Progenitors of lowest mass Fe core collapse supernova explosions

(Umeda & Ishiguro 2025 to be submitted)

Hideyuki Umeda (University of Tokyo)

Theories of Astrophysical Big Bangs 2025, RIKEN, Wako-shi, Japan 2025/02/17-19

Lowest Mass CCSN: What is ... ?

the mass ?

the neutron star mass for it?

the explosion energy ?

⁵⁶Ni mass (brightness of the SN)?

the nucleosynthesis ?

the observed properties of light curves (different from ECSN) ?

If it can explode in 1D simulation (as an ECSN)?

Lowest Mass CCSN: Previous works

Sukhold et al 2016, ApJ $: 9 \text{ to } 120 \text{ M}_{\odot} \text{ CCSN}$

They exploded progenitor models in 1D using "calibrated central engines".

For loweset mass models , they used the engine calibrated for electron capture like Supernovae.

For the lowest mass

 $9M_{\odot}$, 0.006 M_{\odot} (⁵⁶Ni mass), 0.11 B (explosion energy), 1.35 M_{\odot} (remnant mass),

cf. (since Muller et al 2024 found the lowest remnant mass for $9.9M_{\odot}$ model)

 $10M_{\odot}$, 0.031 M_{\odot} (⁵⁶Ni mass), 0.60 B (explosion energy), 1.45 M_{\odot} (remnant mass),

Lowest Mass CCSN: Previous works

Müller et al 2024, arXiv:2407.08407 : The minimum NS mass in neutrino-driven SN

Using similar progenitor models as Sukhbold et al 2016, they exploded in 3D

Lowest Mass CCSN: Müller et al. 2024

Smaller initial mass usually leads smaller "Fe"-core, however, it is not necessary true that smaller mass leads smaller Neutron star (remnant) mass,

because the remnant mass depends on explosion.

Remnant baryon mass (time evolution) \rightarrow

 $9.9 M_{\odot}$ model has the lowest neutron star mass (M_{bv})

Lowest Mass CCSN: Müller et al. 2024 (summary)

Lowest mass for explosion: $9.67M_{\odot} \mod 1, 0.047 \text{ B}, M_{by} > 1.36M_{\odot}$ Lowest neutron star mass : $9.90M_{\odot} \mod 1, 0.15 \text{ B}, M_{by} = 1.313M_{\odot}$ (NS gravitational mass, $M_g = 1.192 M_{\odot}$) (their motivation was to fit a value for 10453+1559 M = 1.174 M)

(their motivation was to fit a value for J0453+1559, M_g = 1.174 M_{\odot})

c.f. Sukhbold et al 2016 $9M_{\odot}$, 0.006 M_{\odot} (⁵⁶Ni mass), 0.11 B (explosion energy), 1.35 M_{\odot} (remnant mass) $10M_{\odot}$, 0.031 M_{\odot} (⁵⁶Ni mass), 0.60 B (explosion energy), 1.45 M_{\odot} (remnant mass)

We should note that the SN explosion simulations have still uncertainties.

Lowest Mass CCSN: Our previous works

We have been working on CCSN progenitor models (e.g., Umeda & Nomoto 2002, 2008)

Main purpose for these works were nucleosynthesis, thus only M > $13M_{\odot}$ were considered (e.g., Tominaga et al, 2007; Nomoto et al. 2013)

In Umeda et al. 2012, PTEP, we considered lower mass models up to 10.0 M_{\odot} ,

We showed that the remnant mass for the model was 1.29 M_{\odot} (baryon mass) and 1.18 M_{\odot} (gravitational mass).

However, the results may not be realistic, for the low mass end of CCSNe,

since we exploded the stars by assuming 1B energy and the mass cut is determined artificially by setting the ejected $^{56}\rm{Ni}$ mass to be $0.07M_{\odot}.$

In this talk, I show our updated results for the lowest mass CCSNe.

Method

We calculate progenitor models using the HOSHI code (Takahashi, Yoshida, Umeda 2018) --- Heney type stellar evolution code with rotation effects

In this work, we use 300 isotope nuclear reaction network.

Supernova explosion is simulated by a 1D PPM code with a thermal bomb

method (this is same as our previous work).

However, Mass cut is determined gravitationally, i.e., self-consistently, by inserting explosion energy deeper inside than before.

This is different. Previously we had two parameters (explosion energy and mass cut), but in this work just one parameter (explosion energy).

Method

We constrain explosion energy by neutron star mass, and nucleosynthesis, assuming that the abundance ratios of ejected matter (e.g., Si/Fe, Mg/Fe shouldn't be far from the solar ratios.

Also, the abundance pattern of a metal poor star J1010+2358 is used to constrain the explosion, since this star might have an abundance pattern of the lowest mass CCSN.

Xing et al.(2023), Nature

The Galactic halo star J1010+2358 with [Fe/H] = - 2.42 may have abundance pattern of Pair Instability Supernovae (PISNe)

Abundance pattern was obtained by an LTE model

The abundance pattern is quite unusual for CCSNe because of relatively small Mg, Si, Ca, Ti/Fe and non-detection of Zn.

 \Rightarrow The lowest mass CCSN model fits best to J1010+2358.

Results: The lowest mass for CCSNe

We consider two sets of models with the solar metallicity (Z_{\odot}) and 10⁻³ Z_{\odot} .

The reason to consider the $10^{-3} Z_{\odot}$ is because we would like to compare with a metal poor star J1010+2358.

The lowest mass for CCSNe

 Z_{\odot} model : $9.7M_{\odot}$ ($9.6M_{\odot}$ forms a "small Fe" core > Fe core collapse (done yesterday) $10^{-3}Z_{\odot}$ model : $10.1M_{\odot}$ ($10.0M_{\odot}$ forms a "small Fe" core > will collapse

Results: Density Structure (Log p vs M_r)

Results: Abundance Distribution (9.5, 9.6 M_{\odot})

Results: Density Structure (Log p vs Log r/R_o)

Results: Explosion energy and NS mass for the lowest mass models

	E _{ex} (B)	NS mass (M $_{\odot}$)	
Z _☉ , 9.7M _☉ :	0.058	1.447	
	0.068	1.379	E de la companya de la la la companya
	0.083	1.369	smaller than 0.115B
	0.115	<1.289	
$10^{-3} Z_{\odot}$, $10.1 M_{\odot}$:	0.089	1.482	
	0.15	1.350	
	0.176	1.330	
	0.20	1.328	Explosion energy should be
	0.22	< 1.29 smaller tha	smaller than 0.22B

Results: Upper limit of Explosion energy

Similary, if we assume that the baryon mass of a NS should be larger than $^{-1.3}M_{\odot}$, our models suggest the upper limit of E_{ex} for each model.

Z _☉ model (mass)	Upper limit of E _{ex} (B)	
9.7	0.115	These numbers seems to be smaller than
10.0	0.62	energy Eex \sim 1, mentioned in the literature.
12.0	0.43	
13.0	0.69	
15.0	0.77	
18.0	(>1.04)	

Results: Lowest mass models, ⁵⁶Ni ejection mass

_10 ⁻³ Z _☉ model (mass)	E _{ex} (B)	M _{cut} (remnant mass)	ejected ⁵⁶ Ni mass (M _☉)
10.1	0.082	1.482	0
		1.36	0.01
	0.15	1.350	0.023
	0.22	1.29	0.025
		1.35	0.0017

Red : Mcut = self consistent value obtained from the 1D simulation Black : Mcut is changed to see the effects of changing Mcut From this result, we may conclude that the lowest mass CCSN should not be a bright SN

Comparison with J1010+2358 Ishiguro Master's thesis (2025)

Fitting and χ^2 values: Here Mcut is also used as a fitting parameter (Ishiguro Mater's thesis 2025)

RED: Best Fit

Metallicity	Best fit model	χ^2
0	250 M_{\odot} 0.3d	52.64
$10^{-4}Z_{\odot}$	220 M_{\odot} 0.1d	36.38
$10^{-3}Z_{\odot}$	$180 M_{\odot} \ \mathrm{0.3d}$	61.89

<u>PISN</u>

 We also take the strength of neutrino nucleosynthesis process as a parameter, 1: relatively strong 0.01: basically off

$\underline{\text{CCSN}(Z = 10^{-3}Z_{\odot})}$		Ejected	
Model	Mass cut	for best fit M_{\odot}]	χ^2
$10.1 M_{\odot}$ e0.089 nu=1	1.3229		13.02
$10.1 M_{\odot}$ e0.089 nu=0.01	1.3114		10.71
10.1 M_{\odot} e0.15 nu=1	1.3229	(0.044)	9.106
$10.1 M_{\odot}$ e0.15 nu=0.01	1.3157	(0.048)	8.305
$10.1 M_{\odot}$ e0.22 nu=0.01	1.2370		38.14
11 M_{\odot} e0.092 nu=1	1.0942		41.22
11 M_{\odot} e0.092 nu=0.01	1.0942		27.92
11 M_{\odot} e0.17 nu=1	1.0942		36.83
11 M_{\odot} e1.07 nu=1	1.2026		17.20
$13M_{\odot}$ e0.34 nu=1	1.4288		15.22

• The smaller the neutrino irradiation, the smaller the value of χ^2 .

Discussion: Best fit model for J1010+2358

$10.1 M_{\odot}$, 0.15 B, NS mass $1.3157 M_{\odot}$, ⁵⁶Ni $0.048 M_{\odot}$

The NS mass is smaller and ⁵⁶Ni mass is larger than the "selfconsistent" model,

 $M_{\rm rem} = 1.350 \text{ and } {}^{56}\text{Ni} = 0.023M_{\odot} \text{ (slide 14)}$

This means that the explosion energy should be slightly larger.

For this best fit-model, the baryon mass $1.3157M_{\odot}$ corresponds to the gravitational mass $1.196M_{\odot}$, which is close to the possible observational lower limit M_g = 1.174 M_{\odot} for J0453+1559.

We plan to apply this model to 2D and 3D explosion simulations. (started work with Nakamura (Fukuoka U.) about 2D)