Studies by LHCf and ATLAS (+ZDC)

H. MenjoRHICf meeting at RIKEN2024-Apr.-30

Introduction

Motivation

- done in RHICf + STAR also.
- Contents
 - Physics cases of LHCf + ATLAS joint analyses.
 - Central and forward correlation
 - forward and forward correlation (w/ ZDC, w/ RPs)
 - Performance of LHCf + ATLAS ZDC.
 - Joint test beam at CERN-SPS
 - Very preliminary result from pp, \sqrt{s} =13.6 TeV operation in 2022

Several studies of joint analyses btw. LHCf + ATLAS are on-going now. These can be good inputs to RHICf + STAR joint analyses because these can be

Joint operation data set

LHCf + ATLAS

□ Op 2015: pp √s = 13 TeV

- Only 6 M events of common events
- No ZDC and RPs jointed the operation

□ Op 2022: pp √s = 13.6 TeV

- Huge statistics of 300 M common events (all LHCf trigger events)
- RPs (AFP and ALFA) and ZDC-HAD jointed the operation

RHICf + STAR

□ Op 2017: pp $\sqrt{s} = 0.5$ TeV

- RHICf was installed in the front of ZDC
- RPs jointed in the last fill

Physics cases for joint operation

- with Central Detector
 - Measurement of diffractive collisions
 - Properties of Multi-parton interaction
- with Roman Pots
 - Single diffractive measurement
 - \Box Measurement of N(1440) and Δ (1232)
- with ZDC
 - Improvement of energy resolution for neutrons to $\sim 20\%$
 - \square Measurement of Λ ($\Lambda \rightarrow n + \pi^0$)
 - One-Pion-Exchange process

Preliminary result of the measurement for forward photons is published in a conference-note; ATLAS-CONF-2017-075

Joint operation with RPs

Physics cases

- Single diffractive measurement
 - Measuring the scattered proton, the diffractive mass can be estimated event-by-event.
 - Can address the hadron production from a specific mass decay. cross-section = (diffractive mass spectrum) x (hadron production)
- \Box Resonance measurement : N(1440) and $\Delta(1232)$
 - N : probe the very low mass diffractive process.

ATLAS AFP and ALFA

- ALFA : optimized for high- β^* operation
- AFP : designed for operation in nominal pp runs
- Both the detectors were operated during the 2022 operation
- \rightarrow Feasibility study of LHCf + ATLAS RPs was done by an ATLAS PhD. student.

Acceptance of RPs

Study the acceptance for protons using the MC simulation

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Acceptance for single-diffractive process

LHCf+AFP

event rate [Hz]	# events (2 d)
46.5 ± 1.3	8.0 ± 0.3 million

scattered proton in AFP + Any particle with > 200 GeV in LHCf

Large statistics events can be expected

Acceptance for N and Δ resonances

scattered proton in AFP pi0 in LHCf

These event numbers are estimated assuming 100% DAQ efficiency

 \rightarrow Statistics may be limited In addition, the combinatorial background may be a problem for this analysis.

Physics case with ZDC

- Improvement of energy resolution for neutro
- $\Box \leftrightarrow LHCf/RHICf$ alone : ~40%, (~30% with event s
- General improvement of neutron diff. cross-section
- Measurement of Λ
 - \Box A can be a good probe of strange baryon production
 - Detection : $\Lambda \rightarrow n + \pi^0$
- One-Pion-Exchange measurement to study the $p-\pi$ interaction

р

