Future plan of the RHICf analysis

Minho Kim (RIKEN)

April 30, 2024 RHICf meeting: Korea-Japan in person discussion

Transverse single spin asymmetry (A_N)

- In polarized p+p collisions, the A_N is defined by a left-right cross section asymmetry of a specific particle or event.
- Due to the rotational invariance, the left-right asymmetry can also be defined by the spin up-down asymmetry.
- A_N s of the very forward (6 < n) particles enable us to study the spin-involved diffractive particle production mechanism.

Relativistic Heavy Ion Collider (RHIC)

RHIC forward (RHICf) experiment

STAR detector

- In June 2017, the RHICf experiment was operated at STAR in polarized p+p collisions at $\sqrt{s} = 510$ GeV.
- We installed the RHICf detector in front of the ZDC.

A_N of forward isolated π^0

- Larger A_N was observed by more isolated π^0 than less isolated one.
- Diffractive process may have a finite contribution to the A_N for π^0 production as well as the non-diffractive one.

π⁰ measurement at RHICf

• No experiment has measured the π^0 in detail in the range of $p_T < 1$ GeV/c.

• In order to study a possible diffractive contribution to the $\pi^0 A_N$, the RHICf experiment firstly measured the A_N for very forward π^0 production.

A_N of very forward neutron

- Non-zero A_N for very forward neutron production was first observed by an experiment called IP12. PLB 650, 325 (2007).
- Afterwards, the PHENIX measured the neutron A_N as a function of p_T with three different collision energies.
- The measurement results showed a possible p_T dependence of the neutron A_N .

Theoretical model

- Neutron A_N was explained by an interference between spin flip and spin non-flip amplitudes with non-zero phase shift.
- The π and a_1 exchange model showed that the neutron A_N increased in magnitude with increasing p_T with little \sqrt{s} dependence.

Unfolded neutron A_N at PHENIX

PRD 105, 032004 (2022).

- Recently, p_T dependence of the PHENIX neutron A_N at $\sqrt{s} = 200$ GeV was obtained by unfolding the data.
- The unfolded data showed the same tendency with the model calculations.

Neutron measurement at RHICf

- RHICf the experiment has extended the previous measurements up to 1 GeV/c to study the kinematic dependence of the neutron A_N in more detail.
- RHICf detector has one order of better position resolution (1 cm \rightarrow 1 mm).
- We can also study the \sqrt{s} dependence of the neutron A_N by comparing the RHICf data with that of the PHENIX.

RHIC forward (RHICf) experiment

STAR detector

RHICf detector & neutron measurement

- The RHICf detector (LHCf Arm1) consists of two sampling towers with 20 mm and 40 mm dimensions.
- Each tower is composed of 17 layers of tungsten absorbers, 16 layers of GSO plate, and 4 layers of GSO bar hodoscope.

Analysis flow

A_N of very forward π^0

• At very low $p_T < 0.07$ GeV/c, the A_N s are consistent with zero.

• However, as p_T increases, the A_N s also increase as a function of x_F even though it is expected that the very forward π^0 comes from the diffractive process.

Comparison with the previous measurements

- One very interesting point is that the A_N of very forward π^0 seems to be comparable with that of forward π^0 .
- They may share a common underlying production mechanism or have their own ones.

RHICf-STAR combined analysis

STAR detector

Central detectors

RHICf-STAR combined analysis

Central detectors

RHICf-STAR combined analysis

- We're extending the RHICf standalone analysis to a combined analysis with STAR detectors to study the origin of the RHICf π^0 results.
- If we use the STAR detectors, we could identify the diffractive and non-diffractive events.

A_N of very forward neutron

- In the low x_F range, the neutron A_N reaches a plateau at low p_T .
- In the high x_F range, the A_N doesn't seem to reach the plateau yet, but we can confirm that the A_N explicitly increases in magnitude with p_T .
- The current theoretical calculation only reproduces the A_N in the high x_F range.

A_N of very forward neutron

- In the low p_T range, the A_N reaches a plateau at low x_F with little x_F dependence.
- In the high p_T range, the A_N reaches a higher plateau at higher x_F with a clear x_F dependence.
- More comprehensive theoretical consideration is necessary to explain the present results.

Comparison with the PHENIX measurements

- The RHICf results are consistent with of those of PHENIX.
- In the range of $x_F > 0.4$ and $p_T < 0.2$ GeV/c, this consistency suggests that there is no \sqrt{s} dependence in the neutron A_N .

Dependency of the neutron A_N

- It is interesting that the neutron A_N is enhanced on the non-diffractive condition, but suppressed on the single-diffractive condition.
- In the MB event sample, background A_Ns of these conditions are all consistent with zero.

A_N s of very forward π^0 and neutron

- In the very forward region, the neutron A_N is expected to come from the πa_1 interference and the $\pi^0 A_N$ is expected come from NN* and $\Delta \Delta^*$ interferences.
- Although the A_N s of π^0 and neutron are expected to come from different production mechanisms, they show a couple of common behaviors.
- We may be able to study a correlation between the π^0 and neutron A_N s via that of Λ .

Feasibility of the Λ measurement

- Type-II \wedge is defined as the two decayed photons and one neutron hit the same tower.
- The Type-II ∧ can be reconstructed by selecting the events where the hadronic and electromagnetic showers are separated.

Type-II Λ reconstruction

- Requirement of the shower separation condition seriously suppresses the statistics of the Type-II A.
- The true ∧ events can be hardly identified because of one order of larger background fraction.

Type-I A reconstruction

- Type-I ∧ is defined as the two decayed photons hit each tower and the one neutron hits the ZDC.
- We can apply for a geometrical constraint to suppress the background.

Type-I A reconstruction

- The background fraction of Type-I \land is much lower than the one of Type-II \land . However, we need a good strategy to estimate the signal and background fractions.
- We may be able to perform a template fit. We're checking how practically the MC reproduces data.

Other topics (pp $\rightarrow p\pi^0 X$)

FMS + RP at 200 GeV

RHICf + RP at 510 GeV

• We can study the diffractive $p\pi^0$ channel using Roman pot.

- It was once studied for forward π^0 and a similar study is currently underway for diffractive EM jet analysis.
- It will also be interesting if we study the $p\pi^0$ channel with the very forward π^0 production.

Other topics (pp $\rightarrow p\pi^0 X$)

- We can study the diffractive $p\pi^0$ channel using Roman pot.
- It was once studied for forward π^0 and a similar study is currently underway for diffractive EM jet analysis.
- It will also be interesting if we study the $p\pi^0$ channel with the very forward π^0 production.

Future plan

- $\pi^0 A_N$ depending on the signals on the STAR detectors
- Neutron A_N depending on the signals on the STAR detectors
- Particles that can be reconstructed using ZDC or RP: \land and \land
- π^0 cross section
- Neutron cross section
- Can we have another student from Korea or Japan?
- Basically, I won't be able to focus on future RHICf analysis. However, I may to when I want to do.

Backup

Neutron photon separation

- We used a variable called L_{2D} for neutron photon separation, which described how early a particle shower was developed in the detector.
- We optimized a L_{2D} threshold taking into account the particle purity and efficiency.

Position reconstruction

20/27

Energy reconstruction

π^0 reconstruction

- Data is well matched with simulation showing a clear π^0 peak at 135 MeV/c².
- Invariant mass was fitted by a superposition of polynomial and Gaussian functions, and π^0 candidates were selected within 3σ tolerance.

Neutron photon separation

• An event was considered as a neutron if $L_{90\%}$ > $aL_{20\%}$ + b X₀.

- Among "a" and "b" values that made the neutron purity higher than 99%, they were optimized so that (purity) x (efficiency) had a maximum value.
- The optimized "a" and "b" are 0.15 and 21, respectively, thereby the L_{2D} was defined as $L_{90\%}$ 0.15 $L_{20\%}$.

Photon background subtraction

 To estimate and subtract the photon contamination, a template fit was performed to the L_{2D} distribution.

To study effect of the discrepancy between the MC and data, the template fit was performed again using the template of the higher x_F bin.

 A_N difference after unfolding between the two methods was negligible, which was less than 0.0007. \rightarrow No systematic uncertainty was assigned.

10/20

Charged background subtraction

- Io estimate and subtract the charged contamination, another template fit was performed to the front counter ADC distribution.
- According to QGSJET II-04, less than 5% of the charged hadron event has photon.
 → Photon and charged contaminations were subtracted separately.
- There is almost no difference in the resulting A_N (< 0.0004) even if only one contamination was subtracted. \rightarrow No systematic uncertainty was assigned.

Photon background

- We performed a template of the L_{2D} distribution using those of the neutron and photon events obtained from QGSJET II-04 MC sample.
- Photon contamination above the threshold was estimated and subtracted.

RHIC forward (RHICf) experiment

STAR detector

- was operated at STAR in polarized p+p collisions at $\sqrt{s} = 510$ GeV.
- We installed the RHICf detector in front of the ZDC.

Reproduction of the front counter response

• To fit the front counter ADC distribution, EM events were enhanced.

• The ADC distribution was fitted by assigning free parameters to mean and sigma of MIP distribution, and number of events of each n x MIP distributions.

Charged background

- We applied a threshold to the front counter ADC distribution to suppress the charged hadron events.
- We performed a template of the front counter ADC distribution using those of the neutron and charged hadron events obtained from QGSJET II-04 MC sample.
- Charged hadron contamination below the threshold was estimated and subtracted.

Unfolding

30/27