Radiative Transfer Modeling of Explosive Transients

Gottlieb et al 2023

Stellar explosions as cosmic laboratories of physics

• What is the cosmic origin of the heavy elements (r-process)?

- neutron What is the physics of matter at extreme densities/gravity/ magnetic fields?
 - How do neutrinos behave under extreme conditions (matter interactions and flavor oscillation effects)
 - How can we use stellar explosions to study gravitational wave sources and cosmology?

D. Radice

core collapse supernova (collapsar)

P. Moesta

End-to-end simulation of astrophysical explosions

Explosion gravity neutrino physics equation of state

(seconds-hours)

Nucleosynthesis nuclear reactions weak interactions

(seconds)

Observables radiation transport (days/years)

Predicted Outcome of Massive Star Death

1D parameterized explosion models

Time = 0.169 s

Core Collapse Supernovae Simulation

D. Vartanyan (Fornax code)

3D core collapse supernova model run to breakout

Vartanyan et al (2025)

56Ni structure of 3D core collapse simulation

Broadband light curves of 3D Supernova Simulation (17 Msun Red Supergiant progenitor)

Vartanyan et al (2025)

Broadband light curves of 3D Supernova Simulation (17 Msun Red Supergiant progenitor)

Asymmetry and Late Time (> 300 day) Spectra Line Profiles

Neutron Star Mergers - Ejecta

D. Radice

Dynamical ejecta ~msec

> neutron star remnant winds ~10 msec

> > Moesta et al 2022

Gottlieb et al 2023

Post-merger disk winds ~sec

Outflows from accretion disk winds

Simulated r-process abundances, compared to solar_{Rosswog+2017, Kasliwal, DK +2022}

radioactive power rates

Kilonova: visible glow of expanding, radioactive debris cloud

 $M \sim 10^{-2} - 10^{-1} M_{\odot}$ $v \sim 0.1c - 0.3c$ $r \sim 10^{15} \text{ cm} \sim 100 \text{ AU}$ $T \sim 1,000 - 10,000 \text{ K}$

Kilonova Model Light Curves and Spectra

lanthanide "rich" -> high opacity -> longer, red emission lanthanide "free" \rightarrow low opacity \rightarrow briefer, blue emission

Modeling the Emission from the GW170817 Kilonova

Effect of atomic data on kilonova light curve predictions

Effects of Asymmetry and the "Lanthanide Curtain"

kasen+2015

C.f. Sneppen+ 2023

Continuing Searches For Kilonovae GRB 230307A kilonova former home galaxy

GRB 230307A — infrared bright excess afterglow emission

JWST observations of GRB230307A excess at day +29

opacity of heavy r-process mixture

Expectations for late time spectra

opacity of heavy r-process mixture

Contributions of dust grains to opacity?

White Dwarf + NS/BH Post-merger Disks

 $t_{\rm visc} \sim 100 - 1000 \text{ s}$ $M_{\rm disk} \sim 0.6 M_{\odot}$ $R_{\rm disk} \sim 10^4 \text{ km}$ $\rho_{\rm disk} \sim 10^4 \text{ g cm}^3$ $T_{\rm disk} \sim 10^9 \text{ K}$

Composition

C/O , O/Ne, He $\left(Y_e=0.5\right)$

Fryer 1999, Metzger 2012, Margalit & Metzger 2016, Fernandez et al 2019, Kaltenborn 2022

Simulated Accretion Disk from White Dwarf + NS merger

Toy 1D "WD merger" ejecta model

$$M_{\rm ej} = 0.2 \ M_{\odot}$$
$$M_{\rm 56Ni} = 8 \times 10^{-3} \ M_{\odot}$$
$$KE = 2 \times 10^{50} \ \rm erg$$

Light curve powered by radioactive 56Ni in the *outer* layers

WD + NS(BH) rad transport model for GRB230307A excess

Dust Formation in Ejecta

Synthetic spectrum from toy WD + NS ejecta Infrared blackbody emission from dust

JWST observations of Type Ia SN2022pul

Spectral features of GRB230307A excess at day +29

Model CO molecular emission lines

Looking Forward

- Are there kilonova Imposters fast infrared transients from dusty ejecta (implications for GRB and blind searches)?
- Could dust affect the colors of legitimate kilonovae (implications for r-process inferences)?
- Are we missing fundamental aspects of the radiation transport (sources of opacity, detailed atomic physics, NLTE effects)
- Can we infer the yields from complex 3D geometries?