INTT4 HV current

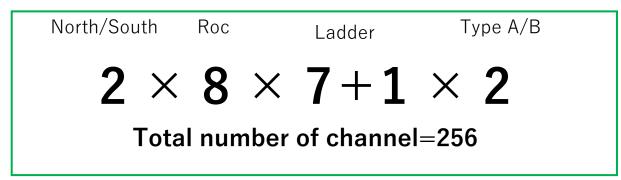
2024/7/24

Ryota Shishikura, Yui Ishigaki

Outline

- INTT4 has been suffered from large data volume in the stream readout mode.
- We checked the current values by Grafana to find out if the dark current cause this issue.

Hypothesis: the dark current in silicon sensors contributing to the large data volume is not caused by silicon sensors.


Outline

public	gtm_scheduler	table	phnxrc
public	hcal_daq_info	table	phnxrc
public	hcal_heartbeat	table	phnxrc
public	hcal_led	table	phnxrc
public	hcal_nominal_vmod	table	phnxrc
public	hcal_pedestal	table	phnxrc
public	hcal_tower_mapping	table	phnxrc
public	hcalmpodlog	table	phnxrc
public	hostinfo	table	phnxrc
public	intt_mpodlog	table	phnxrc
public	led_run_view	view	phnxrc
public	111	table	phnxrc
public	magnet_info	table	phnxrc
public	mbd_hvlog	table	phnxrc
public	mbd_hvlog_id_seq	sequence	phnxrc
public	mbd_trigluts	table	phnxrc
public	mpodlog	table	phnxrc
public	mpodlog_id_seq	sequence	phnxrc
public	mv2	table	phnxrc
public	mvtx_strobe	table	phnxrc
public	old_hcal_heartbeat	table	phnxrc
public	rc_db	table	phnxrc

Table "public.intt_mpodlog"					
Column	Type	Collation Nullable	Default		
time ip mpod_channel	t timestamp without time zon character varying(32) smallint	e not null not null not null			
status voltage current	character varying(12) real real				
Indexes: "pkey" PRIMARY KEY, btree ("time", ip, mpod_channel) =					

Ip - North or South

mpod_channel – Ladder and type of sensor number

 $\times +1$ means spare ladder

We assumed that the bias cable mapping of Run24 would be the same as Run23 so we use mpod_channel same as last year.

Resolution of current

2. Technical data

	EHS F601x-F)1	EHS F605x-F)1	EHS F610x-F)1	EHS F620x-F)1	EHS F630x-F)1	EHS F640x-F)1	EHS F660x-F)1
HV channels per module	16	16	16	16	16	16	16
Output voltage Vo nom [kV]	0.1	0.5	1	2	3	4	6
Output current Io nom [mA]	10	15	8	4	3	2	1
Resolution of voltage setting*) [mV]	5	20	40	80	120	160	240
current setting*) [nA]	400	600	320	160	120	80	40
voltage measurement*) [mV]	1	2	4	5	10	10	15
current measurement*) [nA]	100	150	80	40	30	20	10
Ripple and noise [mV _{P.P}]	< 5 < 10 < 30 - at max. load and V _O > 2% * V _{O nom} - f > 10 Hz						
Stability(no load/load and ΔV_{IN})	0.02%* V _{O nom}						
Sample rates [samples/s]	5, 10, 25, 50, 60, 100, 500						
Digital filter averages	1, 16, 64, 256, 512, 1024						
The resolution of measurable values of	depends o	n the settir	ngs of the	sampling r	ate and the	e digital filt	er!
Accuracy of voltage measurement ± (0.01% * V _O + 0.02% * V _{O nom})							
Accuracy of current measurement $\pm (0.02\% * I_O + 0.02\% * I_{O nom})$							
The measurement accuracy is guaranteed in the range 2% * V _{O nom} < V _O ≤ V _{O nom} and for 1 year							
Voltage ramp up / down [V/s] 1*10 ⁻⁶ * V _{O nom} up to 0.2 * V _{O nom}							
Floating voltage	Connector RTN to GND: ≤ 20 V						
Temperature coefficient	< ± 50 * 10 ⁻⁶ / _K						
Hardware limits V _{max} / I _{max} potentiometer per module (V _{max} / I _{max} is the same for all channels)				nels)			

⁾ with standard sample rate 500/s and digital filter 64

We found the manual for the HV module.

We used in INTT is

EHS F 605p-F.

It shows that the lowest measurable current is 150 nA.

→Measured currents are reliable.

Details

Hardware [edit | edit source]

Wiener's MPOD is used to apply bias to the silicon sensors. The features of our MPOD module EHS F605p-F are:

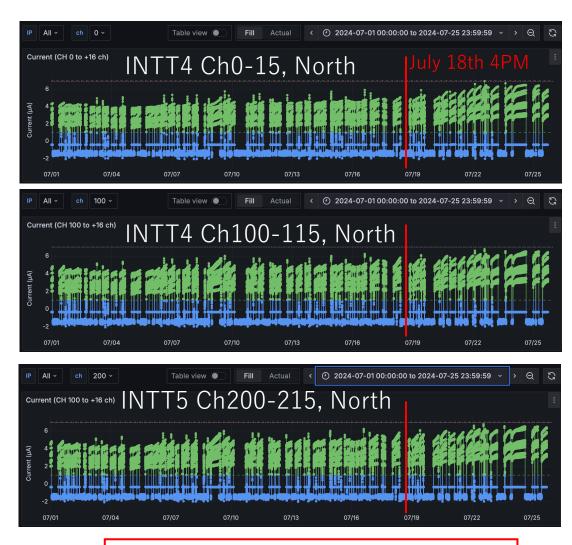
```
• #ch: 16
```

```
Max Voltage: 0.5 kV
Max Current: 15 mA
Polarity: positive
Rippile: < 10 mV</li>
```

• Resolution of

voltage setting: 20mV current setting: 600nA voltage measurement: 2mA current measurement: 150nA

 Accuracy of voltage measurement:± (0.01% * VO + 0.02% * VO nom)

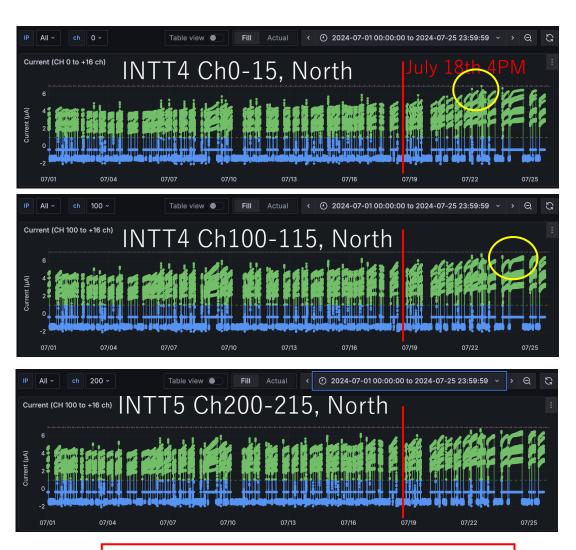

current measurement ±:(0.02% * IO + 0.02% * IO nom)The measurement accuracy is guaranteed in the range 2% * VO nom < VO ≤ VO nom and for 1 year

You can get manuals from the official homepage or Operator's Manual of . Wiener MPod Instruction Weiner MPOD

You can see details of HV module

Hardware Configuration->Bias/LV Power->Bias Power System in wiki

INTT4 current July 1 to now 1

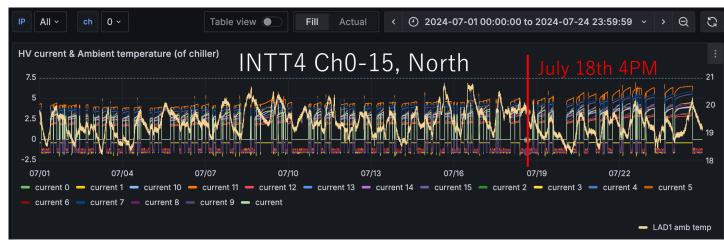


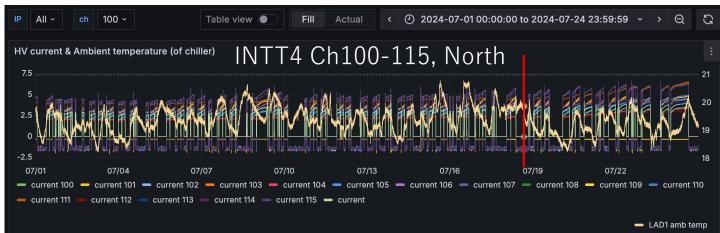
The drawing currents have been slowly increasing and the slope may get a bit steeper around July 18th.

However, the slope for INTT4 sensors are not necessarily more drastic compared to other sensors in different servers.

On July 18th 4PM, we switched to the stream readout mode from triggered mode.

INTT4 current July 1 to now 2




We don't see slope change after increased dry air flow on 22nd.

→ It is not distinctive to call as the direct evidence of the larger data size in recent stream readout data from this observation.

On July 18th 4PM, we switched to the stream readout mode from triggered mode.

HV current & Ambient temperature (of chiller)

Ambient temperature, it's decreasing. The current is increasing on the other hand.

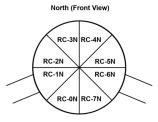
This graph was made by Genki. Thank you.

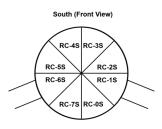
On Going

 We are concerned that currents have continued to rise over the last week on all ladders.

• We will investigate if there is any hit rate increase due to increasing drawing current by monitoring normalized hit rate by the luminosity(trigger rate).

• 仮説を入れる


Get map of RUN23


INTT DAQ servers, FELIX board and ROCs [edit | edit source]

A FELIX board has 2 ROCs. The relation is

Relation of the INTT DAQ servers, each has a FELIX board, and ROCs.

INTT DAQ server	Server IP	Packet ID (pid)	FELIX port 0	FELIX port 1
intt0	10.20.32.100	3001	RC-0S	RC-1S
intt1	10.20.32.101	3002	RC-2S	RC-3S
intt2	10.20.32.102	3003	RC-4S	RC-5S
intt3	10.20.32.103	3004	RC-6S	RC-7S
intt4	10.20.32.104	3005	RC-0N	RC-1N
intt5	10.20.32.105	3006	RC-2N	RC-3N
intt6	10.20.32.106	3007	RC-4N	RC-5N
intt7	10.20.32.107	3008	RC-6N	RC-7N


```
def GetMap():
        sip = '10.20.34.150'
       nip = '10.20.34.151'
                'RC-0N (HV-9)':{
                        'B1L101N':{
                                'Sensor A (P3-3)':{'ip':nip, 'ch':'10'},
                                'Sensor B (P3-4)':{'ip':nip, 'ch':'11'}},
                                'Sensor A (P2-5)':{'ip':nip, 'ch':'4'},
                                'Sensor B (P2-6)':{'ip':nip, 'ch':'5'}},
                        'B0L100N':{
                                'Sensor A (P2-1)':{'ip':nip, 'ch':'0'},
                                'Sensor B (P2-2)':{'ip':nip, 'ch':'1'}},
                        'B1L001N':{
                                'Sensor A (P3-5)':{'ip':nip, 'ch':'12'},
                                'Sensor B (P3-6)':{'ip':nip, 'ch':'13'}},
                        'B0L101N':{
                                'Sensor A (P3-1)':{'ip':nip, 'ch':'8'},
                                'Sensor B (P3-2)':{'ip':nip, 'ch':'9'}},
                                'Sensor A (P2-7)':{'ip':nip, 'ch':'6'},
                                'Sensor B (P2-8)':{'ip':nip, 'ch':'7'}},
                        'B1L100N':{
                                'Sensor A (P2-3)':{'ip':nip, 'ch':'2'},
                                'Sensor B (P2-4)':{'ip':nip, 'ch':'3'}},
                        'FILLLER':{
                                'Sensor A (P3-7)':{'ip':nip, 'ch':'14'},
                                'Sensor B (P3-8)':{'ip':nip, 'ch':'15'}}},
                'RC-1N (HV-10)':{
                        'B0L002N':{
                                'Sensor A (P2-5)':{'ip':nip, 'ch':'104'},
                                'Sensor B (P2-6)':{'ip':nip, 'ch':'105'}},
                        'B0L102N':{
                                'Sensor A (P3-1)':{'ip':nip, 'ch':'108'},
                                'Sensor B (P3-2)':{'ip':nip, 'ch':'109'}},
                                'Sensor A (P2-1)':{'ip':nip, 'ch':'100'},
                                'Sensor B (P2-2)':{'ip':nip, 'ch':'101'}},
                        'B1L003N':{
                                'Sensor A (P3-5)':{'ip':nip, 'ch':'112'},
                                'Sensor B (P3-6)':{'ip':nip, 'ch':'113'}},
                        'B1L103N':{
                                'Sensor A (P3-3)':{'ip':nip, 'ch':'110'},
                                'Sensor B (P3-4)':{'ip':nip, 'ch':'111'}},
                        'B1L002N':{
                                'Sensor A (P2-7)':{'ip':nip, 'ch':'106'},
                                'Sensor B (P2-8)':{'ip':nip, 'ch':'107'}},
                        'B1L102N':{
                                'Sensor A (P2-3)':{'ip':nip, 'ch':'102'},
                                'Sensor B (P2-4)':{'ip':nip, 'ch':'103'}},
                        'FILLLER':{
                                'Sensor A (P3-7)':{'ip':nip, 'ch':'114'},
                                'Sensor B (P3-8)':{'ip':nip, 'ch':'115'}}},
                'RC-2N (HV-11)':{
                        'B0L003N':{
                                'Sensor A (P2-1)':{'ip':nip, 'ch':'200'},
                                'Sensor B (P2-2)':{'ip':nip, 'ch':'201'}},
                        'B0L104N':{
                                'Sensor A (P2-5)':{'ip':nip, 'ch':'204'},
```