sPHENIX実験と INTT検出器

RHIC-PHENIXからsPHENIX実験へ

sPHENIX検出器(2023~2025+?)

PHENIX検出器(2000~2016年)

PHENIXからsPHENIX実験へ

Jetの測定には検出器の覆う範囲が乏しい

全方位角を覆いJetの測定に理想的な検出器

sPHENIXの物理の目標

ジェット構造の測定ー>QGP物質の反応の研究 Upsilon粒子のQGP内での抑制の測定 ー> QGPの温度 Jet structure Quarkonium spectroscopy Y(25) r(15) Y (35) ジェットによるQGP内の エネルギー損失機構の 解明 Cold QCD Parton energy loss ->11ºu.d.s チャーム・ボトム粒子測 b 定による、エネルギー SPHENIX 損失のクォーク質量依 核子構造の研究 存性の解明 核子内のパートン軌道角運動量

物理目標: ハドロン・ジェットの測定

- 高エネルギーのクォーク・グルーオンは、多数のハドロンに分解し、ハドロン・ジェットとして観測される。
- LHCでの鉛+鉛衝突実験でジェット が直接測定され、ジェットがQGPの 性質の研究のために非常に有用な ことがわかった
- しかし、90年台に設計・建設された RHICの測定器は、ジェット測定の ために設計されていなかった。
- ジェット測定のための新測定器の 建設→ sPHENIX

物理目標: ウプシロン抑制の測定:→ QGPの温度

- bクォークと反bクォークの束縛 状態であるウプシロン粒子を高 精度・高統計で測定する。
- 高温のQGP内では、bb東縛状態 が壊れるので、ウプシロン粒子 の生成量が減少する。
- 3つあるウプシロンは、束縛エネ ルギーが深いほどQGP効果により抑制されにくい。
- 3つのウプシロンの生成量の測 定から、QGPの温度を推定できる。

物理目標: 重いクォーク(チャーム・ボトム)の測定

チャーム・クォークやボトム・クォークを含むハドロン は崩壊するまでに数100ミクロンを飛行する。 シリコン飛跡測定器(MVTX, INTT)でこの飛行距離 を測定することで、チャームやボトムを含むハドロン を測定できる。 これから、QGP内のエネルギー損失のクォーク質 量依存性などが解明できる。

- ・ 直接光子は、「偏極陽子内のグルーオン」と「陽子内のクォーク」の衝突で、グルーオンが光子に変わることで作られる。直接光子の「横スピン非対称度」A_Nから、偏極陽子内のグルーオンの回転運動の強さがわかる。
- sPHENIXではPHENIXの4-5倍の精度で直接光子のA_Nを測定できる。

120 ラダーの組み立て量産は2022年の3月にBNL+台湾にて完了

INTT バレル組み立て@BNL

去年のINTT完成時。多くの学生が貢献 (奈良女子大、立教大学、台湾国立中央大学)

2023年3月1日 sPHENIXへの組み込み完了

日経サイエンス2023年6月号のRHICの記事

原子核物理学 "Primordial Soup"

加速器実験で探る 「強い力」 _{クォーク・グルーオン・プラズマを作る}

"素粒子のスープ"だった誕生直後の宇宙を かつてないほど精密に解き明かす実験が始まる

C. モスコウィッツ (SCIENTIFIC AMERICAN 編集部)

Photographs by Christopher Payne

尿于を観祭でざる 顕佩鏡を持ってい	ンの総数は絶えす変化している。	偃牛侈
るとしよう。そして,最も小さな原子	クォークと反クォークの対が常に生成	720
である水素原子を詳しく見てみる。外	と消滅を繰り返しており,グルーオン	マを再
縁を飛び回っている1個の電子を横目	は,特に陽子が高速で運動している(大	原子校
にさらに拡大していくと,原子核が見	きな運動エネルギーを持っている)場	し、汁
えてくる。水素原子のこの場合は1個	合に分裂・増殖しやすい。 要するに,	衝突さ
の陽子だ。高校の物理では,陽子は	陽子の構造は混沌としている。自然界	グルー
クォークという素粒子が3個(2個の	の4つの基本的な力のうち最も強い	できる
アップクォークと1個のダウンクォー	「強い力」はこの雑然とした粒子たち	すのた
ク)集まってできたものであると教わ	を陽子(と中性子)の中に閉じ込めて	散り背
る。しかし,実際には陽子ははるかに	いる。だが,そうではない状況もある。	20
複雑であり,その内部構造や,陽子の	ビッグバンの直後,宇宙はあまりに	建造物
質量やスピンといった性質が陽子を構	高温・高密度で,強い力はクォークや	多くの
成している粒子の性質にどう由来して	グルーオンを閉じ込めておくことがで	なぐ何
いるのかはまだ明らかになっていない。	きなかった。代わりに,それらは「クォー	私はニ
陽子内部の模式図に描かれる3個の	ク・グルーオン・プラズマ」と呼ばれ	
クォークは単に「価クォーク」(91ペー	るほとんど抵抗なくサラサラと流れる	
ジの訳者ノート1を参照)にすぎず,	大海原をなしていた。この段階は宇宙	米国立
クォークや反クォーク(クォークの反	史におけるほんの一瞬だった。ビッグ	器 (RH
物質),さらにはそれらをつなぐ糊「グ	バンから約10-6秒以内にクォークと	の内部で
ルーオン」の海を漂うブイのようなも	グルーオンは陽子や中性子に閉じ込め	の空間 左在1.7
		17 HLON

てこのクォーク・グルーオン・ブラズ マを再現できるようになった。大きな 原子核(金の原子核など)を2個用意 し、光速に近い速度まで加速して正面 衝突させる。衝突によってクォーク・ グルーオン・ブラズマの・しずく*が できるのに十分な温度と圧力を作り出 すのだ。ただし、このしずくはすぐに 散り散りになり崩壊してしまう。 この衝突を捉える装置はそびえ立つ 建造物であり、同心円状に配置された 多くの検出器などの機器やそれらをつ なぐ何千ものケーブルからなる。昨年、 私はニューヨーク州ロングアイランド

物理学者は加速器によっ

(国立ブルックヘブン研究所(ニューヨーク州ロ パグァイランド)の相対論的量(オン美突型)加速 (R(HC)で新たに移動する検知語のHEINX)内部でケーブルを設置している技術者、円筒状 空間で男子核どうしが衝突し、宇宙の始まりに 4社していたクォーク・グルーオン・プラズマの・し (くを作り出す。

日経サイエンス 2023 年 6 月号

検出器の中心部 sPHENIXはバウムクーヘンのような多層構造をしてお り、まずは外層部分が設置され(83ページの写真),最後に最内層の部分が 組み込まれ、2023年1月に完成した。左手の手前から奥に伸びている構造 物がRHICのリングを構成する真空パイプで、このパイプを取り囲むように、 日本を中心とする国際共同グループが開発したシリコン半導体検出器が配置 されている。人物は理研の秋葉康之(左)と中川格(右)。

82

RUN23でのINTTのコミッショニング

5月から8月1日の RUN23(金+金衝突) でINTTのコミッショニ ングがほぼ完了 2912 個の読み出し チップ (128ch/chip) の99%が生きている

Vertex reconstruction by INTT in XY plane

RUN23: sPHENIXのコミッショニング

SPHENIX Experiment at RHIC Data recorded: 2023-07-16 00:54:00 EST SPHENIX Run / Event: 21707 / 3194 Collisions: Au + Au @ √S_{NN} = 200 GeV Counts 140 SPHENIX Preliminary 6/13/2023 Au+Au Vs_{NN} = 200 GeV 56k events 120 Σ ADC_{emcal} < 275,000 100 80 60 40 cluster ADC > 500 20 $|\eta_{photon}| < 0.7$ 500 100 200 300 400 Di-Photon Mass [ADC] 電磁カロリメータでの2光子質量

600

 π^0 のピークが見える

700

カロリメータで測定されたAuAu衝突イベント でのエネルギーフロー

RUN24 開始

sPHENIX Beam Use Proposal 2023 (not all shown)

Year	Beam	√s _{NN} (GeV)	Data taking	Luminosity, (z < 10 cm)	
			(week)	Recorded	Sampled
2023	Au + Au	200	9	3.7 nb⁻¹	4.5 nb ⁻¹
2024	p⁺+ p†	200	17	0.44 pb ⁻¹ (5 kHz)	31 pb-1
2024	Au + Au	200	3	0.4 nb ⁻¹	-
2025	Au + Au	200	24.5	6.3 nb ⁻¹	-

2023年にsPHENIX 測定器のコミッショニ ングはほぼ終了 RHICの故障のため、 2か月早くRUNが終 了、物理データはとれ なかった。 2024年は偏極pp実 験で物理データをとる RUN24 は今まさに開 一始されている。

INTT Commissioning -Day 1- (2024/04/28)

Onsite crew: G. Nukazuka, R. Nouicer, I. Nakagawa, T. Hachiya, A. Enokizono, J. Hwang, R. Cecato, W. Tang, and H. Tsujibata.

Commissioning Day-1

Ncluster correlation Inner vs outer

A clear positive correlation. It has to be so!

DAC value needs to be corrected

Cluster pair correlation Inner vs outer

Clear correlation ϕ_{inner} vs ϕ_{outer} suggests particles from the collisions! by Takashi

Commissioning Day-1:

Commissioning Day-1 (2024/04/28)

Reconstructed tracks in an event of Run 40741

まとめ

- RHICではこれまで十分にできなかったジェット・ウプシロン・重
 - クォークの測定のために、新測定器sPHENIXを建設。
- sPHENIXは2023年に完成、2023年のランでコミッショニング
- 日本グループは、シリコン飛跡測定器INTTを建設・運用
 - 2023年完成・sPHENIXに組み込み・コミッショニング完了
- sPHENIXは今後2年間データをとり、RHICの科学的使命を完 遂する
 - 。 2024年 偏極陽子+陽子衝突実験
 - 。 2025年 金+金衝突実験
- RHICは2025年に運転終了し、EICに改造される。