M31 HALO ILLUSTRATION OVER ROCKY TERRAIN https://hubblesite.org/contents/media/images/2020/46/4735-Image

Production of Heaviest Nuclei in NS-NS/BH-NS Mergers and Collapsars

Shinya Wanajo (Tohoku University)

Theories of Astrophysical Big Bans 2025, RIKEN, Wako, February 17-19, 2025

Y_e distribution in MHD model (NS-NS)

1st self-consistent 3D simulation of a neutron star merger over 1s (including both dynamical and post-merger ejecta; Kiuchi+2023)

♦ MHD model results in Y_e = 0.2-0.26 (and ~0.01 M_☉) instead of ~ 0.3 in viscous model (Fujibayashi+2023)

Theories of Astrophysical Big Bans 2025

Shinya WANAJO

nucleosynthesis in MHD model (NS-NS)

long- vs short-lived remnant NS (NS-NS)

 $Y_{e} = N(proton)/N(proton+neutron)$

long- vs short-lived remnant NS (NS-NS)

ejecta compositions (BH-NS)

comparison with solar abundance (BH-NS)

Y_e constraint from actinide (BH-NS)

Wanajo+2024

tests with $Y_e = 0.01, ..., 0.1$ are consistent with Th/Eu in metal-poor stars (13 Gyr ago)

 presence of actinide-boost stars (Th/Eu > 0.9) implies
 Y_e ~ 0.05-0.1 in the dynamical ejecta

constraint on nuclear EOS (BH-NS)

Wanajo+2024

range of Y_e ~ 0.05-0.1 excludes some nuclear equations of state (e.g., Togashi EOS)

GR-MHD collapsar models (collapsars)

Shibata, Fujibayashi, Wanajo+2025, submitted							
Model	B_{\max} (G)	$lpha_{ m d}$	$\sigma_{ m c}({ m s}^{-1})$	$ ho_{ m cut}({ m g/cm}^3)$	Δx (m)	Explosion	Jet
B11.1.8h	10^{11}	10^{-4}	10^{8}	10^{8}	360	Yes	Yes
B12.1.8h	10^{12}	10^{-4}	10^{8}	10^8	360	Yes	Yes
B12.1.8l	10^{12}	10^{-4}	10^{8}	10^6	360	Yes	Yes
B12.3.8l	10^{12}	3×10^{-4}	10^{8}	10^{6}	360	Yes	Yes
B12.1.7l	10^{12}	10^{-4}	10^7	10^{6}	360	Yes	Weak
B12.1.91	10^{12}	10^{-4}	10^{9}	10^6	360	Yes	Yes
B12.1.8l-H	10^{12}	10^{-4}	10^{8}	10^{6}	300	Yes	Yes
B12.3.8l-H	10^{12}	3×10^{-4}	10^{8}	10^6	300	Yes	No
B12.1.7l-H	10^{12}	10^{-4}	10^7	10^6	300	Yes	Weak
viscous					360	Yes	No

long-term (> 10 s) 2D neutrino-radiated, GR-MHD simulations of BHforming SNe (collapsars) from a 35 M_{\odot} star (Aguilera-Dena+2020) with phenomenological dynamo parameters (Shibata+2021)

Il models explode with or without jets (depending on the stochastic nature of magnetic field evolution)

explosion energy and Ni (collapsars)

observed SNe Ic-BL (hypernovae) exhibit large explosion energies and large ⁵⁶Ni masses (Taddia+2019)

models well reproduce the observational trends for explosion energy, ejecta mass, and ⁵⁶Ni mass

Theories of Astrophysical Big Bans 2025

Shinya WANAJO

unknown nucleosynthesis? (collapsars)

high entropy and mild neutron-richness in ejecta for models with jets

- no r-process in non-GRB SNe
- weak r-process in GRB-SNe
- no kilonova-like transients because of low lanthanides (consistent with observation of SNe Ic-BL; Rastinejad+2024)