

Satoshi Yano (Hiroshima University)

New TOF DSC organization

- New TOF organization members ullet
 - DSL: Zhangbu Xu (Kent state Univ.), Deputy DSL: Satoshi Yano (Hiroshima University)
 - DSTC
 - BTOF: Matthew Gignac (UC Santa Cruise) •
 - FTOF: Mathieu Benoit (ORNL) •
- Work packages have been created ullet
 - Sensors: Simone Mazza (US Santa Cruise), Japanese colleague (Satoshi Yano) _____
 - Frontend Electronics: Wei Li (Rice Univ.), TBD ____
 - Module integration and assembly: Mathieu Benoit (ORNL), Matthew Gignac (UC Santa Cruise) _____
 - System tests and validation: Takashi Hachiya (Nara Woman Univ.), (FF Liaison) Prithwish Tribedy (BNL) —
 - Mechanical structure: Andy Jung (Purdue Univ.), Yi Yang (National Cheng-Kung Univ.)
 - DAQ & Clock distribution: Tonko Ljubicic (BNL)
 - Power system, Detector slow control, monitor and safety system: Frank Geurts (Rice Univ.)
 - Simulations, software & calibration: Kantaro Kawade (Shinshu Univ.), (depty) Tommy Tsang (Kent state Univ.)

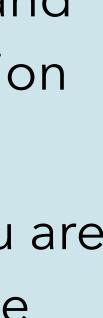
New TOF DSC organization

- New TOF organization members ullet
 - DSL: Zhangbu Xu (Kent state Univ.), Deputy DSL: Satoshi Yano (Hiroshima University)
 - DSTC
 - BTOF: Matthew Gignac (UC Santa Cruise) •
 - FTOF: Mathieu Benoit (ORNL) •
- Work packages have been created •
 - Sensors: Simone Mazza (US Santa Cruise), Japanese colleague (Satoshi Yano) _____
 - Frontend Electronics: Wei Li (Rice Univ.), TBD ____
 - Module integration and assembly: Mathieu Benoit (ORNL), Matthew Gignac (UC Santa Cruise) _____
 - System tests and validation: Takashi Hachiya (Nara Woman Univ.), (FF Liaison) Prithwish Tribedy (BNL) —
 - Mechanical structure: Andy Jung (Purdue Univ.), Yi Yang (National Cheng-Kung Univ.)
 - DAQ & Clock distribution: Tonko Ljubicic (BNL)
 - Power system, Detector slow control, monitor and safety system: Frank Geurts (Rice Univ.)
 - Simulations, software & calibration: Kantaro Kawade (Shinshu Univ.), (depty) Tommy Tsang (Kent state Univ.)

The TOF DSC general meeting is held every Wednesday at 10:30 (EST)

Asian community member

We are surveying to determine which institutions can give in-kind contributions and how well they can do it.


Survey results at October 2023

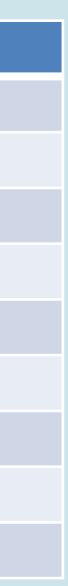
Institution	Working Group and Tasks
Brookhaven National Laboratory	BTOF: sensor, sensor-ASIC integration, module assembly; CS : backend electronics; DP : sin
Fermi National Accelerator	
Los Alamos National Laboratory	FTOF: sensor, module assembly; CS: cooling system and support structure; DP: simulation
Rice University	BTOF/FTOF: Front-end electronics; CS: backend electronics; DP: simulation and reconstru-
Oak Ridge National Laboratory	BTOF/FTOF: sensor, sensor-ASIC integration, frontend electronics, module assembly
Ohio State University	BTOF/FTOF: module assembly; CS: backend electronics, alignment; DP: simulation and re
Purdue University	BTOF/FTOF: module structure; CS: cooling system and support structure
Univ. of California, Santa Cruz	BTOF: sensor, sensor-ASIC integration, module assembly
University of Illinois at Chicago	BTOF/FTOF: sensor, sensor-ASIC integration, module assembly; DP: simulation and recor
Hiroshima University	BTOF/FTOF: sensor, module assembly; DP: simulation and reconstruction
RIKEN	BTOF/FTOF: module assembly
Shinshu University	BTOF/FTOF: sensor
University of Tokyo	CS: streaming readout; DP: online reconstruction
South China Normal University	
Univ of Sci. and Tech. of China	
Indian Institute of Tech., Mandi	DP : simulation and reconstruction
National Inst. of Sci. Edu. Res.	
National Central University	DP: simulation
National Cheng-Kung University	BTOF/FTOF: module structure; CS: cooling system and support structure
National Taiwan University	BTOF: sensor-ASIC integration, frontend electronics, module assembly
Univ. Técnica Federico Santa María	FTOF: module assembly; DP: simulation and reconstruction

simulation and reco.
n and reco.
truction
reco.
onstruction

- We are making the latest table and • estimating the in-kind contribution from each institute
 - Please contact us which task you are interested in, and let us know the expected in-kind contribution

Expected contribution from the Asian community

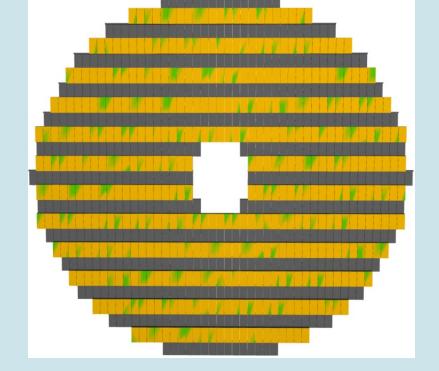
Institute	
Hiroshima University	BTC
Shinshu University	BTC
Nara Woman University	BTC
University of Tokyo	BTC
Riken	BTC
National Central University	BTC
National Cheng-Kung University	BTC
National Taiwan University	BTC
Indian Institute of Tech. Mandi	FTC

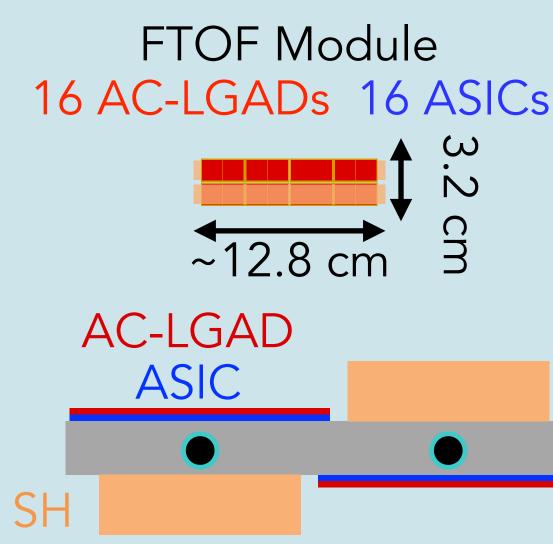

- The table is being updated lacksquare
- Please correct me if you find any mistake lacksquare
- lacksquare
- I proposed the EIC-Asia TOF regular meeting and the poll is prepared lacksquare
 - https://www.when2meet.com/?24082382-AapNr
- I would like to have the meeting once per month ullet

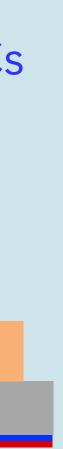
In-kind contributions to tasks

- OF/FTOF: ASIC test, sensor test, simulation
- OF/FTOF: Sensor test, simulation
- OF: Module FPC, system test, module assembly
- OF/FTOF: readout, online reconstruction
- OF: module assembly
- OF/FTOF: sensor QA
- OF/FTOF: module structure, cooling system, support structure
- OF: sensor test, module assembly
- OF: module assembly, sensor-ASIC integration

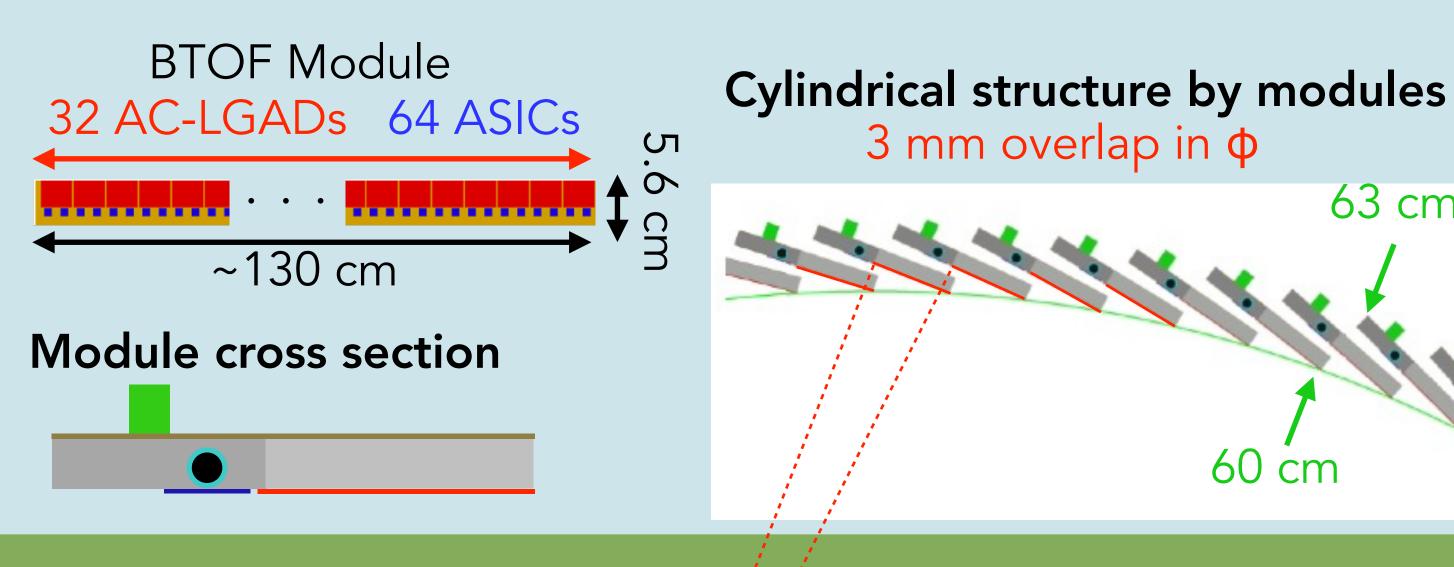
For the other institutes not listed in the table, please let us know as soon as possible which task you will contribute



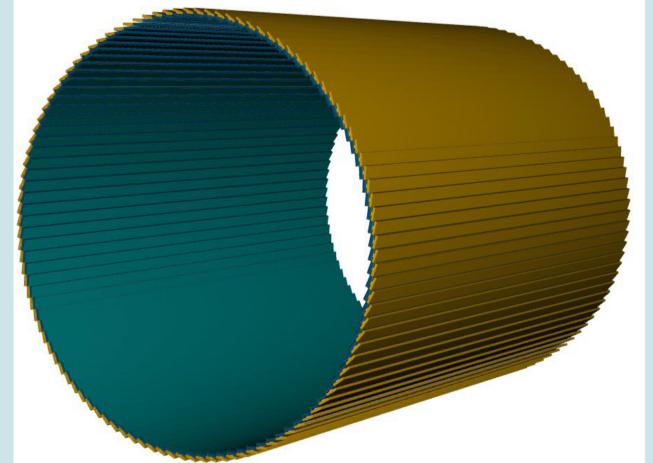


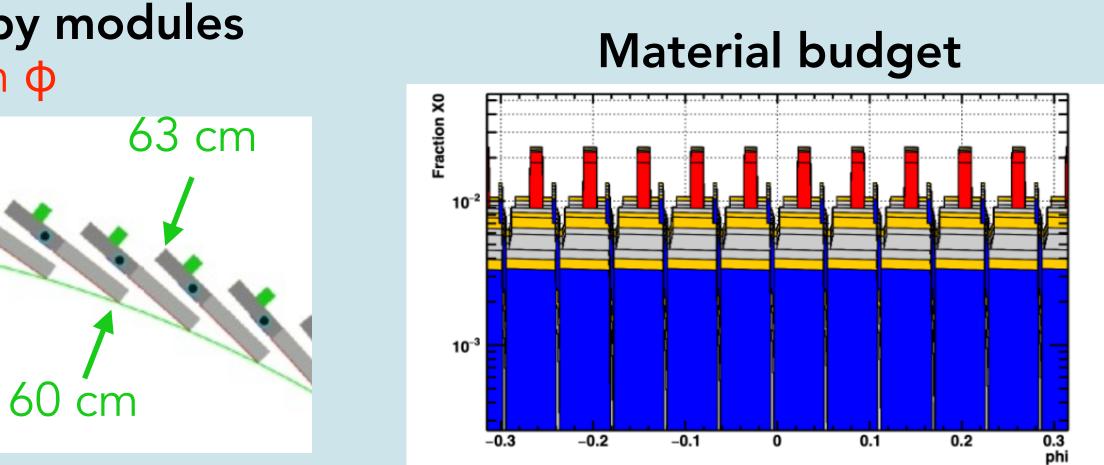


- Strip-type and pixel-type AC-LGAD are used for BTOF and FTOF, respectively •
- FCFD and EICROC are used for strip-type and pixel-type AC-LGAD, respectively

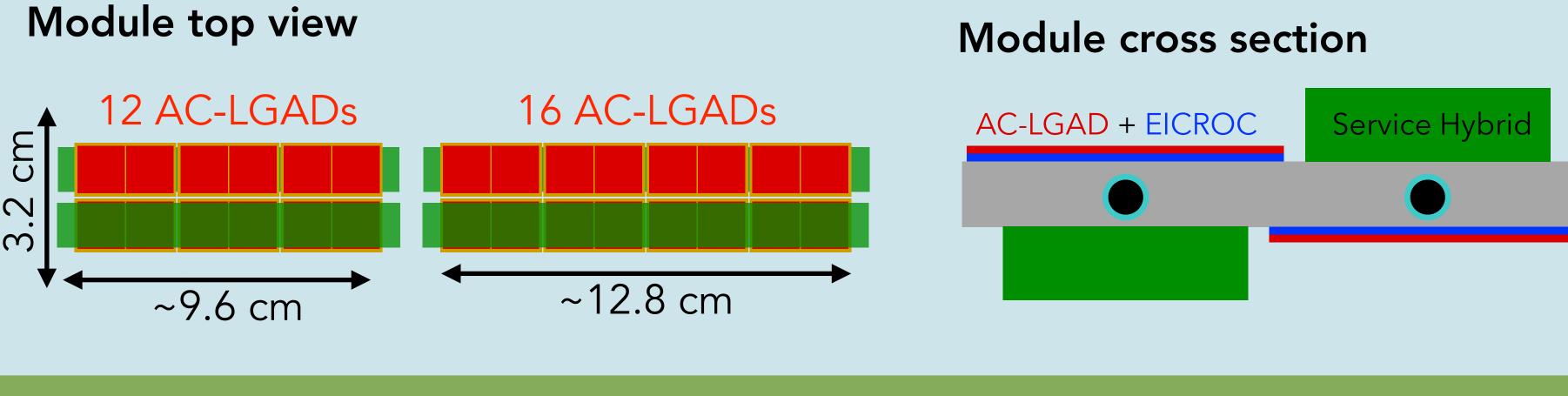


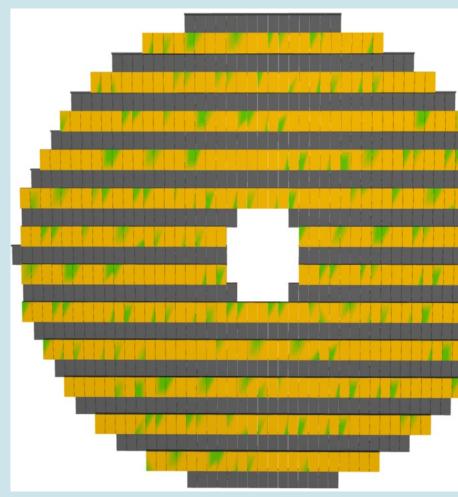
BTOF SH is placed in a different place from sensor+ASICs, but FTOF SH is placed in front of sensor+ASICs

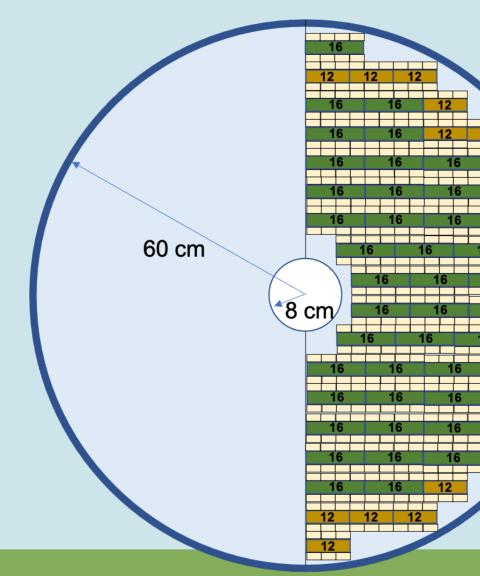



Detector Layout of BTOF

- •
- BTOF is composed of 144 modules to make a cylindric 64 AC-LGAD strip sensors are attached to one module – ASIC place is under discussion (depending on the ASIC pixel geometry) Radius is 60 - 63 cm from the beam pipe covering $-1.42 < \eta < 1.77$
- Total material budget in acceptance is ~0.01 X/X₀ lacksquare

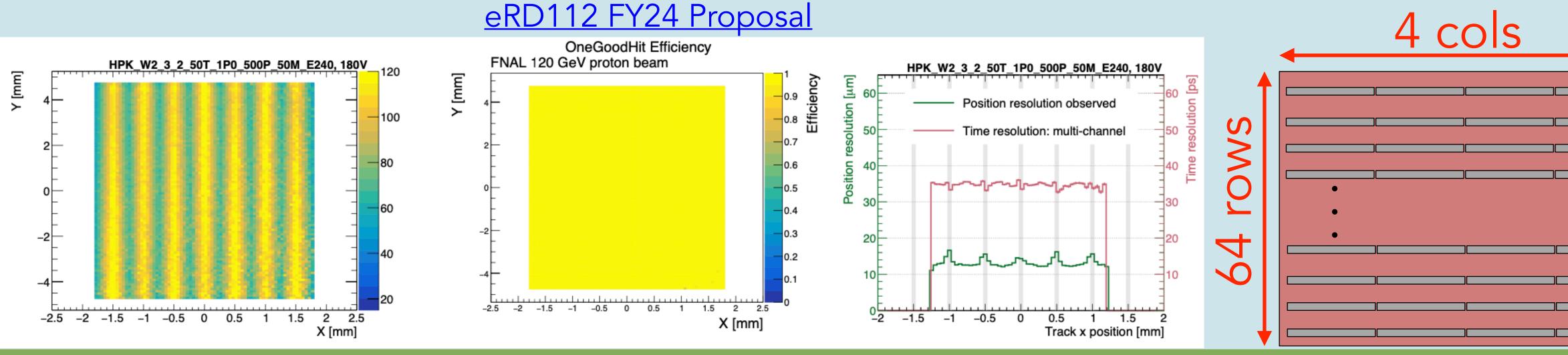

BTOF shape

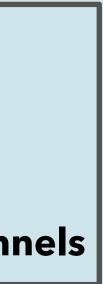


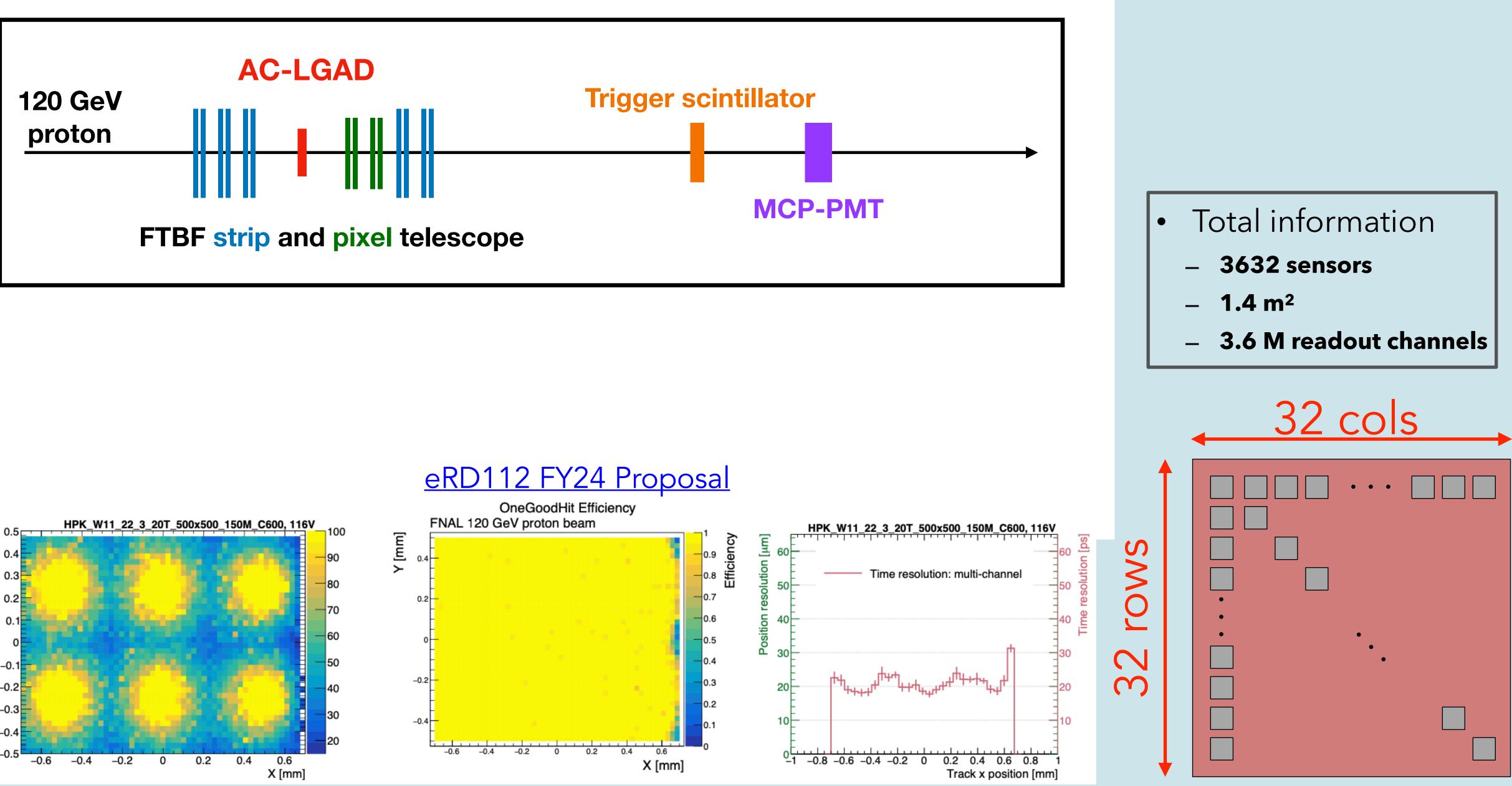

Detector Layout of FTOF

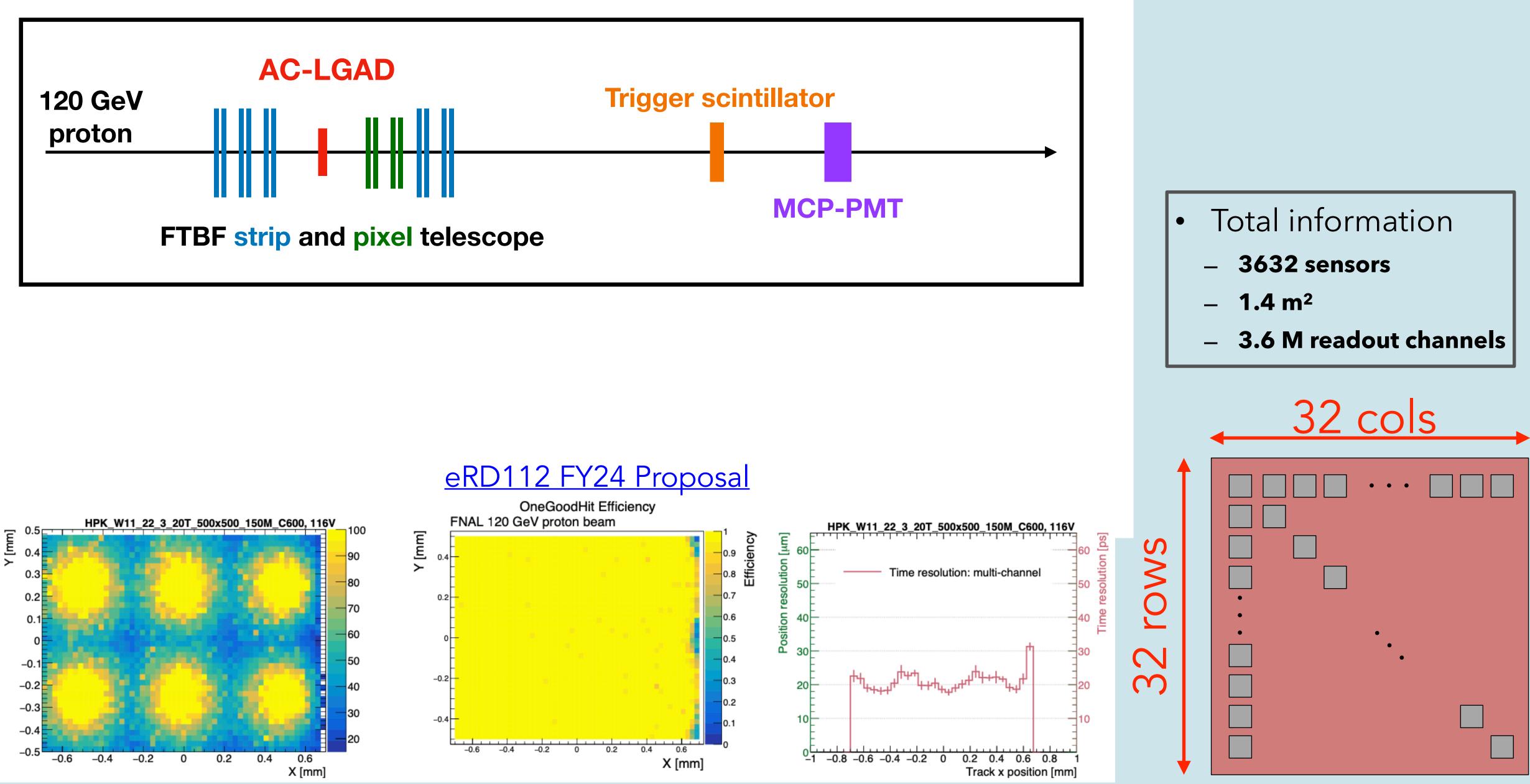
- FTOF is composed of 1816 modules to make a disk •
- 12 or 16 AC-LGAD pixel sensors are attached to one module lacksquare
- Radius is 8 60 cm from the beam pipe covering $1.86 < \eta < 3.85$ lacksquare
- Service hybrid, readout board + power board, is placed in front of sensors lacksquare
- Total material budget in acceptance is ~0.025 X/X₀
- Service hybrid and cooling system design is important for FTOF lacksquare

BTOF shape

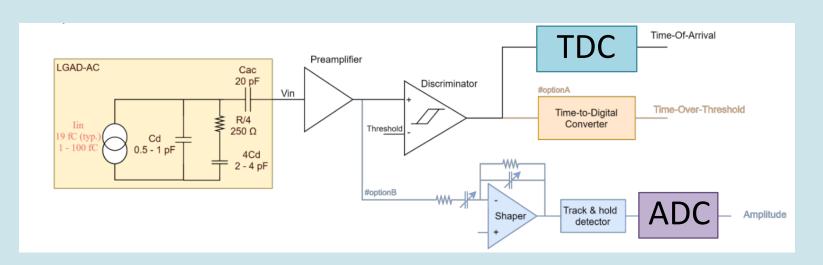


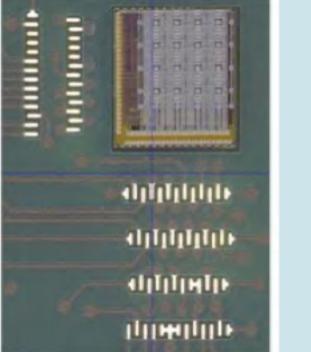



- AC-LGAD technology meets the strict spatial and time resolution • requirements
- Strip-type sensor, 3.2 x 4 cm² sensor size with 0.05 x 1 cm² metals, is used in **BTOF**
 - The readout metal geometry in a sensor is 64 x 4 and 256 channels each
- 2 ASICs are attached for each with wire bonding

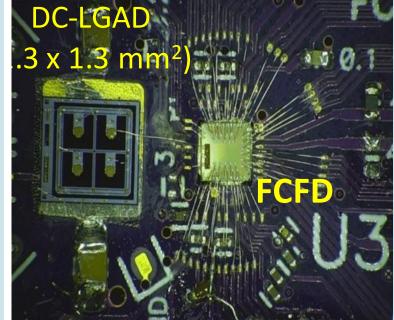


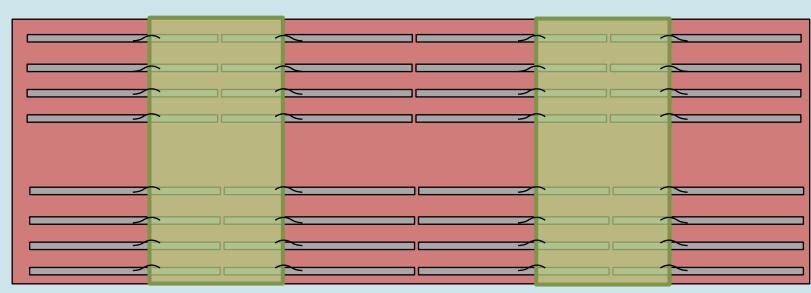
- Total information
- 9216 sensors
- **10** m²
- **2.4 M readout channels**

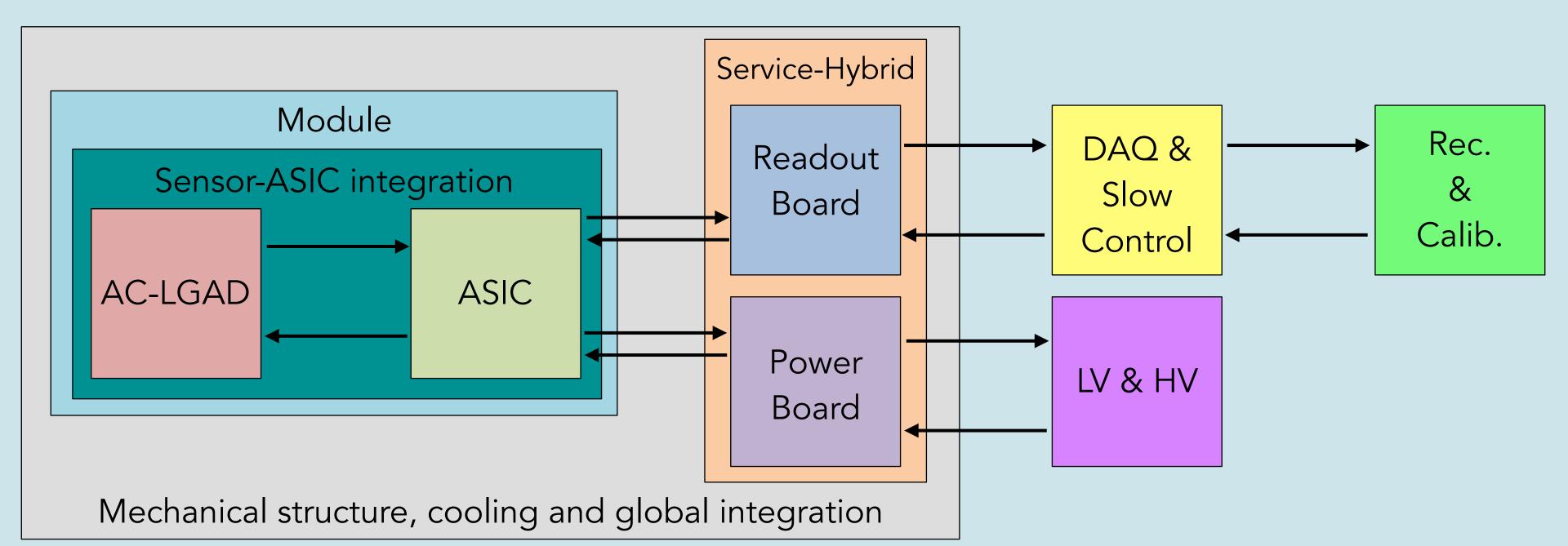

_
_



TOFASIC


- Not only high-time resolution TDC (TOA) but also ADC must be measured ${\color{black}\bullet}$
- Due to the large capacitance and readout geometry characteristics caused by the lacksquarestrip type, care must be taken when selecting an ASIC
- EICROC (32x32) is one of the common ASICs used in ePIC lacksquare
 - Design focuses on pixel AC-LGAD readout (tuned for low capacitance)
 - 10-bit TDC and 8-bit ADC is now available (EICROC0)
 - Modification is necessary to read higher capacitance sensor (strip AC-LGAD)
- FCFD is a new ASIC to use strip AC-LGAD readout lacksquare
 - FCFD can read higher capacitance AC-LGAD sensor
 - Multiple-channel analog is available for FCFDv1
- The possibility of HGCROC has begun to be discussed ullet
 - It can measure ADC, TOA, and TOT
 - We have to investigate the possibility of the chip as soon as possible and make collaboration with the experts


EICROCO


FCFDv0

ASIC

TOF structure

Barrel-TOF (BTOF) Forward-TOF (FTOF) • – Pixel-type AC-LGAD – Strip-type AC-LGAD – ASIC (FCFD) – ASIC (EICROC) – Sensor-ASIC integration – Sensor-ASIC integration – Module – Module – Service-Hybrid Service-Hybrid – Mechanical structure – Mechanical structure – Global integration

– Global integration

Common system

– DAQ

- Cooling
- Software (Rec. & Calib.)
- HV & LV
- Slow control

Non-labor cost of each sub-system

• Total BTOF cost: \$10,760,800 (\$9,126,300)

- Sensor: \$4,907,500
 - R&D: \$407,500
 - Pre-production (10%): \$450,000
 - Production (90%): \$4,050,000
- ASIC: \$2,125,000
 - R&D: \$870,000
 - Pre-production (20 wafers): \$835,000
 - Production (120 wafers): \$420,000
- Sensor ASIC integration: \$1,061,600
 - R&D: \$120,000
 - Pre-production (10%): \$99,600
 - Production (90%): \$842,000
- Flex module PCB: \$1,520,000
 - R&D: \$80,000
 - Pre-production (10%): \$160,000
 - Production (90%): \$1,280,000
- Module structure: \$252,700
 - R&D: \$15,000
 - Pre-production (10%): \$50,000
 - Production (90%): \$187,700
- Service Hybrid (Power+Readout board): \$532,000
 - R&D: \$142,000
 - Pre-production (10%): \$40,000
 - Production (90%): \$350,000
- Module assembly: \$362,000
 - Pre-production: \$50,000
 - Production: \$150,000

• Total FTOF cost: \$3,056,558 (\$1,886,458)

- Sensor: \$765,500 (\$358,000)
 - (!) R&D: \$407,500
 - Pre-production (10%): \$37,000
 - Production (90%): \$321,000
- ASIC: \$768,600 (\$451,000)
 - R&D: \$317,600
 - Pre-production (20 wafers): \$292,600 • Production (120 wafers): \$158,400
- Sensor ASIC integration: \$318,000 (\$268,000)
 - R&D: \$50,000
 - Pre-production (10%): \$28,000
 - Production (90%): \$240,000
- Flex module PCB + Service Hybrid: \$582,200 (\$432,200)
 - R&D: \$150,000
- Pre-production (10%): \$174,210 • Production (90%): \$257,990 Module structure: \$119,258 (\$104,258)
- - R&D: \$15,000
 - Pre-production (10%): \$12,500 • Production (90%): \$91,758
- Module assembly: \$503,000 (\$273,000)
 - R&D: \$230,000
 - Pre-production (10%): \$27,300
 - Production (90%): \$245,700

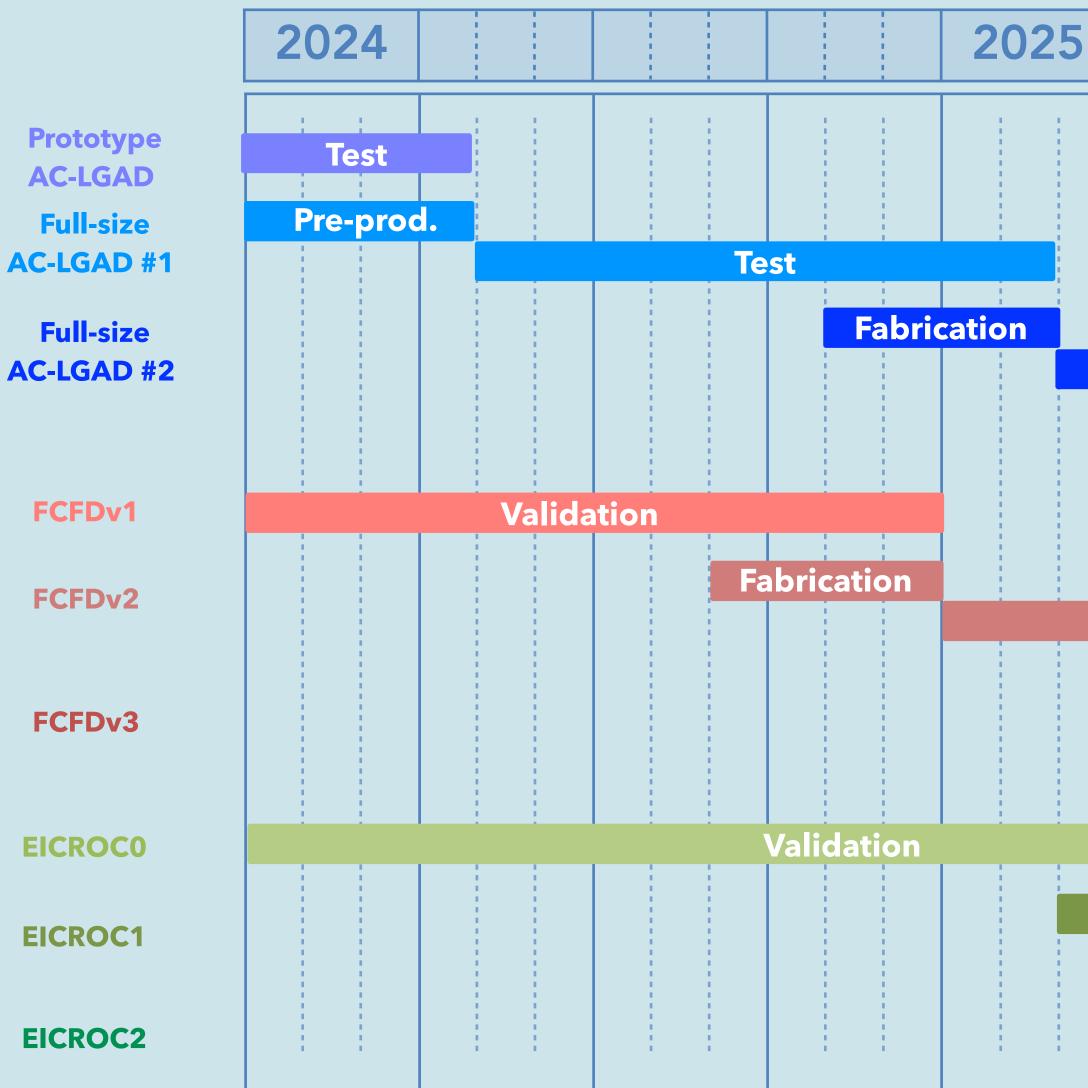
• Total common system cost: \$1,749,000 (\$1,585,500)

- Support structure: \$106,000 (\$42,500)
 - R&D: \$63,500
 - Production: \$42,500
- Cooling system: \$300,000
- Backend electronics: \$1,243,000

TOTAL

- **R&D + Production: \$15,566,358**
- **Production: \$12,598,258**

New clean room (100m²) @ HU


	2024			2025		2026	
Sensor							
ASIC							
Flex module PCB					 	 	
		 			 	 • • • • • • • •	
ensor-ASIC integration							
Module Structure							
Service Hybrid						 	
		 			 	 •••••	
Module Assembly							
Support structure			1 1 1				
& cooling					 	 	
Backend electronics		 			 	 	
		 			 	 •••••	
Alignment					 	 	
& Database		 			 	 	
Assembly							
Install into ePIC							
			-			 	

	2027		2028		2029			2030		
										Ē
										Į.
										-
1 1 1										
										i ·
		 	 	 	 			 	 	į.
		 			 			 	 	1 1 7 1
			 	 	 			 	 	į.
[İ
					 			 	 	i.
			 	 	 			 	 	i i i
								 		ł
						l I				
										н н н н н
										-
			 	 	 			 	 	ļ
					· · · · · ·		, ,	 	 	i.

Schedule of sensor and ASIC

5			2026			
			alidation			
	Validation					
			Fabricatio	on	Validatio	n
	Fabricatio					
		Va	lidation			
			Fab	rication		
					Valida	ation

Power budget of TOF

- BTOF power consumption is larger than the FTOF due to the size difference lacksquare
- Sensors+ASICs and SH of FTOF are placed on the same board, so the cooling power is lacksquaredesigned for the sum of the consumption
- SH of BTOF is located in a different place than sensors + ASICs lacksquare

BTOF

	Power	
Sensors	4kW	
FCFD	9.4kW	
DC-DC	3.3kW	SH = 4.
FPGA	1kW	3 = 4.
Total	17.7kW	

FTOF

	Power
Sensors	0.3kW
EICROC	3.6kW
DC-DC	2.5kW
FPGA	1kW
Total	7.4kW

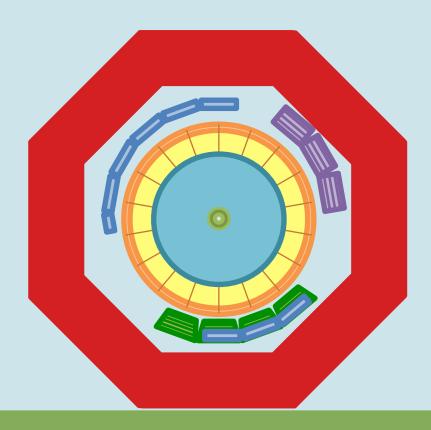
.3kW

Institutes in TOF tasks (official)

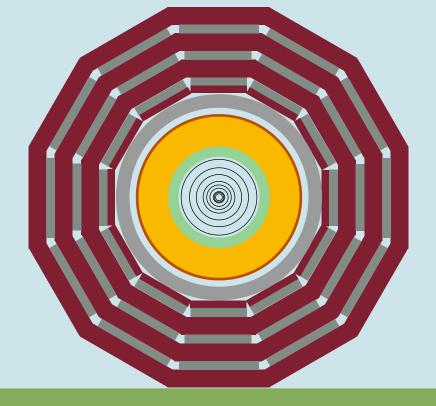
- Brookhaven National Laboratory (USA) •
- Fermi National Accelerator Laboratory (USA) ullet
- Rice University (USA) lacksquare
- Oak Ridge National Laboratory (USA) lacksquare
- Ohio State University (USA) ${\color{black}\bullet}$
- Purdue University (USA) ullet
- University of California Santa Cruz (USA) ${\color{black}\bullet}$
- University of Illinois at Chicago (USA) ${\color{black}\bullet}$
- Hiroshima University (JP) ullet
- RIKEN (JP) lacksquare
- Shinshu University (JP) ${}^{\bullet}$
- Nara Woman University (JP) lacksquare
- National Chen-Kung University (TW) ullet
- National Taiwan University (TW) ullet
- IJCLab, OMEGA, CEA-Saclay (FR) lacksquare

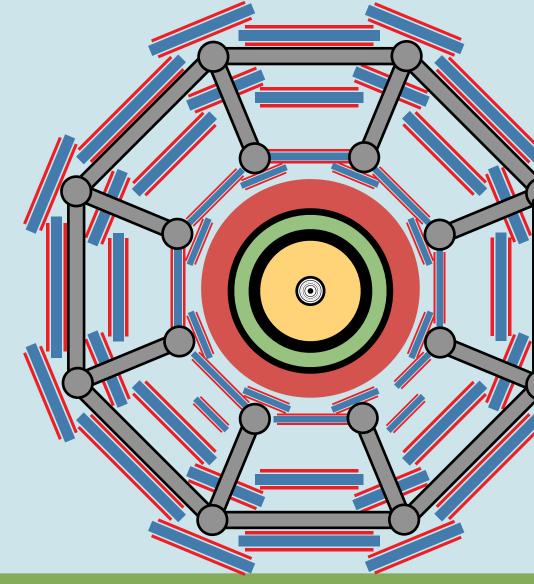
Tasks in BTOF

AC-LGAD sensor


- BNL
- ORNL
- Univ. of California, Santa Cruz
- Univ. of Illinois, Chicago
 - Hiroshima University
 - Shinshu University

Frontend ASIC


- Fermilab
- Rice University
- Hiroshima University
- National Taiwan University
- IJCLab/OMEGA/CEA-Saclay
- **Sensor-ASIC** integration
- BNL
- ORNL
- Univ. of California, Santa Cruz
- Univ. of Illinois, Chicago
- National Taiwan University


- Module structure
- Purdue University
- National Cheng-Kung University
- Module assembly
- BNL
- ORNL
- Ohio State University
- Univ. of California, Santa Cruz
 - Hiroshima University
- RIKEN
- Nara Woman University
- National Taiwan University
- Flex PCB
- Nara Woman University
- Service Hybrid
- Rice University
- **Backend electronics** BNL

