

Analysis Status of ZDC ECal

Wen-Chen Chang, Kai-Yu Cheng, Tatsuya Chujo, Yuji
Goto, Chia-Yu Hsieh (presenter), Motoi Inaba,
Subaru Ito, Kentaro Kawade, Yongsun Kim, Chia Ming
Kuo, Chih-Hsun Lin, Po-Ju Lin, Rong-Shyang Lu, Jen-Chieh Peng

Data Analysis

Reminder : Inconsistency between Data and MC

- MC is progressing but not ready yet for SiPM simulation.
- Currently we apply the fitting results to LYSO simulation.

Data VS MC Applying SiPM Behavior Curve

- Data
- LYSO MC
- LYSO MC * SiPM curve
- After applying SiPM curve, the consistency between data and MC is much improved.
- The consistency is worse in higher energy beam.
- Problem could come from LYSO simulation, we will change from energy dump to optical photons.

2024/05/14

Status of ZDC ECal Analysis

MC Simulation

MC Implementation of LYSO Crystal

LYSO + MPT(w/ Birk's)

LYSO + MPT(w/ Birk's) + Reflection Surface

- Positron/Beam(purple)
- Electron(yellow)
- Gamma (green)
- Optical photon (cyan)
 - Scintillation
 - Cherenkov

We are now still working on have proper setting for LYSO.

Material Property Table of LYSO

TABLE II

DENSITY, ELEMENTAL COMPOSITION, AND OPTICAL PROPERTIES OF THE LYSO MATERIAL IMPLEMENTED IN THE GEANT4 In-Silico TEST PLATFORM

Density (g/cm ³)	Elemental Composition	Refractive Index	Optical Yield, Emission Spectrum, Absorption Length	Optical Decay Time Constants (ns)	Resolution Scale (at 511 keV)	Reference
7.4	Lu _{1.9} Y _{0.1} Si ₁ O ₅ (0.5% Ce doping)	See Figure 15	30 Photons per eV, See Figure 15	Fast: 7.1 (7%) Slow: 33.3 (93%)	4.17	[47]

Fig. 15. LYSO scintillator crystal material refractive index (solid line), attenuation length (dashed line), and normalized scintillation photon emission intensity (dotted line) data sets implemented in the Geant4 *in-silico* test platform.

energy dependent

- Reference paper
 <u>https://ieeexplore.ieee.org/stamp/stamp.</u>
 jsp?tp=&arnumber=8876605
- Reference code
 <u>https://github.com/JunhaoWang511/ML</u>
 <u>Csimulation/blob/master/src/MLCDetect</u>
 <u>orConstruction.cc</u>

Reflection Surface : 3M ERS

3M[™] Enhanced Specular Reflector Film (ESR)

3M ID B5005047091

Product Description

3M[™] Enhanced Specular Reflector Films (ESR) maximize the recycling efficiency of liquid crystal display backlights. 3M ESR is >98% reflective across the visible spectrum and contains no metal.

Product	3M ESR 65 Auto	3M ESR 80v2 Auto
Reflectivity (minimum)	98%	98%
Caliper (microns)	65 +/- 4	82 +/- 4
Halogen Free	Yes	Yes

Reflectivity = 0.98

https://www.3m.com/3M/en_US/p/d/b5005047091/

Tracking and Steps in MC

* G4Tra *******	ck Inform	ation: *********	Particle	= e+, T	rack ID =	= 1, Pai	rent ID = 0	*****	******	*******
Step# 0 1 2	X(mm) θ -0.592 -1.25	Y(mm) 0 -1.04 -1.44	Z(mm) K -100 -77.1 -44.1	(inE(MeV) 0.5 0.497 0.491	dE(MeV) 0 0.00269 0.00599	StepLeng 0 23 33.2	TrackLeng θ 23 56.3	NextVolume physWorld physWorld physLYSO	ProcName initStep eIoni <u>ionization</u> Transportation	boundary
Exitin 3	g from G4 -1.25	Scintilla -1.44	tion::DoI -44.1	t Numb 0.484	erOfSecor 0.00718	0.0143	1 56.3	physLYS0	msc Multiple Comp	oton scattering
;	List -1.25 msc 2ndary ·	of 2ndarı -1.44 → Generated	es - #Spa -44.	wnInStep= 1 2.83e- optical photor	1(Rest 06 0 → assign t	= 0,Along= opticalpho o new track,	0, Post= 1 oton Frack ID = 2	.), #SpawnTo EndOf2ndari	tal= 1 es Info	
2024/0	5/14				Status of Z	ZDC ECal A	nalvsis			11/20

C + #	N (N (7 (C + 1	T	N + W - 7	Due allowe
Ѕтер#	X (mm)	¥ (mm)	Z(mm)	Kine(MeV)	at(mev)	StepLeng	TrackLeng	NextVolume	ProcName
Θ	-1.25	-1.44	-44.1	2.83e-06	Θ	Θ	Θ	physLYS0	initStep
1	-1.9	3.56	-39.4	2.83e-06	0	6.95	6.95	physLYS0	Transportation boundary
2	-1.9	3.56	-39.4	2.83e-06	0	Θ	6.95	physLYS0	Transportation
3	-3.56	1.97	-38.4	2.83e-06	0	2.49	9.44	physLYS0	Transportation
4	-3.56	1.97	-38.4	2.83e-06	0	Θ	9.44	physLYS0	Transportation
5	-0.036	3.56	-36.7	2.83e-06	0	4.22	13.7	physLYS0	Transportation
6	-0.036	3.56	-36.7	2.83e-06	0	Θ	13.7	physLYS0	Transportation
7	-1.52	-3.56	-39.5	2.83e-06	0	7.79	21.4	physLYS0	Transportation
-					-	-			
54	5.50	-2.55	- 30.0	2.050-00			150	physe130	
55	3.16	-3.56	-36.7	2.83e-06	0	0.753	199	physlyso	Transportation
56	3.16	-3.56	-36.7	2.83e-06	0	Θ	199	physLYSO	Transportation
57	2.66	3.56	-35.9	2.83e-06	0	7.19	206	physLYS0	Transportation
58	2.66	3.56	-35.9	2.83e-06	0	Θ	206	physLYSO	Transportation
59	-1.57	-3.56	-37.4	2.83e-06	0	8.43	214	physLYS0	Transportation
60	-1.57	-3.56	-37.4	2.83e-06	0	0	214	physLYSO	Transportation
61	2.15	3.56	-28.8	2.83e-06	0	11.8	226	physLYS0	Transportation
62	2.15	3.56	-28.8	2.83e-06	0	0	226	physLYS0	Transportation
63	1.25	0.849	-28.8	2.83e-06	2.83e-06	2.86	229	physLYS0	OpAbsorption absorbed

For optical photons : no energy dump during the transportation steps until it is absorbed.

```
* G4Track Information: Particle = e+, Track ID = 1, Parent ID = θ
    ************
                                               **************************
      X(mm)
            Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName
Step#
                                                  physLYSO initStep
      -1.25
            -1.44 -44.1
                         0.484
                                  θ
                                             56.3
                                        θ
  з
Exiting from G4Cerenkov::DoIt -- NumberOfSecondaries = 1
Exiting from G4Scintillation::DoIt -- NumberOfSecondaries = 1
      -1.23
            -1.44
                  -44.1
                         0.463
                              0.0207
                                    0.0154
                                             56.3
                                                  physLYSO msc
  4
  :---- List of 2ndaries - #SpawnInStep= 2(Rest= θ,Along= θ,Post= 2), #SpawnTotal= 2 -----
     -1.24 -1.44 -44.1 2.92e-06
                                  opticalphoton
  :
      -1.23 -1.44 -44.1 2.94e-06
                                  opticalphoton
  :
        -----
                ----- EndOf2ndaries Info -----
             ********
* G4Track Information: Particle = opticalphoton, Track ID = 4, Parent ID = 1
            Step#
      X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName
                                                  physLYSO initStep
      -1.23
            -1.44 -44.1 2.94e-06
                                  θ
  θ
                                        θ
                                               θ
```

Optical photons are generated as positron passes through LYSO

Step#	X(mm)	Y(mm)	Z(mm) Kir	nE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName	
24	-1.26	-1.47	-44.1	0.104	θ	0	56.7	physLYSO	initStep	
25	-1.25	-1.46	-44.1	0.1	0.00376	0.00318	56.7	physLYS0	Cerenkov	
26	-1.25	-1.46	-44.1	0.0987	0.00147	0.00119	56.7	physLYS0	Cerenkov	
27	-1.25	-1.46	-44.1	0.0981	0.000591	0.000424	56.7	physLYS0	Cerenkov	
28	-1.25	-1.46	-44.1	0.0981	3.17e-05	0.000119	56.7	physLYS0	Cerenkov	
29	-1.25	-1.46	-44.1	0.0981	5.61e-05	0.000102	56.7	physLYS0	Cerenkov	
30	-1.25	-1.46	-44.1	0.098	8.28e-05	7.36e-05	56.7	physLYS0	Cerenkov	
31	-1.25	-1.46	-44.1	0.098	θ	3.09e-05	56.7	physLYS0	Cerenkov	
32	-1.25	-1.46	-44.1	0.098	2.26e-05	3.09e-05	56.7	physLYS0	Cerenkov	
33	-1.25	-1.46	-44.1	0.0976	0.000399	1.92e-05	56.7	physLYS0	Cerenkov	
34	-1.25	-1.46	-44.1	θ	0.0976	0.0297	56.7	physLYS0	eIoni	
	List	of 2ndarie	s - #Spawr	nInStep=	8(Rest:	= 0,Along	= 0,Post= 8), #SpawnTot	tal= 8	
:	-1.25	-1.46	-44.1	3.1e-	06 0	opticalph	oton			
:	-1.25	-1.46	-44.1	3.12e-	06 0	opticalph	oton			
:	-1.25	-1.46	-44.1	3.26e-	06 0	opticalph	oton			
:	-1.25	-1.46	-44.1	2.88e-	06 0	opticalph	oton			
:	-1.25	-1.46	-44.1	2.68e-	06	opticalph	oton			
:	-1.25	-1.46	-44.1	2.99e-	06 0	opticalph	oton			
:	-1.25	-1.46	-44.1	2.79e-	06 0	opticalph	oton			
:	-1.25	-1.46	-44.1	2.7e-	06 0	opticalph	oton			
:-								EndOf2ndari	es Info	<u> </u>
35	-1.25	-1.46	-44.1	θ	θ	dE e	56.7	physLYSO	Scintillati	on
	List	of 2ndarie	s - #Spawr	nInStep=	2(Rest	= 2,Along	= 0,Post= 0), #SpawnTot	tal= 10	
:	-1.25	-1.46	-44.1	0.5	11	g	amma			
:	-1.25	-1.46	-44.1	0.5	11	g	amma			
								EndOf2ndari	es Info	

Scintillation generates extra energy doesn't come from beam = 0.511MeV (mass of electron)

Num. of Particles

- Condition
 - 100MeV positron beams
 - Include MPT, Birk, reflection surface
 - 5k evts
 - Exception : Light yield = 50/MeV, to reduce the running time (33000/MeV for LYSO).
- Most generated particles are optical photons.

Energy Deposition

- Most energy are carried by beam and electron.
- Extra energy contribution from gamma.
- Optical photons carry very small amount of energy, ~0.01%.

Optical Photons

100 MeV positron, LY = 50/MeV

- Energy spectrum of scintillation photons is the same as the setup in MPT.
- Energy spectrum of Cherenkov photons is flat.
- Energy spectrum of optical photons doesn't change w/ the injected beam energy.
- Increase beam energy only increase number of scintillation photons and total energy deposition of scintillation photons, not their energy spectrum.

Effects of Light Yield Setting and Birk's Law

Energy and Optical Photons

100 MeV positron, LY = 500/MeV

Energy deposition in tower (MeV)

- Energy deposition in crystal is linear with number of photons generated when E<100MeV.
- Will move to higher energy E = 800 MeV and LY = 33,000/MeV.

Summary and To Do

- Data analysis : We apply LYSO simulation to SiPM behavior curve and compare data and MC. The consistency is more reasonable after applying SiPM curve. (LYSO simulation uses energy dump of all particles.)
- MC simulation : We implement MPT, Birk's law, and reflection skin to LYSO simulation. We are able to access the information carried by optical photons.
- To do :
- Compare Data and MC using the distribution of number/energy of optical photons. Fine tune the setting of LY and Birk's law might be required.
- Implement SiPM in MC.

Back up

Pearson Correlation

Amount of r	Strength of correlation
0.0 < 0.1	no correlation
0.1 < 0.3	low correlation
0.3 < 0.5	medium correlation
0.5 < 0.7	high correlation
0.7 < 1	very high correlation

Use Pearson correlation to fine tune ADC_{pix} , ε , α , β .

Fine Tune Fitting Parameters

Data VS MC Applying SiPM Behavior Curve

- Data
- LYSO MC
- LYSO MC * SiPM curve

Better consistency with tuned parameters.