Measurements of jet nuclear modification factor and azimuthal anisotropy in Pb-Pb collisions at $\sqrt{s_{NN}} =$ **5.02 TeV** with the LHC-ALICE to clarify the parton energy loss mechanism in Quark-Gluon Plasma and evaluate stopping power

RIKEN (JRA), Tsukuba University, University Grenoble Alpes Takuya Kumaoka

T.Kumaoka

Physics target: Parton Energy loss mechanism

Partons deposit energy in the QGP medium.

There are some jet suppression mechanisms, but the detail ratio of suppression or correct model are not clarified.

T.Kumaoka

Parton Energy Loss Analysis

Energy loss: $\Delta E \propto \hat{q} L^n$

Nuclear modification factor (*R*_{AA}**)** is built by comparing *heavy-ion* collisions and *proton*

Using the difference between with and without suppression allow to measure the **magnitude of** suppression. \rightarrow Quantify \hat{q}

Jet v_2 is built by comparing in-plane jets and out-of-plane jets.

Using difference of the path length between in-plane and out-of plane allows to study *L* dependency of ΔE . \rightarrow Quantify the power of *n*

T.Kumaoka

New points of my study for Energy loss ($\Delta E \propto \hat{q}L^n$)

- New jet v_2 measurement at $\sqrt{s_{\rm NN}} = 5.02$ TeV as ALICE
- Simultaneous comparison of charged jet v₂ and R_{AA}
- \rightarrow Expect strong model constraints and acquire accurate suppression parameter values.
- Use JETSCAPE model simulation framwork

 v_2 and R_{AA} of π^0 measurement using PHENIX $\sqrt{s_{NN}} = 200 \text{ GeV}$ data (2010) <u>https://journals.aps.org/prl/pdf/10.1103/PhysRev</u> <u>Lett.105.142301</u>

Analysis Flow

Charged Jet reconstruction in ALICE

Fast jet package [Phys Lett B 641 (2006) 57]

Clustering track p_T in resolution pamareter (R) range.

- Signal Jet → anti-k_T algorithm
- Background density $\rightarrow k_{T}$ algorithm

T.Kumaoka

Background p_T distribution (ordinary inclusive jet way)

 ρ is considered uniform for azimuthal angle and determined event by event \rightarrow subtract the background from each signal jet

$$p_{T,corr}^{jet} = p_T^{jet} - \rho A$$

A : jet area

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

In HIC, a huge number of particles are produced.

 \rightarrow Signal jets are reconstructed with the background particles.

 \rightarrow Estimate background p_T density (ρ) except for signal jet area $\rho = \text{median}(p_{T,i}/A_i)$ A : cluster area, *i*: cluster id

background $p_{\rm T}$ for centrality

Inclusive Raw Charged Jet Yield

T.Kumaoka

Determination of Event Plane Anlgle

Event plane angle

$$\Psi_{\text{EP}\,n} = \frac{1}{n} \arctan \frac{Q_{n,y}}{Q_{n,x}}$$

Flow Vector compornet

$$Q_{n,x} = \sum_{i} \omega_{i} \cos n\phi_{i}$$
$$Q_{n,y} = \sum_{i} \omega_{i} \sin n\phi_{i}$$

 $(\phi_i : \text{Track angle}, \omega_i : \text{multiplicity weight}, n: \text{Fourier order})$

T.Kumaoka

Event Plane Angle Resolution

VOM (VOC and VOA) event plane angle resolution for centrality

Local background p_{T} estimation

The soft particle background is **not uniform** for azimuthal angle (ϕ).

 \rightarrow The background calculation should take the ϕ dependency into account.

The local rho is estimated using tracks except the leading jet η region. (Because of the statistic problem, it includes the sub-leading jet region.)

In this analysis, a following equation is used.

$$\boldsymbol{\rho}_{ch}(\boldsymbol{\varphi}) = \boldsymbol{\rho}_0 \times \left(1 + 2 \left\{ v_2^{obs} \cos(2[\boldsymbol{\varphi} - \Psi_{EP,2}]) + v_3^{obs} \cos(3[\boldsymbol{\varphi} - \Psi_{EP,3}]) \right\} \right)$$

 $\Psi_{EP,2}$ and $\Psi_{EP,3}$ are calculated by the Qn vectors. And ρ_0 , v_2^{obs} , and v_3^{obs} are fitting value.

13/30

T.Kumaoka

The background δp_T distribution

- The median rho has ϕ dependency and the local rho makes smaller the ϕ dependency.
- <u>The dispersion of local rho background is more narrow than median rho.</u>
 And these same tendency is seen in the all centrality regions.

Raw Charged Jet Spectrum for each Event Plane

Corrected Raw jet p_T distribution (w/o unfolding): $p_T^{raw} - \rho(\phi)A$

Out-Plane jets are more suppressed than In-plane ones for each centrality.

T.Kumaoka

Unfolding Process

The measured jet p_T distribution is affected by the background fluctuations and the finite resolution / efficiency of the detector

 \rightarrow Correcting p_{T} distribution distortions by **Unfolding**.

T.Kumaoka

Kinds of Systematic Errors

- Detector level p_T range of response matrix
 - $\rightarrow \pm 5 \text{ GeV}/c$
- Different prior

→ Modify a prior distribution to unfolding by multiply a ratio of measurement distribution and MC detector level distribution.

- Tracking efficiency
 - → Nominal (98%), Compare (94%)
- Unfolding iterations
 - $\rightarrow \pm 1$ time
- Different event plane angle determination detector →Nominal(V0M), Compare (V0C and V0A)
- Different background fitting function
 - → Nominal (v2 and v3 combine), Compare (only v2 component)

Inclusive charged jet v_2

- At low p_{T} , the charged jet v_{2} show evidently positive value. As it becomes high p_{T} , the charged jet v_2 gets close to zero.
- The charged jet v_2 of this measurement is consistent with ATLAS result within uncertainty around 70-110 GeV/c.

T.Kumaoka

RBRC Monthly Meeting 2024/02/27

In-plane

Model Simulation

My Simple Toy Model Algorithm

T.Kumaoka

3. Calculate Hard Scattering Probablity density ($P(r_{xy,1}, r_{xy,2})$)

T.Kumaoka

4. MC for create parton $P(r_{xy,1}, r_{xy,2}) < MC$

Calculate the probablity density $P(r_(xy,1),r_(xy,2))$ on the step.3

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

22/30

5. Calc pass length

The edge is Woods-Saxson R

Regard the length from a parton creation point to a cross point of the original atom edge as the pass length.

- The original atom is supposed as a cercle.
- The density of QGP is uniform on the reaction area.

6. Calc Energy Loss ($dE = CL^n$) / 7. Determine C

1. Using the dE distribution, disperse each bin of the pp jet pT distribution (MC/Fitting function). The dE distribution is normalized by each pT bin counts.

- 2. Make a suppressed jet distribution by summing up distributions of each pT bin.
- 3. Determine the best *C* to match the suppressed jet distribution and data PbPb jet pT distribution.

T.Kumaoka

7. Each inclusive charged jet p_{T} distributions

pp fitting function (Tsallis) $F(p_{\rm T}) = p_0 \times p_{\rm T}^{1+p_1} \times \left[1 + (p_2 - 1) \times \frac{p_{\rm T}}{p_3}\right]^{-p_2/(p_2 - 1)}$ $p_0 : 0.524, p_1 : 2.252, p_2 : 1.127, p_3 : 0.497$

T.Kumaoka

8. Make In/Out of plane jet yield distributions

Apply suppression parameter C estimated Step.7 to In/Out of plane jets, respectively. (In: parton emission angle $-\pi/4 - \pi/4$ and $3\pi/4 - 5\pi/4$, Out: parton emission angle $\pi/4 - 3\pi/4$ and $5\pi/4 - 7\pi/4$)

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

26/30

9. Use Tsallis fitting function for model RAA distribution

Use Tsallis fitting function for model R_{AA} distribution

Chi²/NDF Ch-Jet R_{AA} (*L*, *L*², *L*³) = (**0.017**, 0.018, 0.023)

Chi²/NDF Ch-Jet v_2 (*L*, L^2 , L^3) = (**0.0074**, 0.023, 0.036)

 \therefore NDF: pT bins – 1 (Free parameter *C*) (*L*, *L*², *L*³) = (Collisional, Radiative, Ads/CFT)

 \rightarrow Best model is *dE* = *CL*, (*n* = 1)

T.Kumaoka

Best *L* dependece Search

X Each coefficiency of C is adjusted for each pass length dependency n.

Just n = 1 is the best pass length dependency for parton energy loss.

T.Kumaoka

Different pass length edge

T.Kumaoka

Best QGP Edge Search

The result of QGP edge indicates the Woods-Saxon R is the best.

 \rightarrow Every participants contribute the QGP creation, and the thermarization of QGP happenes immediately. (Do not need to consider density profile and dependency of energy loss for the density.)

T.Kumaoka

Summary and Outlook

- To clarify jet quenching mechanism and estimate its parameters, charged jet v_2 is measured using the ALICE data of Pb–Pb collision $\sqrt{s_{NN}}$ = 5.02 TeV.
- The charged jet v_2 in centrality 30-50% show **positive value** and it is **consistent** with other experiments.
- Compare the data resulsts with my very simple toy model
- The simulation indicates that the parton energy loss is proportional to pass length (dE = CL, (n = 1)).
- The model with n=1 reproduces well the value and shape of both charged jet R_{AA} and v_{2} .
- Determining the quenching parameter requires more complex models in **JETSCAPE**.
- Additional analysis: Different centrality, Different jet resolution R(= 0.1, 0.4)

Backup Slides

JETSCAPE Framework

JETSCAPE Event Generator

JETSCAPE https://arxiv.org/abs/1903.07706 (Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope)

It has *q̂* as a variable parameter.
Some models having different L
dependency.

Diagram courtesy Y. Tachibana

The JETSCPAE already represents close value of the jet R_{AA} and v_2

DOI: https://doi.org/10.22323/1.345.0072

Nuclear modification factor (R_{AA})

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

34 / 30

QGP

Event Selection

Number of events: 38×10^6 events Primary vertex: |z| < 10cm.

Centrality determination

Using NBD-Glauber fit for VOM amplitude, the event centrality is determined

T.Kumaoka

Qn vector calibration

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

37/30

Event plane angle resolution

T.Kumaoka

Local background p_{T} results

T.Kumaoka

Evaluation of background fit (δp_T)

 δp_T is a gap between integration of background tracks p_T and integration of background function in a random cone area.

We expect the local rho's δp_T should be smaller than the median one. And in the local rho case, δp_T phi dependency is expected to make small.

The Random cone is created once per event except the leading jet region.

T.Kumaoka

Background pT function fit quality

T.Kumaoka

Response Matrix

Centrality 0-5%

The corrilation between particle level and detector level jets seems well.

 \rightarrow Embedding working well.

T.Kumaoka

Raw charged jet v₂ (R=0.2)

Value of jet v_2 is close to Run1 ($\sqrt{s_{NN}} = 2.76$ TeV) results. And the shape around 20 – 60 GeV/c is also similar with Run1 results.

T.Kumaoka

ASW model

- Midium: Gyulassy-Wang model (A center of scattering is stationary, The transfer momentum is about Debye mass(μ))
- Multiple emition: Independent random scattering → Poisson distribution
 Emitted gluons: soft

Quark-Gluon Plasma

Quark-Gluon Plasma (QGP) is a state of matter made of deconfined quarks and gluons

- Predicted by QCD theory
- Formed at high temperature and/or density
- QGP has existed in the *early Universe* ($\approx 10^{-6} s$ after the Big Bang)
- Critical temperature $T_c = 173 \pm 15$ MeV, $\epsilon_c \sim 0.7$ GeV/fm³ from Lattice QCD calculations

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

45 /30

- JETSCAPE (Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope): https://arxiv.org/abs/1903.07706

The preceding study of JETSCAPE shows the jet transport coefficient \hat{q} by comparing the result of R_{AA} in the two centralities of CMS/ATLAS

This study will constrain models and give more accurate the \hat{q} value by more various centrality information and low p_{T} range distribution.

T.Kumaoka

Unfolding QA

Closure test

ReFolding test

T.Kumaoka

Systematic Error Ratio

 $-\delta_{sys} = \frac{|obs^{com} - obs^{Nomi}|}{obs^{Nomi}}$

- For all p_T range, the systematic error is lower than 1.

- The reason of the large error on 80-90 GeV/*c* is the observable value is very small.

T.Kumaoka

R dependency

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

49/30

Compare my results of R_{AA} with Hannah analysis results

Centrality 30-50% result is consistent with Hannah's result

Systematic uncertainty of R = 0.4

- For all centralities, itelation, VODetector, and Turnication are very large.
- Background efficiency also too large.

Simulation fitting to data results

pp jet p_{T} distribution

Fit disparsed model pT distribution to data PbPb one to determine energy loss coefficiency

T.Kumaoka

Progress figures

Parton creation points (Centrality 30-50%)

Path length distribution

Energy loss distribution for each toy model ($dE = CL^n$)

T.Kumaoka

Results comparison of different paton emission way

Use MC pp distribution, for model R_{AA} distribution

Flat parton creation

Fix center parton creation

T.Kumaoka

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

55/30

\hat{q} Evaluation

T.Kumaoka

 $\Delta E \propto \alpha_s \ C_R \hat{q} L^n$ $\Delta E = CL^n$ $0.3 < \alpha_s < 0.5 \rightarrow \alpha_s = 0.5$ $C_R = \begin{cases} q: 4/3 \\ g: 3 \\ \alpha_s C_R = 1.5 \end{cases}$ 1.125 (collisional) $C = \begin{cases} 0.225 \text{ (ratiation)} \end{cases}$ 0.040 (Ads/CFT) 0.75 (collisional) $\hat{q} = \begin{cases} 0.15 \text{ (ratiation)} \\ 0.027 \text{ (Ads/CFT)} \end{cases}$ $\hat{q}/T^{3} = \begin{cases} 3.47 \text{(collisional)} \\ 0.694 \text{(raiation)}, (T^{3} = 0.216) \\ 0.125 \text{(Ads/CFT)} \end{cases}$

https://doi.org/10.1103/PhysRevC.104.024905

\hat{q} Estimation

 $\Delta E \propto \alpha_s \ C_R \hat{q} L^n$ $\Delta E = C L^n$

1.695(collisional) $C = \begin{cases} 0.46 \text{ (ratiation)} \\ 0.12 \text{ (Ads/CFT)} \end{cases}$ $0.3 < \alpha_s < 0.5 \rightarrow \alpha_s = 0.5$ $C_R = \begin{cases} q: 4/3 \\ g: 3 \end{cases}$ $\alpha_s C_R = 1.5$ $\hat{q} = \begin{cases} 1.13 - 4.24 \text{(collisional)} \\ 0.31 - 1.15 \text{(raiation)} \\ 0.08 - 0.30 \text{(Ads/CFT)} \end{cases}$ $\hat{q}/T^3 = \begin{cases} 11.6 - 43.5 \text{(collisional)} \\ 3.15 - 11.8 \text{(raiation)}, (T = 0.46) \\ 0.82 - 3.08 \text{(Ads/CFT)} \end{cases}$ min q-hat: col, radi, AdsCft = 4.2375, 1.15, 0.3 max q-hat: col, radi, AdsCft = 1.13, 0.306667, 0.08

min q-hat/T^3: col, radi, AdsCft = 43.5348, 11.8147, 3.08211 max q-hat/T^3: col, radi, AdsCft = 11.6093, 3.1506, 0.821895

T.Kumaoka

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

58/30

T.Kumaoka

2024/02/27 RBRC Monthly Meeting

59/30