Beam Test of the ZDC EMCal Prototype with LYSO+SiPM

Wen-Chen Chang, Kai-Yu Cheng, Tatsuya Chujo, Yuji Goto, Chia-Yu Hsieh, Motoi Inaba, Subaru Ito, Kentaro Kawade, Yongsun Kim, Chia-Ming Kuo, Chih-Hsun Lin, Po-Ju Lin, Rong-Shyang Lu, Jen-Chieh Peng

Comparison of various crystals

	Xo	LY (ph/MeV)	T dep. of LY (%/K)	Decay time (ns)	λ _{em} nm
PbWO ₄ (CMS)	0.89 cm	200	-1.98	5 (73%) 14 (23%) 110 (4%)	420
LYSO	1.14 cm	30,000 (market standard)	-0.28	36	420
GAGG	1.59 cm	40,000 — 60,000		50-150	520
SciGlass	2.4-2.8 cm	>100		22-400	440-460

ZDC ECAL Prototype with LYSO Crystals

One crystal: 7.12 mm x 7.12 mm x 88.3 mm 8x8 array: 56.96 mm x 56.96 mm

Readout for the ZDC ECAL Prototype with LYSO Crystals

- Designed by Chih-Hsun Lin of Academia Sinica
- 64 channels
- Trigger:
 - Self-triggered
 - Can accept external timing signal → needs to be studied
 - May accept external trigger
 → needs to be studied

Test Setup

Tests with Co-60

15000

ADC count(HG&LGx10.62)

10000

20000

25000

3000

We use Co-60 and LYSO intrinsic radiation to calibrate the detector.

- @HV = 27.00V
- → 1.330 MeV @ 17005 digit
- ➔ 1.330 MeV / 17005 digit ~ 7.8e-5 MeV / digit Saturated digit = 11, 0000 digit
- → 11,0000 digit * 0.1268MeV = 8.6MeV
- → Saturated at 8.6MeV This HV/gain is too high for our beam test condition.
- HV setting range = 24.7V to 28.2V

0.0006

0.0004

0.0002

5000

Why SiPM?

- available readout board with Citiroc1A from wee roc for multichannel SiPM (Chih-Hsun Li, Academia Sinica) → can be used for first prototype study
- need a suitable photodetector for critical fluence value ($10^{14}/cm^2$)
 - CMS ECAL
 - barrel: APD, up to $4 \times 10^{13} / cm^2$, gain: 1-100
 - endcap: VPT (vacuum phototriodes), up to $7 \times 10^{15}/cm^2$
 - CMS MTD BTL (LYSO tiles with SiPM readout)
 - radiation (4/ab): $2 \times 10^{14} / cm^2$, gain: 2×10^5

SiPM Performance vs Number of Photons

- Need the fraction of fired microcells of a SiPM below 70% for a linear response
- Number of microcells in currently used SiPM: 18,980
 - the one from HPK used by CMS BTL has 40,000 microcells
- LYSO light yield for 500MeV energy deposit: 500MeV × 40,000 photons/ MeV × 0.2 (photon detection efficiency) × 0.25 (light collection efficiency) = 1,000,000 photons

Beam Test @ ELPH

- A beam test with positrons was conducted at the ELPH, Tohoku University, between 15 and 21 February 2024
- Beam time: ~36 hours (19 and 21 February 2024)
- Beam energy: 47.18 MeV up to 823.26 MeV
- Rate: 1,000 3,000 Hz
- Participants: RIKEN, Tsukuba University, Tsukuba University of Technology, Sejong University, EIC-Taiwan

Beam Test @ ELPH

Run list

	Run range	Source/Beam	Purpose	
HV Scan	1 — 20	Co60 (1-6, 20) Na22 (7 - 19)	Verify gains	
"Background"	21 — 33	Intrinsic radiation	Understand instrinsic radiation rate with threshold cuts	
Gain Calibration	33 — 36	Na22 (34 — 37)	Calibrate each channel	
HV and Beam Energy Scan	41 — 99	Beam (47 – 823 MeV)	Understand detector performance and study energy resolution and shower shapes	
Position Scan	101 — 129	Beam (197 MeV)		
HV and Beam Energy Scan at Low Energy	129 — 157	Beam (< 297 MeV)		
With Absorbers	160 — 225	Beam (197 – 823 MeV)		
Rotation	227 — 238	Beam (98, 197, 297 MeV)	Understand detector performance	

Clustering

Things to be studied

- detector performance
- comparison between data and simulation
- E_{max} vs E_{beam} at different SiPM HVs
- Hit multiplicity
- Energy spectra (E_{max}, E_{3x3}, E_{5x5})
- Shower shapes (E_{max}/E_{5x5}, E_{3x3}/E_{5x5}, E_{max}/E_{3x3}, E_{2x5}/E_{5x5}, σ_x, σ_y, ...)
- Beam profile
- Energy resolution as a function of beam energy

Channel-by-Channel Gain Calibration

- Channel-by-channel gain calibration was performed using radiation source and beam, respectively
- The calibration obtained with the radiation source is not significantly different from the one obtained with high energy beam

Readout Threshold Cuts

Emax vs Beam Energy

Detailed analysis with more runs is being carried out

Number of Hits vs Beam Energy

To be compared with simulation

Number of Hits vs Emax

Temporarily require to have at least 3 hits

Cluster Energy

Shower Shapes

Beam Profile

Shower Spread

 $(4\chi W)$ Peak channel of HV4E0 @197MeV

0 _8

2

0__8

ę

10

"Standalone" Simulation

 The first round of simulation with different beam energies, 4X₀ W absorber, and different rotation angles was done

Preliminary Simulation Results

197.9 MeV positron beam with 4X₀ W abosrbers

Simulation with "Realistic Beam"

Very Preliminary Simulation Results

Future Plan:

- Finalize the analysis of beam test data as soon as we can
- Target at another beam test at ELPH in October
 - LYSO + APD
 - PbWO₄ + SiPM
 - GAGG + APD
 - Combine with other detectors
- Perform simulation studies for the final ZDC EMCal design

- We had the first beam test for the prototype of ePIC ZDC EMCal with LYSO+SiPM at ELPH
- Both data analysis and simulation are on-going
- We hope to be able to test different combinations of crystals and photodetectors in October