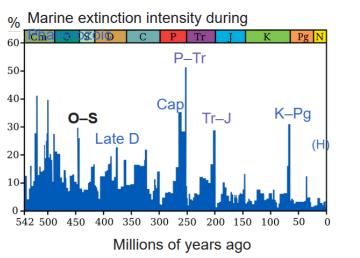
FLORIDA TECH The Impact of Gamma-Ray Could a nearby GRB trigger a cometary Bursts on Cometary Systems bombardment?

Don Warren

Brooke Hursh

Florida Institute of Technology Melbourne, FL, USA

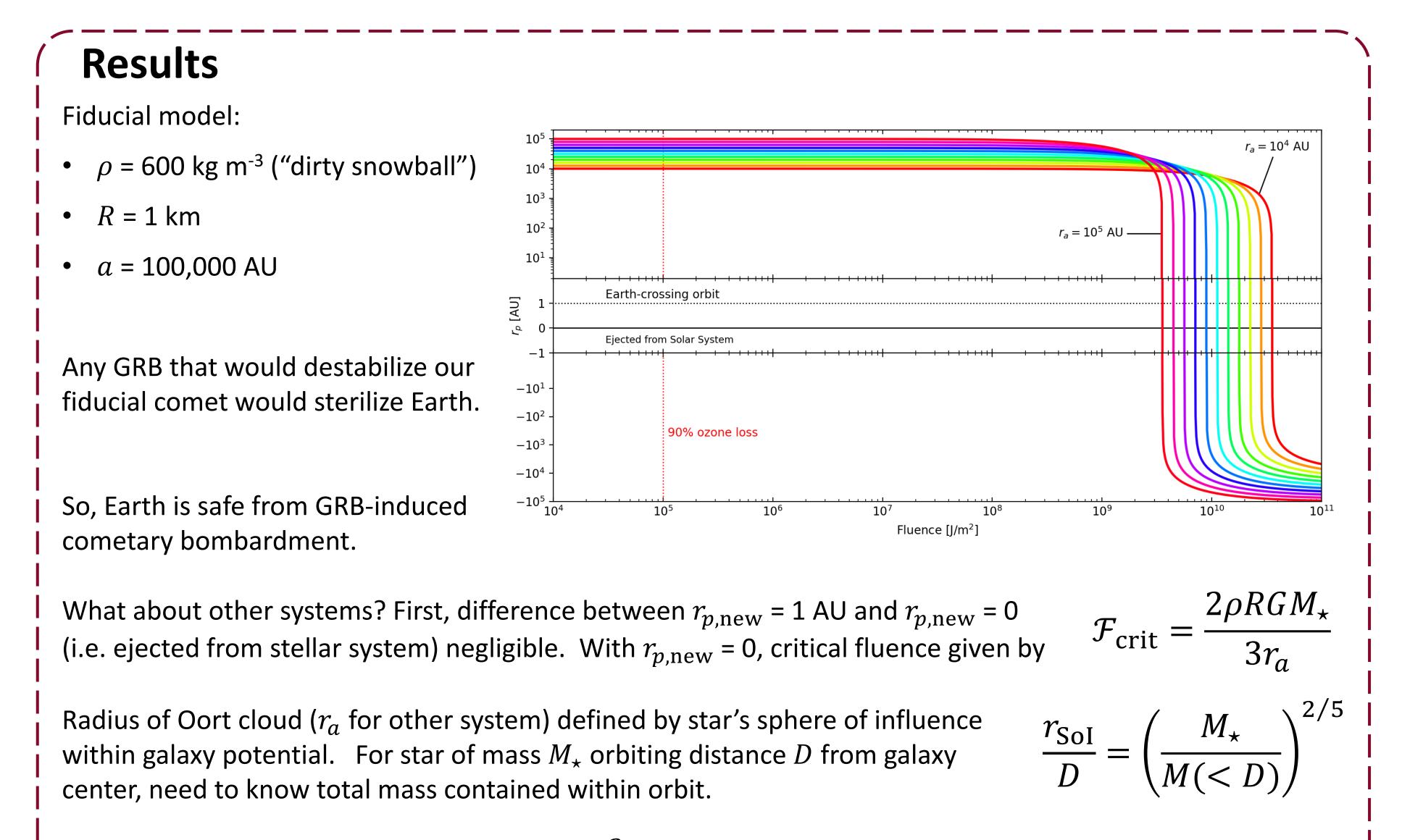
Abstract


Many studies have examined the effects of a gammaray burst (GRB) on the atmospheres of habitable planets. But a planetary system will also contain asteroids, comets, and other minor bodies. We examine the interaction of a nearby GRB on these minor bodies, such as changes to orbital parameters. For example, could a GRB cause a period of cometary bombardment by destabilizing orbits?

ChatGPT/Dall-E 3 image with the prompt "gamma ray burst happening behind an Oort cloud". This is the only use of Al in this poster.

Background

- GRBs at cosmological distances have measurably affected Earth's atmosphere. [1, 2]
- A closer GRB would produce enough γ -ray flux to damage Earth's ozone layer, harming life on Earth
- A GRB may have caused the Ordovician mass extinction, 445 million years ago [3]

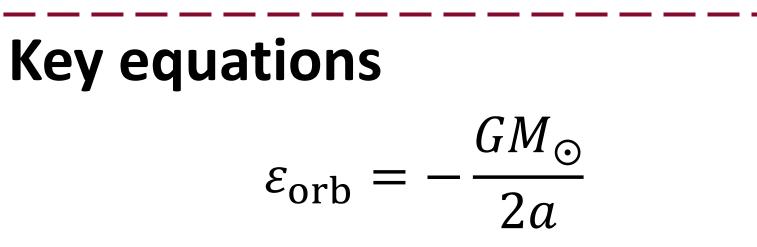


Damage to ozone layer dependent on γ -ray fluence

Fluence (kJ/m²)	Ozone loss (%)	D _{GRB} (kpc)	Quality
10	64	9	"Some damage to life"
100	91	3	"Life threatening"
1000	98	1	"Catastrophic"

Ozone loss from [4]. D_{GRB} assumes $L_{\gamma} = 10^{52}$ erg/s, $\Delta t = 10$ s. Quality from [5].

- Solar System is surrounded by spherical Oort Cloud extending to 100,000 AU [6]
- Estimated 10¹² objects of 1 km radius with semimajor axis *a* > 20,000 AU [6]



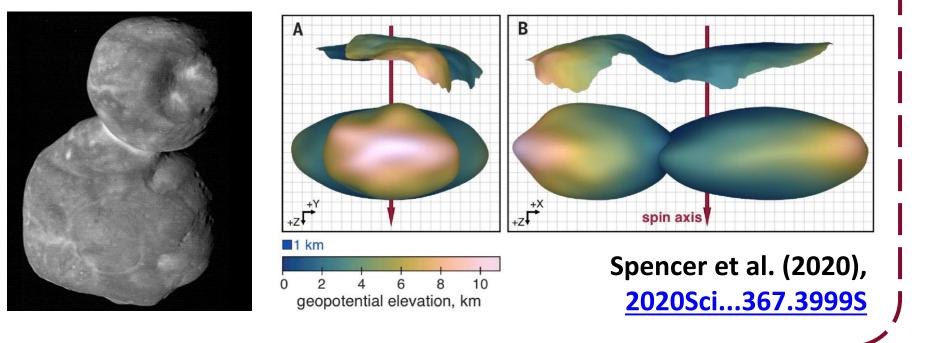
M(< D) found from galaxy rotation curves: $v_{circ}^2 = G M(< D)/D$

Jiang et al. (2023), 2023A&A...678A.208J

- Such objects only loosely bound to Sun, and easily perturbed by passing stars—or by GRBs?
- A GRB may provide sufficient fluence to destabilize distant orbits without severely impacting Earth's ozone layer

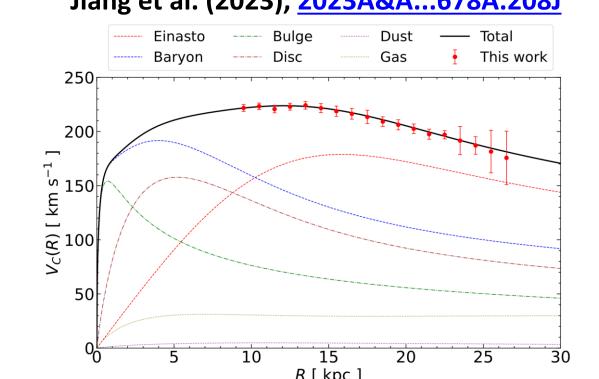
[1] Fishman & Inan (1988), **<u>1988Natur.331..418F</u>** [2] Hayes & Gallagher (2022), **<u>2022RNAAS...6..222H</u>** [3] Melott et al. (2004), **<u>2004IJAsB...3...55M</u>** [4] Thomas et al. (2005), **<u>2005ApJ...634..509T</u>** [5] Piran & Jimenez (2014), **2014PhRvL.113w1102P** [6] Wiegert & Tremaine (1999), <u>1999Icar..137...84W</u>

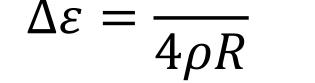
Mechanical energy per unit mass [J/kg] of object in circular orbit distance a from Sun


Putting everything together, then,

$$\mathcal{F}_{\rm crit} = \frac{2\rho R \; (GM_{\star})^{3/5} \; v_{\rm circ}^{4/5}}{3 \; D^{3/5}}$$

Most exoplanet systems, in any galaxy, will be safe from bombardment.

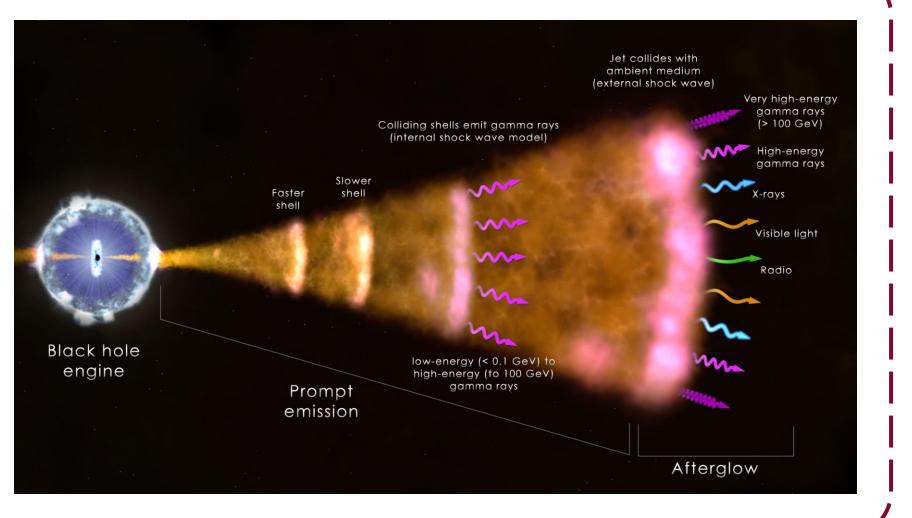

- $\mathcal{F} \propto M_{\star}^{3/5}$: changing from Sun to M-type dwarf ($M_{\star} = 0.1 M_{\odot}$) reduces critical fluence by only factor of 4
- Dependence on galactic potential even weaker. Low-mass dwarf galaxies with small $v_{\rm circ}$ also smaller, reducing D (Sun's $v_{\rm circ}$ = 220 km/s at D = 8 kpc from galactic center; orbits in Large Magellanic Cloud have $v_{\rm circ} \approx 70$ km/s, but $D \sim 4$ kpc)


Even asymmetric cometary bodies, such as Arrokoth, won't change $\Delta \varepsilon$ by more than an order of magnitude

Conclusion

Any gamma-ray burst close enough to trigger a cometary bombardment would also be close enough to harm the habitability of Earth (or of any exoplanet) via the conventional method of destroying the ozone layer.

 $3\mathcal{F}$


Change in specific energy: absorbed γ -ray energy $(\pi R^2 \mathcal{F})$ divided by object mass $(\frac{4}{2}\pi R^3)$

- Ratio of new orbit's perihelion to old orbit's radius
- For $r_{p,new} < 1$ AU (Earth-crossing orbit) and $a \gg 1 \text{ AU}$, need $GM_{\odot} \approx 2a\Delta\varepsilon$
- If $GM_{\odot} < 2a\Delta\varepsilon$, object unbound & ejected into galaxy (like 'Oumuamua & Borisov)

Next steps

- A continued examination of the interaction between GRBs and habitability on Earth (or exoplanets).
- 1. Traditionally [5], a single luminosity is used for computing GRB impact on Earth. Is conclusion changed by using full population of E_{iso} and E_{pk} ?
- 2. GRB afterglow lasts longer and is visible at wider angles than prompt emission. Does long-term, weak forcing of ozone layer impact habitability?

