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CMB measurements and cosmology

* Anisotropies of CMB temperature have been measured very precisely
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* Establish the standard cosmological model by combining CMB + SNela + Large-scale-structure

v’ Constrain composition of the universe
v Accelerated expansion of the recent universe

v’ Spatially flat universe
v’ Gaussian primordial fluctuations

CMB polarization is a key observable in observational cosmology in the coming decades



CMB polarization

Temperature quadrupole anisotropies generates linear polarization

Thomson scattering
V' by electron
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Unpolarized photon .

Wayne Hu'’s Tutorial (http://background.uchicago.edu/~whu)



CMB polarization

Temperature quadrupole anisotropies generates linear polarization

Unpolarized photon
(Colder)

Thomson scattering
V' by electron

N

N
Unpolarized photon .

Unpolarized photon

(Hotter) I

Wayne Hu'’s Tutorial (http://background.uchicago.edu/~whu)



CMB polarization

Last scattering surface seen by
reionization electron

Last scattering surface

CMB polarization is generated not only from recombination but also from reionization



CMB polarization
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Primordial GWs generate not only E modes but also B modes



CMB power spectra and parity

Correlations between CMB temperature, E-mode, and B-mode
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CMB power spectra and parity

* Correlations between CMB temperature, E-mode, and B-mode
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Cosmic birefringence

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

Last Scattering




Cosmic birefringence

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

Last Scattering

Observer plane

E°bS = E cos(2p) » CEBobs _ sin(4p) CEE
B°S = E sin(2p) L2



Cosmic birefringence

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

Last Scattering

« Axion-like particles (ALPs; ¢) coupled with photons

go . -
I Qv
L> 4 FIM/F Ni (1977), Turner & Widrow (1988)
/l Wide range of mass (my) and coupling (g) Arvanitaki et al. (2010)

Observer plane

E°bS = E cos(2p) » (BB obs _ sin(4p) CEE
B°S = E sin(2p) L2



Cosmic birefringence

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

Last Scattering

« Axion-like particles (ALPs; ¢) coupled with photons

LD#F Frv

uv Ni (1977), Turner & Widrow (1988)

Wide range of mass (my) and coupling (g) Arvanitaki et al. (2010)

This term makes the phase velocities of right- and left-handed polarization
states of photons different, leading to rotation of the polarization plane

Carroll et al. (1900), Harari & Sikivie (1992)

B = %(gbobs — bsource)

Observer plane Independent of photon frequency (c.f. Faraday rotation by magnetic fields)

E°bS = E cos(2p) » CEBobs _ sin(4p) CEE
B°S = E sin(2p) L2



Cosmic birefringence

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

Last Scattering

« Axion-like particles (ALPs; ¢) coupled with photons

go . -
I Qv
L> 4 FMVF Ni (1977), Turner & Widrow (1988)
l Wide range of mass (my) and coupling (g) Arvanitaki et al. (2010)

This term makes the phase velocities of right- and left-handed polarization
states of photons different, leading to rotation of the polarization plane

Carroll et al. (1900), Harari & Sikivie (1992)

B = %(gbobs — bsource)

Observer plane Independent of photon frequency (c.f. Faraday rotation by magnetic fields)
E°bS = E cos(2p) sin(44)
BObS — E sin(2p) » o obs T'B C;% We can make implications for ALPs by observing g (CF?)
= E sin

(see Takahashi-san'’s talk)



Observation of Cosmic birefringence

« WMAP + Planck EB power spectrum

Stacked observed F'D power spectrum
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Observation of Cosmic birefringence

« WMAP + Planck EB power spectrum

Stacked observed F'D power spectrum
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* However, miscalibration angle, a, limits observation of cosmic birefringence from CMB @ ®
Observed CMB polarization can be rotated simply because polarization directions "
of detectors are rotated with respect to the sky coordinates :. % £

ﬁObS=ﬁ+C{




Observation of Cosmic birefringence

* New ldea by Minami et al. (2019)

CMB polarization is rotated by both cosmic birefringence and miscalibration angle

Galactic foreground is rotated by only miscalibration angle

We can calibrate a with Galactic foreground and then extract 5



Observation of Cosmic birefringence

* Minami & Komatsu (2020) applied this technique and obtained g = 0.35 + 0.14 deg

. - _NOi Nt i _ +0.094
With WMAP and a lower-noise Planck data, the current constraintis g = 0.3479:937 deg Eskilt & Komatsu (2022)
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* Further investigations are needed to confirm the signal
Intrinsic EB correlation of foregrounds

Reducing uncertainties on a with improved hardware calibrators



Probing time-evolution of isotropic cosmic birefringence by ALPs

This part is based on the following works:

Sherwin & TN (2023)

Nakatsuka, TN, Komatsu (2022)

Murai, Nakatsuka, TN, Komatsu (2022)
Naokawa & TN (2023)

TN & Obata (2023)

Naokawa, TN, et al. (2024) in prep.
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https://arxiv.org/abs/2203.08560
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Implications for ALPs from cosmic birefringence

* Multiple experiments have constrained ALP mass and coupling
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(Sigl et al., 2018)

Mass range probed by CMB cosmic birefringence



Implications for ALPs from cosmic birefringence

Implications for ALPs from observed birefringence angle (rujita, Murai, Nakatsuka & Tsujikawa 2021)
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Implications for ALPs from cosmic birefringence

Implications for ALPs from observed birefringence angle (rujita, Murai, Nakatsuka & Tsujikawa 2021)

Ap = ¢ipi if 10732 eV < my < 107%% eV and we need a similar g to explain § = 0.3 deg

p = %(‘pobs — Psource)

10°

recombination




Implications for ALPs from cosmic birefringence

Implications for ALPs from observed birefringence angle (rujita, Murai, Nakatsuka & Tsujikawa 2021)

Ap K i if mg < 10732 eV and we need a large g to explain f = 0.3 deg

p = %(‘pobs — Psource)
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Implications for ALPs from cosmic birefringence

* Implications for ALPs from observed birefringence angle (rujita, Murai, Nakatsuka & Tsujikawa 2021)




Cosmic birefringence tomography

C;® has been assumed to have the simple form:  CF? ~ 28CF*?

However, shape of EB significantly depends on ALP mass: Cr® + 2BCHE

We can probe tomographic information on ALPs



Rotation of CMB photons and dynamics of ¢ Sherwin & TN (2023)

Neutral
IGM

on




Rotation of CMB photons and dynamics of ¢ Sherwin & TN (2023)
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Rotation of CMB photons and dynamics of ¢ Sherwin & TN (2023)




Rotation of CMB photons and dynamics of ¢ Sherwin & TN (2023)

~ 9

Brec = 2 ®in Prei =

Polarization from reionization and recombination could be differently rotated depending on m



EB —28
Mass dependence of C; mg K 107°%eV Nakatsuka, TN, Komatsu (2022)

[a—
|
[

CTI
S
=
=
N
~
M
R
O
N\
—
_|_
=

[a—
|

Reionization bump depends on my,

Sherwin & TN (2023)



EB —28
Mass dependence of C; me ~ 107"eV Nakatsuka, TN, Komatsu (2022)
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» Shifting scales of acoustic peaks
* Suppressing CZ amplitude



EB —28
Mass dependence of C; me ~ 107"eV Nakatsuka, TN, Komatsu (2022)
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* Suppressing CZ amplitude
e Sign of ClEB becomes negative as mg increases



EB —28
Mass dependence of C; me ~ 107"eV Nakatsuka, TN, Komatsu (2022)
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» Shifting scales of acoustic peaks
* Suppressing CZ amplitude
e Sign of ClEB becomes negative as mg increases



EB —28
Mass dependence of C; me ~ 107"eV Nakatsuka, TN, Komatsu (2022)
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» Shifting scales of acoustic peaks
* Suppressing CZ amplitude
e Sign of ClEB becomes negative as mg increases

Similar features appear for cosmic birefringence by early dark energy (Murai et al. 2022)



Implications for ALPs from C}*

* C/Pis sensitive to mg,

How significantly can we constrain mg using ongoing and future experiments?



Implications for ALPs from C}*

* C/Pis sensitive to mg,

How significantly can we constrain mg using ongoing and future experiments?

Using the full shape of ClEB breaks degeneracy between cosmic birefringence and miscalibration angle a

gp  Sin(4a) ..
£ - ) £




Ongoing and Future Large CMB Projects

LiteBIRD (will be launched in 2032)
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Space experiments (mg = 107°"eV) Nakatsuka, TN, Komatsu (2022)
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Space experiments (mg = 107°"eV) Nakatsuka, TN, Komatsu (2022)
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Space experiments (mg = 107°"eV) Nakatsuka, TN, Komatsu (2022)
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. _ —28
Space experiments (mg = 107“"eV) Nakatsuka, TN, Komatsu (2022)
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Ground-based experiments (mgy = 10™“"eV) Nakatsuka, TN, Komatsu (2022)
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Ground-based experiments (mgy = 10™“"eV) Nakatsuka, TN, Komatsu (2022)
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Ground-based experiments (mgy = 10™“"eV) Nakatsuka, TN, Komatsu (2022)
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Gravitational lensing Naokawa & TN (2023)

* So far, we have ignored lensing effect on EB

 However, small-scale CMB fluctuations are significantly affected by gravitational lensing

Errors on power spectra from future CMB experiments << Lensing modification

@ high ell



Gravitational lensing Naokawa & TN (2023)

« Path of CMB photons are deflected by the gravitational potential of the large-scale structure

Last Scattering

Observer plane

P'(n) = P(n+ Vo) (P=0Q xilU)



Gravitational lensing Naokawa & TN (2023)

« Path of CMB photons are deflected by the gravitational potential of the large-scale structure

Last Scattering

Observer plane

P'(n) = P(n+ Vo) (P=0Q xilU)

» Birefringence rotates the polarization plane along the trajectory

P'(n) = e?8P(n + Vo)

We derive the lensing correction to CfB by extending formula of Challinor & Lewis 2005 and implement it to CLASS



Lensing effect on EB power spectrum Naokawa & TN (2023)
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We cannot fit observational data without lensing effect on C;°




Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)

* Observed rotation angle has ambiguity of phase of angle

Last Scattering Last Scattering

/1,8=0.3 deg /lﬁ=0.3+180 deg

Observer plane Observer plane

BP* = sin(2 x 0.3) EMP BObs = sin(2 x (180 + 0.3)) ECMB



Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)

* Observed rotation angle has ambiguity of phase of angle

Last Scattering Last Scattering

/1,8=0.3 deg /lﬁ=0.3+180 deg

Observer plane Observer plane

BP* = sin(2 x 0.3) EMP BObs = sin(2 x (180 + 0.3)) ECMB

CMB birefringence analysis could not distinguish § = 0.3 + mx X 180 deg (|mx| = 0,1, ...)



Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)

* Possible constraints on mg

We assume ALPs with mass Mg

p x gAp ~ goini Large mg = Large [ = Large g Qin;

» Constraint on g¢;,i from Fujita, Murai, Nakatsuka, Tsujikawa (2021)

B < 10°deg (ma <10%) at10732eV<m, < 10728 eV

» Constraint from anisotropic cosmic birefringence

y) . . .
Clc,m X (9¢ini) discuss this constraint later



Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)

* Possible constraints on mg

We assume ALPs with mass Mg

p x gAp ~ goini Large mg = Large [ = Large g Qin;

» Constraint on g¢;,i from Fujita, Murai, Nakatsuka, Tsujikawa (2021)

B < 10°deg (ma <10%) at10732eV<m, < 10728 eV

» Constraint from anisotropic cosmic birefringence

y) . . .
Clc,m X (9¢ini) discuss this constraint later

Nonzero values of mg significantly change CfB (next slides)



Ambiguity of phase of measured rotation angle

Naokawa et al. (in prep.)
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Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)
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If § becomes large, the peaks are shifted significantly which can be detectable from future experiments




Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)

EB(m = 0)
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EB(m=2)
EB(m=4)
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The power spectrum is not changed at most of the angular scales




Ambiguity of phase of measured rotation angle

Naokawa et al. (in prep.)

EB(m = 0)
EB(m=1)
EB(m=2)
EB(m=4)
EB(m= 8)
EB(m=16)
EB(m=32)
EB{m= B4

1000 1500
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Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)
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The reionization bump is changed significantly




Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)

EE(m =0}
EE(m = 2)
EE(m = 4)
EE(m = 8)
EE{m = 16)
EE(m =32)
EE(m = 64)
EE(m = 128)

15 20
multipole, /

The reionization bump in C{;EE is suppressed due to averaging of rotation angles (washout effect)




Ambiguity of phase of measured rotation angle Naokawa et al. (in prep.)

The reionization bump in C;* and C;*® are modified



Polarized Sunyaev Zel'dovich (pSZ) effect TN & Obata (2023)

Last scattering surface seen by
a late-time electron

Last scattering surface

CMB polarization is generated even at low redshift (but not so efficient)



Cosmic birefringence constraints with polarization after reionization TN & Obata (2023)

Constraints on birefringence angle at each z bin

dashed: ignoring pSZ contributions in B°PS _-®

c.f. Lee, Hotnli, Kamionkowski (2022)
and Hotinli et al. (2022)

Low-£ E, B: LiteBIRD (£ < 10)
g%, qP: S4 or HD x LSST galaxies

Constraints are 0(0.1) deg at z>>2 with future CMB missions + LSST



Summary

* We study in details the ALP-induced cosmic birefringence effect on CMB polarization

 We found that, in general, CfB + Z,BCfE and the shape significantly depends on my (ALP dynamics)

‘ Tomography of cosmic birefringence

« We developed a new tool to compute lensing correction to birefringence, thus, paving the way to more
accurate interpretation of future CMB data that will seek signatures of axions via birefringence

* Measurements of CMB polarization spectra are also useful to constrain ambiguity of phase in



Time-evolution of anisotropic cosmic birefringence

This part is based on the following works:

TN et al. (2020)

TN (2024)
Naokawa, TN, et al. (2024) in prep.
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Anisotropic cosmic birefringence

« Fluctuations in ¢ can produce anisotropies in cosmic birefringence angle

Last Scat

B = SA@ +69) = B + (i)

where a(n) = %64)()(*7_{) for a polarization emitted at y,

e.g. Massless pseudoscalar fields 8¢ + 2HSP + k?8¢p = 0

5S¢ il
i1 — 27_[
210
Angular power spectrum becomes (% «
Observer plane L(L+1)
at L « 100

(see Takahashi-san'’s talk)



Anisotropic cosmic birefringence

« Massive ALPs (e.g. Caldwell et al 2011, Greco et al. 2022)

— log g me = —28.(
§¢ +2H5¢ + (k* + a®mg)5¢ e 10 logy 7y = —29C
g l(:)g]_(] mg = —f:;“(
= @(3@ + LIJ) — 2a2m¢g5l11 ) — log,ymey = —31.(
2T
Ci* « at L « 100
L(L+1)

« Primordial magnetic fields, axion-domain wall, etc

(see Takahashi-san’s talk)



Measuring anisotropic cosmic birefringence

« Anisotropies in @ mixes E and B modes at different angular scales

ESPS = E, +ijL oy + -
Q°P*(n) £ iU°P(n) = [Q(n) £ iU(n)]e*?
B9 = B, +waL oy + -

Correlation between E and B modes at different angular scales

Ey B, xXap _,+ ..

(L # L)

« We can reconstruct a(n) by correlating E and B at different angular scales with an optimal weighting

Details are given in Namikawa’l7 (

a_) jdz a _)bngb;

c.f. Estimating EB power spectrum uses E and B at the same angular scales (;% = gbs(ngS)



Constraint on anisotropic cosmic birefringence: Current status

600

BICEP2 | Keck Array
Acp=1 L(L+1) 5 POJARBEAR
ACTPol (Namikawa et al. 2020)
SPTpol (Bianchi et al. 2020
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Intermediate-Small angular scales
-2.0

20 50 100 200 1000 2000

No detection of signals place a new bound on the birefringence; A, =< 0.1 (95%CL)



Constraint on ambiguity of phase of rotation angle

C%(mg) ~ Cf*(me = 0) X 10°mg?

Planck I
log,gme = —28.0

log g e = —29.0

Measurements of anisotropic cosmic birefringence limits mx (depending on mass)



c;® from anisotropic cosmic birefringence

« C7® from anisotropic cosmic birefringence

We usually adopt the thin approximation for the CMB last-scattering surface



c;® from anisotropic cosmic birefringence

« C7® from anisotropic cosmic birefringence

We usually adopt the thin approximation for the CMB last-scattering surface

Inclusion of the thickness makes the CEB calculation very complex

Thickness of the last-scattering surface changes Cf”B significantly for the Faraday rotation
Pogosian et al. (2011)




c;® from anisotropic cosmic birefringence

« C7® from anisotropic cosmic birefringence

We usually adopt the thin approximation for the CMB last-scattering surface

Inclusion of the thickness makes the CEB calculation very complex

Thickness of the last-scattering surface changes Cf”B significantly for the Faraday rotation
Pogosian et al. (2011)

We check how the thickness changes C;° for the massless ALPs




c;® from anisotropic cosmic birefringence

« C7® with thickness of the CMB last-scattering surface

—— Thin (single source)

Thin (rec+rei)

Exact

BB power spectrum is suppressed due to the time-evolution of ¢ during the recombination



Constraint on anisotropic cosmic birefringence

 SPTpol CfB for constraining anisotropic cosmic birefringence

M MCMC Samples

--F- 1o

—-=- 20

30

+Acg = 1074

+,/ +0.63 deg isotropic rotation
/ --=-=- Lensing
_+' ¢ SPTpol
1000 1500
€

2.5

b . Sen S N B N EEN BN BN BN BN NN NN BN NN BN NN B BN B B .

SPTpol data suggests Acg X 10* = 1.0310:31 (20), a slight preference for a nonzero value




Summary

Planck and WMAP data currently shows a hint for cosmic birefringence; B = 0.34%0-037 deg

We consider ALPs for a possible origin of cosmic birefringence and
how the evolution of ALPs impacts on CMB power spectrum

We introduce the current observations of anisotropic cosmic birefringence and make implications

More observations for cosmic birefringence are necessary to confirm the signals and explore the origin
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