particles

INSTRUMENTS & METHODS IN PHYSICS Nuclear Instruments and Methods in Physics Research A 458 (2001) 677-689 www.elsevier.nl/locate/nim

A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology

R. Turchetta^{a,*}, J.D. Berst^a, B. Casadei^a, G. Claus^a, C. Colledani^a, W. Dulinski^a, Y. Hu^a, D. Husson^a, J.P. Le Normand^a, J.L. Riester^a, G. Deptuch^{b,1}, U. Goerlach^b, S. Higueret^b, M. Winter^b

> *LEPSI, IN2P3/ULP, 23 rue du Loess, BP20, F-67037 Strasbourg, France ^bIReS, IN2P3/ULP, 23 rue du Loess, BP20, F-67037 Strasbourg, France

CHARGED PARTICLE ELECTROSTATIC POTENTIAL NMOS TRANSISTORS IN PWELL WELL DIODE DISTANCE

Since then, there have been a lot of developments. 100% efficiency and CMOS electronics integrated in the

pixel matrix

TPAC - for ILC ECAL (CALICE)

2008 50µm pixel

PIMMS – for TOF mass spectroscopy

NUCLEAR

RESEARCH

CHERWELL - Calorimetry/Tracking

48 µm x 96 µm pixel

ALPIDE – Tracking

1	×.	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•

2013

<u>MAPSセンサーの大型実験応用</u>

11 L. Musa, QM2023

STAR HFT – 2014 ULTIMATE

ALICE ITS2 – 2021 ALPIDE

SPHENIX MVTX - 2023 ALPIDE

NA61 prototype ALPIDE

ALICE ITS3 – 2028 "Wafer-scale MOS"

NA60+ - 2028 (based on ALICE ITS3)

NA60+

12

Beam energy scan ($\sqrt{s_{NN}}$: 6.3 – 17.3 GeV) for precision studies of: hard processes, electromagnetic

L. Musa, QM2023

follows design of NA60 but with better-performing detectors

- Spatial resolution: 5µm •
- X/X₀: 0.1% /plane

Muon Spectrometer (6 stations) on rails to adjust position depending on energy

Muon tracking stations: MPGD (GEM, MicroMeagas) or MWPC (baseline) with total active area $100m^2$, spatial resolution (radial direction) ~ $200\mu m$, max plarticle flux ~kHz/cm²

<u>ALPIDEチップ(ALICE-ITS2)</u>

Based on MAPS technology (ALPIDE)

- 180nm technology (Tower Jazz)
- Thinner: for innermost layers $\sim 0.30\% X_0$
- Smaller pixels: 27 × 29 μm²
- Maximum readout rate: 200 kHz
- 130 000 pixels/cm²
- Max. particle rate: ~100 MHz/cm²
- Spatial resolution: ~5 μm
- Thickness: 50 μm for the inner layers
- ▶ Fake-hit rate: < 10⁻⁹ per pixel per event

<u>ALPIDEチップ(ALICE-ITS2)</u>

180 nm \rightarrow 65 nm technology development

TPSCo 65 nm CMOS Imaging Technology

- matrix: 6x6 pixels
- readout: direct analog readout of central 4x4
- pitch: 10, 15, 20, 25 µm
- total: 34 dies

マニュファクチュアリン**ク*** -

そのほかのTPSCoページ:

TPSCo 製造拠点 TPSCo 品質/各種認証 TPSCo CSR TPSCo 役員体制 TPSCo 採用情報

TPSCo Overview and History

タワー パートナーズ セミコンダクター株式会社(TPSCo)は、35年以上にわたり製造実績がある北陸地区の工場で7.5億個以上の車載用 (グレード0.1.2) 大規模集積回路を製造しています。

主なプロセス技術は、高周波(RF)、ハイパフォーマンスアナログ、パワーマネジメント、CMOSイメージセンサ(CIS)、ミックスドシク ナルCMOSなどです。

200mmおよび300mmのウェハに対応したサブミクロンから45nmまでの150を超えるプロセスフローと内製のバックエンドプロセス、アッ センブリ、テストサービスにより、タワー パートナーズ セミコンダクター株式会社は、IDM・ファブレス企業の双方にこれまでより優れ た半導体の尽管と技術を提供いたします。

- matrix: 64x32, 48x32 pixels
- readout: rolling shutter analog
- **pitch:** 15, 25 µm
- total: 4 dies

DPTS

- matrix: 32x32 pixels
- readout: async. digital with ToT
- pitch: 15 µm
- total: 3 dies

APTS – Fe-55 lab tests

Modified with gap

type: modified with gap

Pixels of pitches of 10-25 μ m show similar results indicates that the charge collection is very efficient

17

APTS – beam tests

<u>ePIC/ALICE-ITS3 : 65nm</u>

APTS – beam tests

- Detection efficiency increases with pixel pitch
- Interplay between:
 - Less efficiency at pixel border
 - Less border contribution for larger pixels

DPTS – **Detection efficiency**

[doi:10.48550/arXiv.2212.08621]

ePIC/ITS3: Wafer-size sensor

Wafer-size curved sensors \rightarrow Nearly massless truly cylindrical detectors TPSCo ISC 65nm CMOS Imaging 300mm wafers + stitching

from reticle-size to wafer-size

thin (<50µm CMOS can be curled)

"**MOSS**": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 μm²)

- conservative design, different pitches

ePIC/ITS3: MOSS testing

- Confirmed basic functionalities at lab
 - ✓ Careful and gentle powering
 - ✓ Yield assessment by baby MOSS too
- 3 beam test campaigns at PS
 - ✓ 3 ALPIDEs + MOSS + 3 ALPIDEs

ePIC/ITS3: MOSS testing

低 KEK 😤 東京大学 IPHC R_DR_29 Collaboration 筑波大学 LPSC KEK – ITDC IPHC – C4Pi Core facility for detector R&D Core facility for MAPS R&D CHUJO Tatsuya **BAUDOT Jérôme GUNJI** Taku U.Tokyo – ALICE **BESSON** Auguste IPHC - Belle II & EIC HANGAKI Kazunori **EL BITAR Ziad** U.Tsukuba – ALICE **INABA** Motoy **GUERNANE** Rachid IPHC - PICSEL R&D for future e+e- coll. NAKAMURA Katsuro **HU-GUO** Christine KEK – Belle II NAKAMURA Koji **KUMAR** Ajit LPSC - ALICE **TOGAWA** Manabu KEK – ATLAS **MAIRE** Antonin YAMAGUCHI Yorito IPHC - ALICE U.Hiroshima – ALICE

Short-term activities

- Contribution to OBELIX-1 design
 - Still possibilities in analogue parts: DAC, ADC
- Tests of TJ-Monopix2
 - Same DAQBoard53 system than OBELIX-1 will use
 - IPHC can provide its own system for Summer (more systems to be produced soon)
 - Goals: learn how to tune the thresholds over the matrix start thinking integration in beam line (telescope?)
 - Reporting on VTX Monday meeting 9:00 PM (JST)

Tests of CE-65v1 or v2

- System distributed by ALICE-ITS3 (availability to be checked)
- Goals: learn analogue output characterisation (calib...) specific measurements on v2 not yet performed
- Reporting in ALICE-WP3 Tuesday meeting 4:00 PM (JST)
- MOSS characterization
- Allpix2 simulation

🕲 KEK 😤 東京大学 IPHC

筑波大学 LPSC

CE65 variants

- **Reference** configuration
 - 22.5 SQ GAP

Specific studies

- 1. Influence of diode conf on baseline 22.5 SQ.
 - 22.5 SQ STD, 22.5 SQ BLK, 22.5 SQ GAP
- 2. Influence of pitch in SQ pixels in GAP.
 - 15 SQ GAP, 18 SQ GAP, 22.5 SQ GAP
- 3. Influence of HSQ vs SQ in GAP.
 - 18 SQ GAP, 18 HSQ GAP, 22.5 SQ GAP, 22.5 HSQ GAP
- 4. Influence of pitch in SQ pixels in STD.
 - 15 SQ STD, 18 SQ STD, 22.5 SQ STD
- 5. Influence of HSQ vs SQ in STD.
 - 18 SQ STD, 18 HSQ STD, 22.5 SQ STD, 22.5 HSQ STD
- 6. Influence of pitch in SQ pixels in BLK.
 - 15 SQ BLK, 18 SQ BLK, 22.5 SQ BLK
- 7. Influence of HSQ vs SQ in BLK.
 - 18 SQ BLK, 18 HSQ BLK, 22.5 SQ BLK, 22.5 HSQ BLK

W. Snoeys et al.:

Backside voltage DOI: 10.1016/j.nima.2017.07.046.

Standard (STD) diode

Square (SQ) pixels

Blanket layer (BLK) diode

Hexagonal (HSQ) pixels

- 6 V

P-wel

Deep P-we

Backside voltage

Gap layer (GAP) diode

0.8 V

- 6 V

Backside voltage

MAPS testbeam at KEK

Beamtests for CE65 chip validation & performance check Collaboration with ALICE-Korea team (ALPIDE telescope and APTS, Bent-ALPIDE)

- ▶ ALICE3のouter trackerやePIC実験のVTXのupgrade (2040-)を狙う
- ▶ CE65、MOSS、APTSのテストを通じて、基本的な動作を理解
- TCAD, AllPix2などのsimulation studies
- ▶ 自分たちでデザインできるように技術を身につけたい
 - ePIC VTXのupgrade
 - J-PARCのハドロン実験、E16 upgrade?
 - J-PARC-HI

<u>ePIC/ALICE3でのPID</u>

▶ ePIC実験 (2030-)

<u>ePIC/ALICE3でのPID</u>

▶ ePIC実験 (2030-)

▶ ALICE3実験 (2035-)

<u>ePIC/ALICE3でのPID</u>

▶ ePIC実験 (2030-)

▶ ALICE3実験 (2035-)

シリコン検出器の時間分解能

 $\sigma^2 = \sigma_{tw}^2 + \sigma_j^2 + \sigma_L^2$ → ランダウノイズ タイムウォーク ジッター tr threshold I_B S σ_n discriminator signal for A discriminator signal for B

信号の大きさのばらつきによる Over-thresholdのタイミングのず れ。CFDで補正可能

 $\sigma_{TimeSlewing} = [t_d]_{RMS} \propto \left| \frac{N}{dV/dt} \right|$

信号に乗るノイズによる影響 ノイズの大きさと立ち上がりの 速さに依存

$$\sigma_{Jitter} = \frac{N}{|dV/dt|_{V_{th}}} = \frac{t_r}{S/N}$$

・電子が励起する際の確率的なばらつき

・Padから遠い電子ほど信号の遅れが出る

31

検出器の厚さに依存

信号の立ち上がりが速いほど 時間分解能がよい。 低ノイズである必要がある。

- ゲインレイヤー(濃いpn接合)をPad付近に 入れることで強い電場を形成
- ゲインレイヤーの強い電場で電子雪崩が起き、信号の立ち上がりが速くなる

 di_G

Ramo's theorem

<u>LGAD検出器</u>

- ePIC実験では、様々なシステムがAC-LGAD検
 出器を使用予定
- バレル ToF (ストリップ) 前方 ToF (ピクセル)

超前方飛跡検出器 (ピクセル) ローマンポット (ピクセル)

BNLとHPK(eRD112 – LGAD consortium) で製作

3x3 mm² Sensor size 100μm, 150 μm, 200 μm

3x3 mm² Sensor size

Permanent setup in FNAL test beam facility (FTBF)

AC-LGAD **Trigger scintillator** 120 GeV proton MCP-PMT FTBF strip and pixel telescope Name Pitch Primary signal amp. Position res. Time res. Unit mV μm μm ps BNL 2020 29 ± 1 100 101 ± 10 <6 BNL 2021 Narrow 100 104 ± 10 <9 32 ± 1 BNL 2021 Medium 150 30 ± 1 136 ± 13 <11 BNL 2021 Wide 200 144 ± 14 ≤9 33 ± 1 HPK C-2 500 128 ± 12 22 ± 1 30 ± 1 HPK B-2 500 95 ± 10 27 ± 1 24 ± 1

Designed and produced by KEK/Tsukuba with HPK

JINST 17 P05001 (2022) BNL2020, 220V FNAL 120 GeV proton beam resolution [µm] 30 25F Position Binary readout 20 Two-strip reconstruction

-0.1

0

-0.2

AC-LGADの性能

R. Heller et al.,

0.2

Track x position [mm]

0.1

0.3

開発拠点@広島大学WPI-SKCM²

- 米国 BNL, <u>広島大学</u>, … (IJCLab/Omega と協力)
- AC-LGAD 素子 + 読出 ASIC (EICROC)

35

広島大学

開発目標(短~中期)

- 多種アセンブリのチェーン性能評価
 - 形状などを変更した複数の BNL / 浜松製 AC-LGAD 素子
 - TCAD シミュレーションによる検出素子内部構造最適化
 - ASIC(s) + 読出基板試作機
 - ストリップ形状などの調整も含めた適合性
 - 要求性能 ~30 ps, ~30 µm 堅持
- β線, IR レーザー, 陽子線 (FNAL), 電子線 (ELPH)
 - 時間 / 位置分解能
 - 電荷収集効率, 電極間共有
- 日本国内におけるストリップ型 AC-LGAD 技術確立
 - 設計,シミュレーション,製作,システム統合,データ解析

2024/03/21

LGAD R&D for ALICE3

First beam test 2021 on very thin FBK LGAD: 25 and 35 μ m thick

https://link.springer.com/article/10.1140/epjp/s13360-022-03619-1

	Area	Thickness	V_{bd}	Voltage applied	Gain
FBK25	$1 \times 1 \text{ mm}^2$	$25 \ \mu \mathrm{m}$	$127.3\pm0.1~\mathrm{V}$	75-120 V	13–57
FBK35	$1 \times 1 \text{ mm}^2$	35 µm	$260.7\pm0.2~\mathrm{V}$	165-240 V	10–49
HPK50	$1 \times 3 \text{ mm}^2$	$50 \ \mu m$	$253.0\pm0.2~\mathrm{V}$	200-245 V	26-61

LGAD R&D for ALICE3

Double LGAD

- Single LGADs: comparable time resolution for a similar gain
- Better time resolution for a double-LGAD in respect to single ones

LGAD R&D for ALICE3

- Single LGADs: comparable time resolution for a similar voltage
- Better time resolution for a double-LGAD in respect to single ones

CMOS-LGADに向けたGarfield simulation

CMOS-LGADに向けたGarfield simulation

CMOS-LGAD

MadPix

Monolithic CMOS **A**valanche **D**etector **PIX**elated Prototype for ps Timing Application

First prototype with **integrated electronics** (LFoundry 110 nm)

and sensor gain

Active thickness: 48µm

- **Backside HV**: allow <u>full depletion</u> → -25 V to -40 V •
- **Topside HV**: manage the gain \rightarrow 30 V to 50 V

4 flavours

8 matrices of 64 pixels each 🛛 👋 64 x 2 analogue outputs Pixels of 250µm x 100µm

レートが高い実験では、時間分解能の良い検出器がないと大変
 しかも、ストリーミングで読んでしまうと、どのイベントからくるのか、同定が難しい

- ▶ LGADがCMOSで読み出しと一体化できれば、究極の検出器になると思う
- CMOS-LGADの開発を継続したいが(東大はGarfield simulationでのstudyをやっていたが、人がいないので継続するのが難しくなってきた)、マンパワーがない

何とか継続したいが、興味があればぜひ!

CMOS sensor imaging calorimeter

44

1

ALICE FoCal

Shower separation in FoCal-E pixels

Pixel layers (ALPIDE) interleaved with Si PAD

Similar approach is also considered for the EPIC BECAL

ePIC ZDCとALICE-FOCAL

ALICE-FOCAL

ZDC

FoCal-E

- 20 tungsten layers, with thickness of $3.5\:\mathrm{mm}$ = $1\,\mathrm{X}_{\mathrm{0}}$
- 18 layers of silicon pad sensors, pad size $\approx 1 \times 1 \text{ cm}^2$
- 2 layers of silicon pixel sensors, pixel size $\approx 30 \times 30 \ \mu m^2$

- length of $110\,\mathrm{cm}$
- copper "strawtubes" with 2.0 mm diameter
- scintillating fibre with $\approx 1.1\,\mathrm{mm}$ diameter

*note: space for readout may extend the longitudinal length.

<u>中性子照射テスト@理研RANS</u>

▶ 放射線耐性

- ▶ ePIC-ZDCでは、1年間で10¹¹ 10¹² neutron/cm² 以上の放射線量
- ▶ ALICE-FoCal実験と同程度の放射線量
- 理研RANS
 - ▶ 7MeV陽子、100µA、6 x 10¹³ proton/s
 - ▶ 安定して出せる最大電流は40µA程度
 - Be標的から最大5MeVの中性子、標的から 2cmで 10⁸ neutron/cm²/s程度
 - FoCal-E padのp-type/n-typeのbabychip/MPD、ePIC結晶カロリメータ読み出し 用のAPD/SiPMをテスト
 - MPD(九州大提供)、インジウム箔、温度計でモニター

<u>LYSOクリスタル試験</u>

- ▶ 台湾グループがLYSO結晶のプロトタイプ検出器を製作
 - ▶ LYSO結晶、SiPM読出し
 - ▶ 今年2月テストビーム@東北大ELPH
 - ▶ 50-800 MeV 陽電子
 - ▶ 今年中に第2回テストビーム
 - ▶ LYSOとPWOの比較
 - ▶ SiPMとAPDの比較
 - ▶ FoCal-E Pad と組み合わせ

	Xo	LY (ph/MeV)	T dep. of LY (%/K)	Decay time (ns)	λ _{em} nm
PbWO₄ (CMS)	0.89 cm	200	-1.98	5 (73%) 14 (23%) 110 (4%)	420
LYSO	1.14 cm	30,000 (market standard)	-0.28	36	420
GAGG	1.59 cm	40,000 - 60,000		50 - 150	520
SciGlass	2.4-2.8 cm	>100		22-400	440-460

Coverage of ePIC

Triggerless DAQ

EIC Physics demands ~100% acceptance for all final state particles (including particles associated with initial ion)

e' p/A Scattered electron Particle associated with initial Ion Particle associated with struck quark

Bunch Crossing ~ 10.2 ns/98.5 MHz Interaction Rate ~ 2 μs/500 kHz

Triggered: data is readout from detector only when a trigger signal is raised

Triggerless: the detector push data at its speed and the downstream DAQ must keep the pace

Triggerless DAQ@ALICE

DPL in

747 GB/s

CTF Writer

186 GB/s

TFBuilder

744 GB/s

2023-10-06 19:21:39

544167 O FVO PHS HMP MFT TOF CPV ITS

H FDD TPC

2i6Y3Bq7ENV

RUNNING

PHYSICS

StfBuilder

47 GB

StfSender

747 св

15 detectors Data Volume as predicted Acquisition with 364 equivalent MI50 EPNs

Triggerless DAQ@ALICE

Synchronous processing of TFData in EPN (250 EPNs, 2000 GPUs)

Triggerless DAQ@LHCb

52

p-p bunch crossing rate: 30 MHz

Triggerless DAQ@LHCb

Event filter second pass (up to 4000 servers)

Triggerless DAQ@CBM

The CBM data flow at SIS100

Streaming DAQ@ePIC

FELIX FLX-182 from ATLAS/Omega group at BNL Versal Prime FPGA, PCIe Gen4x16,

24 FireFly links@25Gb/s (next version has 48 link capability)

GPU-based online processing

ALICE EPN node 8 GPUs (AMD MI50/MI100)

<u>Current activities – I for ePIC</u>

AI/ML based-online processing on FPGA (hls4ml) for MAPS Si layers

Performance Estimates

• Timing

Summary

Clock	Target	Estimated	Uncertainty		
ap_clk	5.00 ns	4.258 ns	0.62 ns		

Latency

Summary

Latency	(cycles)	Latency	(absolute)	Interval	(cycles)	Trene
min	max	min	max	min	max	Type
4	4	20.000 ns	20.000 ns	1	1	function

<u>Current activities – I for ePIC</u>

14

AI/ML based-online processing on FPGA (hls4ml) for MAPS Si layers

<u>Current activities – II for ePIC</u>

SPADI-Alliance collaboration

SPADI Alliance

Signal processing and data acquisition infrastructure alliance

- Standardization of streaming DAQ in many facilities (RIBF, J-PARC, etc)
- Framework for streaming DAQ/Computing based on FairMQ and Redis

<u>Current activities – III for ePIC</u>

Preparation for the beamtest of E50 at J-PARC in April and May

- E50 could be one of the testbeds of streaming DAQ for ePIC
- Deployment of GPU data processing

- nextDAQをJlabのbeam dump experiment (dark photon search)に応用
- Timeframe data のOnline data filtering
 - DAM (Versal FPGA)でのfiltering (local reconstruction)
 - GPUでのfilterin (global reconstruction)
 - simulationによるbenchmarkingとresource estimate
- E50でのonline filteringの試験
 - > E50での経験がそのままePICに活かされる(と予想)

<u>まとめ</u>

- ▶ 高エネルギー原子核実験の今後の基盤技術
 - MAPS、LGAD、Streaming DAQ
- ▶ 高レートかつ高精度が必要な実験で必要になる技術
 - ▶ あとは、高集積回路技術(インターポーザ―、チップレット)とデータ転送
 - 一緒に共同で開発しませんか?
 - ▶ 将来のJ-PARCでの実験に有益

Backup slide

