RHICf-STAR Combined analysis

Japan-Korea RHICf meeting

2024/04/30

Seunghwan Lee (Sejong University)

Japan-Korea RHICf meeting

Outline

- 1. RHICf-STAR framework
- 2. Introduction
- 3. Diffractive Like Event
- 4. PYTHIA study
- 5. Neutral pion TSSA
- 6. Neutron TSSA
- 7. Further study

RHICf-STAR software framework

RHICf analysis library

General STAR library flow

- RHICf tool was made by LHCf and RHICf collaborations originally in a standalone manner.
- Recently we embedded it into the STAR library (2022 ~ 2023)

RHICf library flow in STAR library

RBRC Meeting

RHICf-STAR software framework

Data production in 2023

• We confirmed all of data produced well

TPC, EEMC φ VPD BBC **BBC VPD** BEMC Rps1 Rps3 RHICf **ZDC1** ZDC2 Rps2 Rps4 -2 -1 0 1 2 FMS -6 6 $+\eta$

RHICf-STAR detector acceptance diagram

- Detector list in data:
- 1. RHICf
- 2. TPC (for Tracks)
- 3. E,B-EMC: (for Energy)
- 3. BBC (for Trig.)
- 4. VPD (for Trig. and Vertex)
- 5. FMS (for Forward meson)
- 6. ZDC (for Trig.)
- 7. ToF (for Trig.)
- 8. Roman-Pot (for proton)

RBRC Meeting

Cross-checking

 π^0 kinematics

SEJONG UNIVERSITY

2024.4.30.

π^0 Invariant mass for this analysis

To validate the combined dataset,

we reproduce the A_N , kinematics, and mass of π^0 and cross-check with M.H Kim's result.

• We also validated the event-by-event data between RHICf-STAR and RHICf standalone library.

Cross-checking

• The tendency of A_N of π^0 as a function of p_T seems consistent with Minho's results

Introduction

π^0 TSSA

J. ADAM et al., PHYS. REV. D 103, 092009 (2021)

• Transverse Single-Spin Asymmetry for Neutral pion in forward region behavior non-zero

• RHICf π^0 can estimate to dominate the diffractive processes in RHICf region (6 < η < 11)

Introduction

Analysis goal:

- Measure the RHICf π^0 TSSA depend on diffractive processes
- Find the origin of TSSA for each process.

 10η

 10η

 \boldsymbol{p}

 10η

Introduction: Diffractive EM-Jet TSSA

EM-Jet TSSA

Xilin Liang, DIS2024

- 1. Single-Diffractive process : tagged Proton with Roman-Pot
- 2. Rapidity Gap Event : with BBC veto signal

• EM-Jet TSSA for SD event slightly different

(for Photon Mult. = 1 or 2)

2024. 4. 30.

Japan-Korea RHICf meeting

Diffractive processes

• Diffractive event characteristics :

1.Final state proton (tagging with Roman pot)2.Large rapidity gap

• Although the diffractive process is dominant,

we cannot rule out the possibility that they originate from non-diffractive processes

• We focus on the large rapidity gap ($\Delta \eta$) to separate processes

- B-TOF ($|\eta| < 1.0$)
- BBC-Large (2.2 < $|\eta|$ < 3.4)
- BBC-Small (3.4 < $|\eta|$ < 5.0)
- VPD (4.24 < $|\eta|$ < 5.1)
- RHICf (6 < η < 11)

2024. 4. 30.

• To classify the diffractive event condition,

we use the detector signal, TOF, BBC-L(S), VPD in RHICf π^0 event

2024.4.30.

🚳 SEJONG UNIVERSITY

Condition definition

- BBC-Large (2.2 < $|\eta|$ < 3.4)
- BBC-Small (3.4 < $|\eta|$ < 5.0)
- BBC Large #Channel : 8
- BBC Small #Channel : 16

STAR VPD (Vertex Position Detector)

Figure 2: On the left is a schematic front view of a VPD assembly, and on the right is a photograph of the two VPD assemblies. A one foot long ruler is shown for scale on the right.

- $4.24 < |\eta| < 5.1$
- VPD #Channel : 19

Japan-Korea RHICf meeting

Sum ADC Threshold

0.003 14

Japan-Korea RHICf meeting

0.00603

0.008

0.015

2024. 4. 30.

SEJONG UNIVERSITY

0.01

Condition definition

1) NDLE (Non-Diffractive Like Event)

• TOF ($|\eta| < 1.0$) multiplicity can classify non-diffractive or diffractive like event

• NDLE condition define there is always have a **non-zero TOF multiplicity**

Condition definition

2) SDLE (Single-Diffractive Like Event)

TOF Mult. = 0, East-side : no signal West-side : signal or not

3) DDLE (Double-Diffractive Like Event)

TOF Mult. = 0, East-side : Always signal West-side : signal or not

2024. 4. 30.

Japan-Korea RHICf meeting

Condition definition

TOF Mult. = 0, East-side : signal or not West-side : no signal

5) HMLE (High-Mass diffractive Like Event)

4) LMLE (Low-Mass diffractive Like Event)

TOF Mult. = 0,

East-side : signal or not West-side : Always signal

$$\xi_Y = M_Y^2 / s @ \sqrt{s} = 510 \text{ GeV}$$

low-mass diffraction = $\xi_Y < A$

high-mass diffraction = $\xi_Y > A$

(A : arbitrary value)

실 SEJONG UNIVERSITY

2024. 4. 30.

Japan-Korea RHICf meeting

PYTHIA study

(TOF Acceptance : $-1 < \eta < 1$)

- BBC, VPD, and RHICf detectors acceptance applied in PYTHIA
- But **Not applied** a detector response.

PYTHIA study

Data sets

Applied Diffractive cross-section Event Selection : Only RHICf π^0 event

• Ratio definition

 $Ratio = \frac{N_{process}}{N_{Trig}}$

 $N_{process}$ = number of each **truth** process events in selected events

 N_{Trig} = number of selected events according to conditions

Example for SDLE1

• Condition definition in PYTHIA

If the charged particle or photon hit in detector acceptance, detector determine to have multiplicity

• This data set also designed for checking the ratio of processes in each condition events

 Each Diffractive condition was chosen to have reasonable statistics (ex, NDLE -> NDLE3Thr, SDLE -> SDLE2Thr)

SEJONG UNIVERSITY

2024.4.30.

• DLE ratio for each conditions are high compared to other processes

(())

2024. 4. 30.

SEJONG UNIVERSITY

Japan-Korea RHICf meeting

• DLE ratio for Low(High)-mass DLE might be mixed SD and DD

• High A_N for SDLE and LMLE might be from Δ or N resonance decay (Menjo-san comments)

Japan-Korea RHICf meeting

SEJONG UNIVERSITY

2024. 4. 30.

RHICf Data

SEJONG UNIVERSITY

2024. 4. 30.

• 0.5 < $x_{\rm F}$ < 0.7 for SDLE and LMLE are slightly different

• it can be originated from resonance particles

2024. 4. 30.

Japan-Korea RHICf meeting

RHICf Data

♦ Example: Δ resonance contributions

Example: Δ resonance contributions

Japan-Korea RHIC² meeting

0.1

2024. 4. 30.

0.1

0.2

Neutron TSSA

Semi-reconstruction condition for Neutron:

- L90 > 20
- Hadron Energy > 20 GeV

$$A_N = \frac{1}{PD_{\phi}} \left(\frac{N_L - RN_R}{N_L + RN_R} \right)$$

- $D_{\phi} = 0.977$ (dilution factor)
- *P* and *R* is the same as π^0 asymmetry

• All Diffractive condition is the same as π^0 asymmetry

2024. 4. 30.

Neutron TSSA

- LMLE is not negative value
- Neutron A_N needs to be studied more closely and carefully

- STAR detector simulation must be needs for this study
- Determine the reasonable DLE condition
- Find the origin of the π^{0} TSSA,

whether it is a contribution from a resonance particle or something else.

Determine the reasonable DLE condition

Detector level multiplicity needs to convert to physics level multiplicity

 $N_{Det} \rightarrow N_{Ch}$

Track N_{Ch} (Trk = 0)

By analogy, the unfolded photon spectrum for events with at least one charged particle with $p_T > 100 \text{ MeV}$ and $|\eta| < 2.5$ is calculated as

$$N_{\gamma}^{N_{\rm ch} \ge 1} = C_{\rm track} \, C_{\gamma}^{N_{\rm track} \ge 1} \, N^{N_{\rm track} \ge 1} \left(1 - R_{\rm bkg2} \right) \,, \tag{2}$$

where $C_{\text{track}}(E_{\gamma}^{i})$ are the correction factors for the inefficiency of the track detection in ATLAS, and $C_{\gamma}^{N_{\text{track}}\geq 1}(E_{\gamma}^{i})$, $N^{N_{\text{track}}\geq 1}(E_{\gamma}^{i})$ and R_{bkg2} are defined in a similar way as parameters from Eq. 1, except the extra $N_{\text{track}} \geq 1$ requirement.

The photon energy spectrum corresponding to events with no charged particles in the fiducial region, $N_{\gamma}^{N_{ch}=0}(E_{\gamma}^{i})$, is obtained by subtracting the photon energy spectrum for events having at least one charged particle from the inclusive-photon spectrum:

$$N_{\gamma}^{N_{\rm ch}=0} = N_{\gamma}^{\rm all} - N_{\gamma}^{N_{\rm ch}\geq 1}$$
 (3)

Measurement of contributions of diffractive processes to forward photon spectra in pp collisions at \sqrt{s} = 13 TeV

Japan-Korea RHICf meeting

- Determine the reasonable DLE condition
- 1. Use the East-West N_{ch} correlation methode
- 2. Use η distribution (detector eta boundary)

2024. 4. 30.

Japan-Korea RHICf meeting

• Determine the reasonable DLE condition

Avaliable detectors in data :

• Currently, BBC and VPD have a few channels,

We can increase the number of channel if we use the EEMC and FMS

Backup

Japan-Korea RHICf meeting

Used conditions

TOF > 0 && (BBCSE > Thr && BBCLE > Thr) && (BBCSW > Thr && BBCLW > Thr) && (VPDW > THr && VPDW > Thr)

Neutral pion TSSA event ratio

• Event Ratio =
$$\frac{N_{DLE}}{N_{\pi^0}}$$

1.	NDLE = 32.2 %	$N_{\pi^0} = 423,054$
2	SDIF = 167%	$N_{NDLE} = 136,273$
۲. ک		$N_{SDLE} = 70,635$
5.	DDLE = 0.5 %	$N_{DDLE} = 34,934$
4.	LIVILE = 12.2%	$N_{LMLE} = 51,446$
5.	HMLE = 10.5 %	$N_{HMLE} = 44,321$

Neutral TSSA event ratio

• Event Ratio =
$$\frac{N_{DLE}}{N_n}$$

1.	NDLE = 27.8 %	$N_n = 1,396,917$
2.	SDLE = 14.2 %	$N_{NDLE} = 384,888$
3.	DDLE = 8.7%	$N_{SDLE} = 197,090$
л	IMIE – 79 %	$N_{DDLE} = 119,990$
ч .	LIVILL = 7.9 70	$N_{LMLE} = 109,957$
5.	HIVILE = 11.6 %	$N_{HMLE} = 160,455$

