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Stellar evolution from the main
sequence through H and He core
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Our End-to-End Simulation Pipeline

Outer Envelopes’
Stellar Profiles
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This talk focuses on

non-rotating FO RNAX \ Multi-A Monte Carlo

solar-metallicity 3D Radiation Radiation Transport

Progentiers. Hydrodynamics S KYNET

Nuclear Reaction
Network

In this talk, “long-term simulation” has two meanings:

e The rad-hydro phase is extended to >5 seconds post-bounce.
e The CCSN model is calculated to days/weeks post-bounce.



Example 1: Solving the CCSN “Ti Problem

FORNAX SKYNET

3D Radiation Nuclear Reaction
Hydrodynamics Network



What's the **Ti Problem?

Spherical symmetric (1D) models have
difficulties explaining the observed *Ti
abundance or **Ti/*°Ni ratios.

This is known as the “4*Ti problem” since
pointed out in 2000.

44Ti (107°M,)
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No #*Ti Problem Seen in 3D Long-Term Simulations
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No #*Ti Problem Seen in 3D Long-Term Simulations
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Explosive burning, similar to 1D

20

To boost (p, y)-leakage, we need more
matter with:

e Ye>05

e Heated to a few GK

These conditions mean that the matter
has interacted with neutrinos.

Why does 3D have more such
neutrino-heated matter than 1D?
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Simultaneous Explosion and Accretion

Accretion funnels form after the shock revival.
17soarMass AN Extreme Example
Matter falls towards the PNS through the L5s

funnels, and most of them are ejected later. Outmoving

This will influence:

Nucleosynthesis (e.g., #Ti).
Explosion energy.
PNS mass, kick, spin.

S Accreting
Such effects can last as long as ~10 seconds,

Radial Velocity [km/s]

and they require neutrino transport. Only long ——>— o 10000 20000 20000 40000 50000

. . 5297 km |
enough rad-hydro sims can show their effects.
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Simultaneous Explosion and Accretion

Accretion funnels form after the shock revival.
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and they require neutrino transport. Only long ’ Time After Bounce [s]
enough rad-hydro sims can show their effects.



Summary: 3D Models Naturally Solve the **Ti Problem

Two channels to produce *Ti:

e Explosive burning — Subdominant, seen in both 1D and 3D.
e (p, y)-leakage in neutrino heated matter (neutrino-driven winds) — Only
seen in 3D.

The simultaneous explosion and accretion phenomenon allows more mass to
interact with neutrinos, and thus enhances the (p, y)-leakage channel of #*Ti
production.

This phenomenon lasts for ~10s and long rad-hydro simulations are required.

Arxiv: 2406.13746



Example 2: Black Hole Formation Channels
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BH

Central Object Grav Mass [M ., ]

s are Formed in Some 3D Models
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But they have very different properties. How to classify them?




Failed Supernovae Form BHs

If the shock never revives — typical failed SNe

Burrows+2024

e Silent formation. — i
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Failed Supernovae Form BHs

5000 km

The shock revives, but explosion is aborted by 0.49s 1.37s

BH formation — most massive progenitor:

e Silent formation.
e 30~40 Msun (~stellar mass at collapse).
e Near zero kick/spin due to neutrino.

Example: 100 Msun 0.1 solar metallicity model. 2.27s 3.17s
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Successful Supernovae Also Form BHs

A Weak eXplOSiOn With Strong fallback: 101 [ITI'I' LONLBLILLLLLE.| III.JTI'I‘ LOLISLILILLLLUAY LA L A L L A I L L

e Relatively low energy. : ——T
e 5~10 Msun, sensitive to fallback I e B0,
e ~100 km/s kick, sensitive to fallback. o
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Successful Supernovae Also Form BHs

Time:0.011 s

The strongest explosions:

e ~2 B explosion energy.

e 3~9 Msun.

e 500~1300 km/s kick. Lowest mass ones
can explain the NS-BH mass gap.

Example: 19.56 and 40 Msun models.

km

250
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40Mg,


https://docs.google.com/file/d/1BQkR37uEZnMzKrL5FXI0IUNOv-2096-4/preview

Four BH Formation Channels

BH with a strong explosion
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Why Such Trend: Correlations in CCSN Explosions
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Why Such Trend

Higher Si Core Mass / Higher Accretion Rate
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Why Such Trend

A

BH forms, but too
late to change
energy.

Higher Energy

Higher Si Core Mass / Higher Accretion Rate
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Why Such Trend

Higher Energy

BH forms, but too
late to change
energy.

A

Explosion

No BH forms early enough to
Revival abort the explosion

Higher Si Core Mass / Higher Accretion Rate




Why Such Trend

Higher Energy

BH forms, but too
late to change

energy.
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Summary: Four BH Formation Channels

Ch1: BH with very strong explosion. High energy, large kick, relatively low mass.
An explanation to the NSBH mass gap.

Ch2: BH with weak explosion. Significant fallback. Low energy, relatively low
kick, 5~10Msun (uncertain).

Ch3: BH formed by most massive models. Explosion aborted by BH formation.
Tens of Msun, <5km/s kick.

Ch4: Typical failed supernovae. Shock never revives. ~10 Msun, <10 km/s kick.

Arxiv: 2412.07831



Challenges and Conclusion



More and Longer
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Neutrino-Driven Wind Boundary Condition?

Spherical wind BC S Asymmetry
t _7/2 1.5s
Pw(t) = pw(tmap)( )
tmap
y -7/6
ew(t) = ew(tmap)(_)
tmap

Wind

S

Radial Velocity [km/s]
0 10000 20000 30000 40000 50000

5297 km | |

Spherical wind BCs are typically used in hydro-only blast calculation. But uncertainty
is large. How to include asymmetry?



Central Engine?

Timy _ Time: 1.760 s
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Asymmetric accretion leads to fast BH spin. Will there be GRMHD jets after the BH
formation?



Vartanyan+2024

Conclusion: From Collapse to Beyond Shock Breakout
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Many new insights emerge from long-term 3D CCSN simulations!

Examples: #“4Ti Problem, BH Formation Channels, ...



