INTT tracking

Hinako Tsujlbata (Nara Women's University)
2024.05.15 INTT MT

Table of content \＆used data

Development of a tracking algorithm using INTT

－Tracking method with B－off and B－on data．
－Event display of tracking．
－Reconstructed pT and pz of MC and data．

Used data

［MC】（p＋p／200GeV）
－PYTHIA8＋GEANT4
－B－on／B－off
－vertex ：Gaussian distribution
－mean ：$(x, y, z)=(0,0,0)$
－width ：$(x, y, z)=\left(10^{-4}, 10^{-4}, 10^{-4}\right)$

Irun 40741】
－2024／04／28
－10K events
－DACO＝ 30
－B－off

Irun 41981】
－2024／05／10
－10K events
－B－on（ $\mathrm{B}=1.4 \mathrm{~T}$ ）

How to reconstruct a track (B-off) (1/4)

1. Reconstruct a "tracklet".
2. Optimize the tracks.

How to reconstruct a track (B-off) (2/4)

1. Reconstruct a "tracklet".

- Make a pair of inner cluster A and outer cluster B.

Requirement: the angular difference between clusters from vertex is $\left|\Delta \phi_{A B}\right|<0.1$.

Used vertex value (run 40741/B-off)

- The vertex used in this analysis is $(x, y)=(-0.019,0.198)$.
- The plot below shows angular difference btw inner cluster and outer cluster in $x-y$ plane.

- The vertex(-0.019, 0.198) should be used.
- The range of d_phi cut $\left(\left|\Delta \phi_{A B}\right|<0.1\right)$ works for data as well.

How to reconstruct a track (B-off) (3/4)

2. Optimize the tracks.

- Fit the tracklet and reconstructed vertex with a linear function using the least-square method.

Exclude the background

When multiple tracklets share one cluster

- Select the tracklet which is the closest to the vertex in $x-y$ plane.

Reconstructed tracks (run40741/B-off)

- The tracks were reconstructed successfully using data(run40741/Boff).
- This result is reported in the Shift Change Meeting(April 29):-

How to reconstruct a track (B-on)

1. Reconstruct a "tracklet" in the same method as B-off data.
The vertex is the same as B-off is used.
2. Optimize the tracks.

Connect the tracklet and reconstructed vertex with a circle.

Used vertex value (run 41981/B-on)

- The vertex used in this analysis is $(x, y)=(-0.019,0.198)$.
- The plot below shows angular difference btw inner cluster and outer cluster in x-y plane.

- The vertex(-0.019, 0.198) should be used with B-on data as well.
- The range of d_phi cut works for B-off data.

Reconstructed tracks(run41981/B-on)

- The tracks were reconstructed successfully using data(run40741/Bon).
- This result is reported in the Shift Change Meeting(May 13):

How to calculate $p T$

1. Reconstruct a track curvature with B-on data.
2. Calculate the Radius of curvature (R).
3. Calculate p_{T} from the equation for circular motion.

$$
\begin{gathered}
m \frac{v_{T}^{2}}{R}=e v_{T} B \\
p_{T}=0.3 B R \quad[\mathrm{GeV} / \mathrm{c}]
\end{gathered}
$$

- $B=1.4 \mathrm{~T}$ is used in this analysis.

Reconstructed pT, pz (MC/B-on)

- Left(Right) plot : $\mathrm{pT}(\mathrm{pz})$ difference btw reconstructed $\mathrm{pT}(\mathrm{pz})$ and simulated $\mathrm{pT}(\mathrm{pz})$ as a function of simulated $\mathrm{pT}(\mathrm{pz})$.
- Red line represents the mean value and StdDev of $\mathrm{pT}(\mathrm{pz})$ difference.

- pT resolution is 20% and pz resolution is 2% in 5 GeV .

Reconstructed pT with run 41981(B-on)

- pT and pz are reconstructed with B-on data (run41981).
- The left plot shows pT and the right plot shows pz.

- pT and pz are reconstructed successfully with data.
- The \# of positive particles is as same as the \# of negative particles as the level of few\%.

Summary \& Next step

Summary: Development of a tracking algorithm using INTT

- Tracks are reconstructed with B-off and B-on data successfully.
- Obtained pT and pz with MC and data.
- (MC)pT resolution is 20% and pz resolution is 2% in 5 GeV .
- The result with data should be compared with MC.
- The \# of positive particles is as same as the \# of negative particles as the level of few \%.

Next step
Associate INTT tracks with EMCal tracks

BACK UP

