Cosmic birefringence tomography

Toshiya Namikawa (Kavli IPMU, University of Tokyo)

iTHEMS Cosmology Forum @ RIKEN, 5/14/2024

• Anisotropies of CMB temperature have been measured very precisely

- Establish the standard cosmological model by combining CMB + SNeIa + Large-scale-structure
 - $\checkmark\,$ Constrain composition of the universe
 - ✓ Accelerated expansion of the recent universe
 - ✓ Spatially flat universe
 - ✓ Gaussian primordial fluctuations

CMB polarization is a key observable in observational cosmology in the coming decades

Temperature quadrupole anisotropies generates linear polarization

Temperature quadrupole anisotropies generates linear polarization

Wayne Hu's Tutorial (http://background.uchicago.edu/~whu)

CMB polarization is generated not only from recombination but also from reionization

Primordial GWs generate **not only** E modes **but also** B modes

• Correlations between CMB temperature, E-mode, and B-mode

$$C_{\ell}^{TT}$$
 C_{ℓ}^{TE} C_{ℓ}^{EE} C_{ℓ}^{BB}

Parity even

Planck Collaboration (2020)

• Correlations between CMB temperature, E-mode, and B-mode

We can prove parity violation by observing C_{ℓ}^{TB} and C_{ℓ}^{EB}

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

$$E^{obs} = E \cos(2\beta)$$

 $\underline{B^{\text{obs}}} = E \sin(2\beta)$

$$C_{\ell}^{B \text{ obs}} = \frac{\sin(4p)}{2} C_{\ell}^{EE}$$

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

• Axion-like particles (ALPs; ϕ) coupled with photons

$$\mathcal{L} \supset \frac{g\phi}{4} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Ni (1977), Turner & Widrow (1988)

Wide range of mass (m_{ϕ}) and coupling (g) Arvanitaki et al. (2010)

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

• Axion-like particles (ALPs; ϕ) coupled with photons

$$\mathcal{L} \supset rac{g\phi}{4} F_{\mu
u} \widetilde{F}^{\mu
u}$$
 Ni (1977), T

Ni (1977), Turner & Widrow (1988)

Wide range of mass (m_{ϕ}) and coupling (g) Arvanitaki et al. (2010)

This term makes the phase velocities of right- and left-handed polarization states of photons different, leading to rotation of the polarization plane

Carroll et al. (1900), Harari & Sikivie (1992)

$$\beta = \frac{g}{2}(\phi_{\rm obs} - \phi_{\rm source})$$

Independent of photon frequency (c.f. Faraday rotation by magnetic fields)

 $E^{\text{obs}} = \overline{E} \cos(2\beta)$ $B^{\text{obs}} = E \sin(2\beta)$ $C_{\ell}^{EB \text{ obs}} = \frac{\sin(4\beta)}{2} C_{\ell}^{EE}$

Cosmic Birefringence = A phenomena which rotates polarization plane of CMB during the propagation

• Axion-like particles (ALPs; ϕ) coupled with photons

$$\mathcal{L} \supset \frac{g\phi}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad _{\text{Ni} (1977),}$$

Ni (1977), Turner & Widrow (1988)

Wide range of mass (m_{ϕ}) and coupling (g) Arvanitaki et al. (2010)

This term makes the phase velocities of right- and left-handed polarization states of photons different, leading to rotation of the polarization plane

Carroll et al. (1900), Harari & Sikivie (1992)

$$\beta = \frac{g}{2}(\phi_{\rm obs} - \phi_{\rm source})$$

Independent of photon frequency (c.f. Faraday rotation by magnetic fields)

 $E^{obs} = E \cos(2\beta)$ $B^{obs} = E \sin(2\beta)$ $C_{\ell}^{EB obs} = \frac{\sin(4\beta)}{2} C_{\ell}^{EE}$ We can make implications for ALPs by observing β (C_{ℓ}^{EB})

(see Takahashi-san's talk)

• WMAP + Planck EB power spectrum

• WMAP + Planck EB power spectrum

• However, miscalibration angle, α , limits observation of cosmic birefringence from CMB

Observed CMB polarization can be rotated simply because polarization directions of detectors are rotated with respect to the sky coordinates

$$\beta^{\rm obs} = \beta + \alpha$$

• New Idea by Minami et al. (2019)

CMB polarization is rotated by both cosmic birefringence and miscalibration angle

Galactic foreground is rotated by only miscalibration angle

We can calibrate α with Galactic foreground and then extract β

- Minami & Komatsu (2020) applied this technique and obtained $\beta = 0.35 \pm 0.14$ deg
- With WMAP and a lower-noise Planck data, the current constraint is $\beta = 0.34^{+0.094}_{-0.091}$ deg

Eskilt & Komatsu (2022)

• Further investigations are needed to confirm the signal

Intrinsic EB correlation of foregrounds

Reducing uncertainties on α with improved hardware calibrators

Probing time-evolution of isotropic cosmic birefringence by ALPs

This part is based on the following works:

Sherwin & TN (2023) Nakatsuka, TN, Komatsu (2022) Murai, Nakatsuka, TN, Komatsu (2022) Naokawa & TN (2023) TN & Obata (2023) Naokawa, TN, et al. (2024) in prep. • Multiple experiments have constrained ALP mass and coupling

Mass range probed by CMB cosmic birefringence

 $\Delta \phi \simeq \phi_{\rm ini}$ if 10^{-32} eV $< m_{\phi} < 10^{-28}$ eV and we need a similar g to explain $\beta = 0.3$ deg

$$\beta = \frac{g}{2}(\phi_{\rm obs} - \phi_{\rm source})$$

 C_{ℓ}^{EB} has been assumed to have the simple form: $C_{\ell}^{EB} \simeq 2\beta C_{\ell}^{EE}$

However, shape of EB significantly depends on ALP mass: $C_{\ell}^{EB} \neq 2\beta C_{\ell}^{EE}$

We can probe tomographic information on ALPs

Sherwin & TN (2023)

Polarization from reionization and recombination could be differently rotated depending on m_{ϕ}

Mass dependence of C_{ℓ}^{EB}

$$m_\phi \ll 10^{-28} {
m eV}$$

Reionization bump depends on $m_{oldsymbol{\phi}}$

Mass dependence of C_ℓ^{EB}

$$m_{\phi} \sim 10^{-28} \mathrm{eV}$$

- Shifting scales of acoustic peaks
- Suppressing C_l^{EB} amplitude

$$m_{\phi} \sim 10^{-28} \mathrm{eV}$$

- Shifting scales of acoustic peaks
- Suppressing C_l^{EB} amplitude
- Sign of C_l^{EB} becomes negative as m_{ϕ} increases

$$m_{\phi} \sim 10^{-28} \mathrm{eV}$$

Mass dependence of C_{ℓ}^{EB}

- Shifting scales of acoustic peaks
- Suppressing C_l^{EB} amplitude
- Sign of C_l^{EB} becomes negative as m_{ϕ} increases

$$m_{\phi} \sim 10^{-28} \mathrm{eV}$$

- Shifting scales of acoustic peaks
- Suppressing C_l^{EB} amplitude \bullet
- Sign of C_l^{EB} becomes negative as m_{ϕ} increases •

Similar features appear for cosmic birefringence by early dark energy (Murai et al. 2022)

• C_l^{EB} is sensitive to m_{ϕ}

How significantly can we constrain m_{ϕ} using ongoing and future experiments?

• C_l^{EB} is sensitive to m_{ϕ}

How significantly can we constrain m_{ϕ} using ongoing and future experiments?

Using the full shape of C_l^{EB} breaks degeneracy between cosmic birefringence and miscalibration angle α

$$C_{\ell}^{EB} = \frac{\sin(4\alpha)}{2} C_{\ell}^{EE}$$

Ongoing and Future Large CMB Projects

Space experiments ($m_{\phi} = 10^{-30} \text{eV}$)

Space experiments ($m_{\phi} = 10^{-30} \text{eV}$)

Space experiments ($m_{\phi} = 10^{-30} \text{eV}$)

Space experiments ($m_{\phi} = 10^{-28} \text{eV}$)

Space experiments ($m_{\phi} = 10^{-28} \text{eV}$)

• So far, we have ignored lensing effect on EB

• However, small-scale CMB fluctuations are significantly affected by gravitational lensing

Errors on power spectra from future CMB experiments << Lensing modification

@ high ell

• Path of CMB photons are deflected by the gravitational potential of the large-scale structure

 $P'(n) = P(n + \nabla \phi)$ $(P = Q \pm iU)$

• Path of CMB photons are deflected by the gravitational potential of the large-scale structure

 $P'(n) = P(n + \nabla \phi)$ $(P = Q \pm iU)$

• Birefringence rotates the polarization plane along the trajectory

$$P'(n) = e^{2i\beta}P(n + \nabla\phi)$$

We derive the lensing correction to C_{ℓ}^{EB} by extending formula of Challinor & Lewis 2005 and implement it to CLASS

Lensing effect on EB power spectrum

Naokawa & TN (2023)

We cannot fit observational data without lensing effect on C_{ℓ}^{EB}

Naokawa et al. (in prep.)

Observed rotation angle has ambiguity of phase of angle
 Last Scattering
 Last Scattering

 $B^{\rm obs} = \sin(2 \times 0.3) E^{\rm CMB}$

 $B^{\rm obs} = \sin(2 \times (180 + 0.3)) E^{\rm CMB}$

Naokawa et al. (in prep.)

CMB birefringence analysis could not distinguish $\beta = 0.3 + m_{\odot} \times 180 \text{ deg}$ ($|m_{\odot}| = 0,1,...$)

• Possible constraints on $m_{\rm C}$

We assume ALPs with mass $m_{m \phi}$

$$\beta \propto g \Delta \phi \sim g \phi_{\text{ini}}$$
 Large m_{C} = Large β = Large $g \phi_{\text{ini}}$

Constraint on $g\phi_{ini}$ from Fujita, Murai, Nakatsuka, Tsujikawa (2021) $\beta < 10^6 \text{ deg} \quad (m_{\odot} < 10^4) \quad \text{at } 10^{-32} \text{ eV} < m_{\phi} < 10^{-28} \text{ eV}$

Constraint from anisotropic cosmic birefringence

 $C_L^{\alpha\alpha} \propto (g\phi_{\rm ini})^2$ discuss this constraint later

• Possible constraints on $m_{\rm C}$

We assume ALPs with mass m_{ϕ}

$$\beta \propto g \Delta \phi \sim g \phi_{\text{ini}}$$
 Large m_{C} = Large β = Large $g \phi_{\text{ini}}$

Constraint on $g\phi_{ini}$ from Fujita, Murai, Nakatsuka, Tsujikawa (2021) $\beta < 10^6 \text{ deg} \ (m_\odot < 10^4) \quad \text{at } 10^{-32} \text{ eV} < m_\phi < 10^{-28} \text{ eV}$

Constraint from anisotropic cosmic birefringence

 $C_L^{\alpha\alpha} \propto (g\phi_{\rm ini})^2$ discuss this constraint later

Nonzero values of $m_{\rm C}$ significantly change C_{ℓ}^{EB} (next slides)

Naokawa et al. (in prep.)

Naokawa et al. (in prep.)

If β becomes large, the peaks are shifted significantly which can be detectable from future experiments

Naokawa et al. (in prep.)

Ambiguity of phase of measured rotation angle

The power spectrum is not changed at most of the angular scales

Naokawa et al. (in prep.)

Ambiguity of phase of measured rotation angle

Naokawa et al. (in prep.)

The reionization bump is changed significantly

Naokawa et al. (in prep.)

The reionization bump in C_{ℓ}^{EE} is suppressed due to averaging of rotation angles (washout effect)

Naokawa et al. (in prep.)

The reionization bump in C_{ℓ}^{EE} and C_{ℓ}^{EB} are modified

Polarized Sunyaev Zel'dovich (pSZ) effect

CMB polarization is generated even at low redshift (but not so efficient)

• Constraints on birefringence angle at each z bin

c.f. Lee, Hotnli, Kamionkowski (2022) and Hotinli et al. (2022)

Constraints are O(0.1) deg at z>>2 with future CMB missions + LSST

• We study in details the ALP-induced cosmic birefringence effect on CMB polarization

• We found that, in general, $C_{\ell}^{EB} \neq 2\beta C_{\ell}^{EE}$ and the shape significantly depends on m_{ϕ} (ALP dynamics)

Tomography of cosmic birefringence

- We developed a new tool to compute lensing correction to birefringence, thus, paving the way to more accurate interpretation of future CMB data that will seek signatures of axions via birefringence
- Measurements of CMB polarization spectra are also useful to constrain ambiguity of phase in β

Time-evolution of anisotropic cosmic birefringence

This part is based on the following works:

<u>TN et al. (2020)</u> <u>TN (2024)</u> <u>Naokawa, TN, et al. (2024) in prep.</u> • Fluctuations in ϕ can produce anisotropies in cosmic birefringence angle

$$\beta(\vec{n}) = \frac{g}{2}\Delta(\bar{\phi} + \delta\phi) = \beta + \alpha(\vec{n})$$

where
$$\alpha(n) = \frac{g}{2} \delta \phi(\chi_* \vec{n})$$
 for a polarization emitted at χ_*

e.g. Massless pseudoscalar fields $\delta \ddot{\phi} + 2\mathcal{H}\delta \dot{\phi} + k^2 \delta \phi = 0$ $\delta \phi_{ini} = \frac{H_I}{2\pi}$

Angular power spectrum becomes $C_L^{\alpha\alpha} \propto \frac{2\pi}{L(L+1)}$

at $L \ll 100$

(see Takahashi-san's talk)

• Massive ALPs (e.g. Caldwell et al 2011, Greco et al. 2022)

$$\begin{split} \delta\ddot{\phi} + 2\mathcal{H}\delta\dot{\phi} + \left(k^2 + a^2m_{\phi}^2\right)\delta\phi \\ &= \dot{\bar{\phi}}(3\dot{\Phi} + \dot{\Psi}) - 2a^2m_{\phi}\bar{\phi}^{\Psi} \\ C_L^{\alpha\alpha} \propto \frac{2\pi}{L(L+1)} \quad \text{at } L \ll 100 \end{split}$$

• Primordial magnetic fields, axion-domain wall, etc

(see Takahashi-san's talk)

• Anisotropies in α mixes E and B modes at different angular scales

 $\overline{Q^{\text{obs}}(n) \pm i} U^{\text{obs}}(n) = [Q(n) \pm iU(n)]e^{\pm 2i\alpha(n)}$

$$E_{\ell}^{\text{obs}} = E_{\ell} + \int w B_L \alpha_{\ell-L} + \cdots$$
$$B_{\ell}^{\text{obs}} = B_{\ell} + \int w E_L \alpha_{\ell-L} + \cdots$$

Correlation between E and B modes at different angular scales

$$E_{L_1}B_{L_2} \propto \alpha_{L_1-L_2} + \dots$$
$$(L_1 \neq L_2)$$

• We can reconstruct $\alpha(n)$ by correlating E and B at different angular scales with an optimal weighting

Details are given in Namikawa'17 (1612.07855)

$$\hat{\alpha}_{\vec{L}} = \int d^2 \vec{\ell} \ w^{\alpha}_{\vec{\ell},\vec{L}} \ E^{\text{obs}}_{\vec{\ell}} B^{\text{obs}}_{\vec{L}-\vec{\ell}}$$

c.f. Estimating EB power spectrum uses E and B at the same angular scales

$$\hat{\mathcal{C}}_{\ell}^{EB} = E_{\vec{\ell}}^{\text{obs}} \left(B_{\vec{\ell}}^{\text{obs}} \right)^*$$

Constraint on anisotropic cosmic birefringence: Current status

No detection of signals place a new bound on the birefringence; $A_{CB} \leq 0.1$ (95%CL)

```
C_L^{\alpha\alpha}(m_{\odot}) \sim C_L^{\alpha\alpha}(m_{\odot}=0) \times 10^5 m_{\odot}^{-2}
```


Measurements of anisotropic cosmic birefringence limits $m_{
m C}$ (depending on mass)

• C_{ℓ}^{BB} from anisotropic cosmic birefringence

We usually adopt the thin approximation for the CMB last-scattering surface

• C_{ℓ}^{BB} from anisotropic cosmic birefringence

We usually adopt the thin approximation for the CMB last-scattering surface

Inclusion of the thickness makes the C_{ℓ}^{BB} calculation very complex

$$\begin{split} C_{\ell}^{BB} &= \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \int \mathrm{d} \ln q \ \mathcal{P}_{\mathcal{R}}(q) \sum_{\ell_{1}\ell_{2}} \mathrm{i}^{-\ell_{1}+\ell_{2}} \sqrt{(2\ell_{1}+1)(2\ell_{2}+1)} \\ &\times \int \mathrm{d}^{2} \hat{n} \left[{}_{2}Y_{\ell_{1}0}^{\star}(\hat{n})_{2}Y_{\ell_{m}}(\hat{n}) + {}_{-2}Y_{\ell_{1}0}^{\star}(\hat{n})_{-2}Y_{\ell_{m}}(\hat{n}) \right] \int \mathrm{d}^{2} \hat{n}' \left[{}_{2}Y_{\ell_{2}0}(\hat{n}')_{2}Y_{\ell_{m}}^{\star}(\hat{n}') + {}_{-2}Y_{\ell_{2}0}(\hat{n}')_{-2}Y_{\ell_{m}}^{\star}(\hat{n}') \right] \\ &\times \int_{0}^{\eta_{0}} \mathrm{d}\eta \ \int_{0}^{\eta_{0}} \mathrm{d}\eta' \ s_{\ell_{1}}(q,\eta) s_{\ell_{2}}(q,\eta') \langle \alpha(\eta,\hat{n})\alpha(\eta',\hat{n}') \rangle \,, \end{split}$$

Thickness of the last-scattering surface changes C_{ℓ}^{BB} significantly for the Faraday rotation Pogosian et al. (2011) • C_{ℓ}^{BB} from anisotropic cosmic birefringence

We usually adopt the thin approximation for the CMB last-scattering surface

Inclusion of the thickness makes the C_{ℓ}^{BB} calculation very complex

$$\begin{split} C_{\ell}^{BB} &= \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} \int \mathrm{d} \ln q \ \mathcal{P}_{\mathcal{R}}(q) \sum_{\ell_{1}\ell_{2}} \mathrm{i}^{-\ell_{1}+\ell_{2}} \sqrt{(2\ell_{1}+1)(2\ell_{2}+1)} \\ &\times \int \mathrm{d}^{2} \hat{n} \left[{}_{2}Y_{\ell_{1}0}^{*}(\hat{n})_{2}Y_{\ell m}(\hat{n}) + {}_{-2}Y_{\ell_{1}0}^{*}(\hat{n})_{-2}Y_{\ell m}(\hat{n}) \right] \int \mathrm{d}^{2} \hat{n}' \left[{}_{2}Y_{\ell_{2}0}(\hat{n}')_{2}Y_{\ell m}^{*}(\hat{n}') + {}_{-2}Y_{\ell_{2}0}(\hat{n}')_{-2}Y_{\ell m}^{*}(\hat{n}') \right] \\ &\times \int_{0}^{\eta_{0}} \mathrm{d}\eta \ \int_{0}^{\eta_{0}} \mathrm{d}\eta' \ s_{\ell_{1}}(q,\eta) s_{\ell_{2}}(q,\eta') \langle \alpha(\eta,\hat{n})\alpha(\eta',\hat{n}') \rangle \,, \end{split}$$

Thickness of the last-scattering surface changes C_{ℓ}^{BB} significantly for the Faraday rotation Pogosian et al. (2011)

We check how the thickness changes C_{ℓ}^{BB} for the massless ALPs
• C_{ℓ}^{BB} with thickness of the CMB last-scattering surface

BB power spectrum is suppressed due to the time-evolution of $\delta\phi$ during the recombination

• SPTpol C_{ℓ}^{BB} for constraining anisotropic cosmic birefringence

SPTpol data suggests $A_{\rm CB} \times 10^4 = 1.03^{+0.91}_{-0.97}$ (2 σ), a slight preference for a nonzero value

• Planck and WMAP data currently shows a hint for cosmic birefringence; $\beta = 0.34^{+0.094}_{-0.091}$ deg

• We consider ALPs for a possible origin of cosmic birefringence and how the evolution of ALPs impacts on CMB power spectrum

• We introduce the current observations of anisotropic cosmic birefringence and make implications

More observations for cosmic birefringence are necessary to confirm the signals and explore the origin