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CCSN explosions can be reproduced in numerical simulations
Nagakura et al. 2019

See also:
Takiwaki’s talk for a general review
Wang’s talk for more recent results

Boccioli’s poster for systematic studies
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Explosion energy:

Burrows and Vartanyan 2021

Comparison between theory (CCSN simulations) and observations
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Gravitational waves:

Mezzacappa et al. 2022

34

FIG. 20. Gravitat ional-wave sensit ivity curve for all the models as a funct ion of t ime (in seconds after core bounce), compared

with the CCSN GW signals at 10 kpc, including both mat ter (high frequency, dominant above several hundred Hz) and neut rino
cont ribut ions to GW emissions (low frequency, dominant from sub-Hz to several tens of Hz). Note that DECIGO, the Einstein

Telescope, and the Cosmic Explorer can probe down to the lowest -mass progenitors across three decades in frequency (⇠10 to
⇠5000 Hz), whereas aLIGO is sensit ive between ⇠30 to ⇠3000 Hz only to the most massive progenitors. Our lower limit in

frequency is set by the durat ion of the CCSN simulat ion. Since our longest simulat ion is out to 6.2 seconds, simulat ions are
generally unable to const rain the spect rogram data between 0.1− 1 Hz. Our upper limit in frequency is set by the Nyquist limit

in TableI.

Vartanyan et al. 2023

→  See Sotani’s talk: PNS asteroseismology for CCSN GWs.
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Neutrino signal:
1. Explosion models have low 

neutrino luminosity than those 
with non-explosions

2. The average energy of electro-
type neutrinos and their anti-

partners are lower in 3D than 1D.

3. Neutrino luminosity of heavy-
leptonic neutrinos are higher in 3D 

than 1D.

(due to less accretion components)

(due to PNS convection)

Nagakura et al. 2021

See also
Suwa’s talk for neutrino signal in the late phase

Nakanishi’s poster for neutrino detection



6

Correlation between TONE (E   ) and N      in neutrino detector
Nagakura et al. 2021

ν cum CCSN neutrinos informed by 3D models 15
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F igur e 11. Same as Fig. 9, but as a funct ion of t he total neut r ino energy (T ONE).

SK, JUNO, and IceCube have the most direct correlat ion

with the TONE, all of which is consistent with the result s

displayed in Fig. 11.

For convenience, we provide approximate formulae for

the correlat ion in the case of the neut rino oscillat ion mod-

els. We fit the relat ion to quadrat ic funct ions. The fit t ing

formulae are given in the case of normal mass hierarchy as:

[SK − IBDp − NORMAL]

NC u m = 220E52 + 5E 2
52

V
32.5 k t on s

d
10 k p c

− 2

, (23)

[DUNE − CCAre− NORMAL]

NC u m = 90E52 + 4.5E 2
52

V
40 k t ons

d
10 k p c

− 2

, (24)

[JUNO − IBDp − NORMAL]

NC um = 165E52 + 4.5E 2
52

V
20 k t on s

d
10 k p c

− 2

, (25)

[IceCube− IBDp − NORMAL]

NC u m = 23000 E52 + 600E 2
52

V
3.5 M t ons

d
10 k p c

− 2

,(26)
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Figur e 11. Same as Fig. 9, but as a funct ion of the total neut rino energy (TONE).

SK, JUNO, and IceCube have the most direct correlat ion

with the TONE, all of which is consistent with the results

displayed in Fig. 11.

For convenience, we provide approximate formulae for

the correlat ion in the case of the neutrino oscillat ion mod-

els. We fit the relat ion to quadrat ic funct ions. The fit t ing

formulae are given in the case of normal mass hierarchy as:

[SK − IBDp − NORMAL]

NCum = 220E52 + 5E 2
52

V
32.5 k t ons

d
10 kp c

− 2

, (23)

[DUNE − CCAre− NORMAL]

NCum = 90E52 + 4.5E 2
52

V
40 kt ons

d
10 kpc

− 2

, (24)

[JUNO − IBDp − NORMAL]

NCum = 165E52 + 4.5E 2
52

V
20 kt ons

d
10 kp c

− 2

, (25)

[IceCube− IBDp − NORMAL]

NCum = 23000E52 + 600E 2
52

V
3.5 M t ons

d
10 kpc

− 2

,(26)

MNRAS 000, 1–24 (2020)

CCSN neutrinos informed by 3D models 15

 0

 1

 2

 3

 4

 5

C
u
m

u
la

ti
v
e
 E

v
e
n
ts

 [
1
0

3
]

9 M
10 M
12 M
13 M
14 M
15 M
19 M
25 M

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

0

1

2

C
u
m

u
la

ti
v
e
 E

v
e
n
ts

 [
1
0

3
]

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

0

1

2

3

C
u
m

u
la

ti
v
e
 E

v
e
n
ts

 [
1
0

3
]

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

0

1

2

3

4

5

0 3 6 9 12 15

C
u
m

u
la

ti
v
e
 E

v
e
n
ts

 [
1
0

5
]

TONE [10
52

 erg]

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

0 3 6 9 12 15

TONE [10
52

 erg]

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

0 3 6 9 12 15

TONE [10
52

 erg]

SK-IBD-p (NOOSC) SK-IBD-p (NORMAL) SK-IBD-p (InV)

DUNE-CCAre (NOOSC) DUNE-CCAre (NORMAL) DUNE-CCAre (InV)

JUNO-IBD-p (NOOSC) JUNO-IBD-p (NORMAL) JUNO-IBD-p (InV)

IceCube-IBD-p (NOOSC) IceCube-IBD-p (NORMAL) IceCube-IBD-p (InV)

10 kpc

F igur e 11. Same as Fig. 9, but as a funct ion of the total neut rino energy (TONE).

SK, JUNO, and IceCube have the most direct correlat ion

with the TONE, all of which is consistent with the results

displayed in Fig. 11.

For convenience, we provide approximate formulae for

the correlat ion in the case of the neutrino oscillat ion mod-

els. We fit the relat ion to quadrat ic funct ions. The fit t ing

formulae are given in the case of normal mass hierarchy as:

[SK − IBDp − NORMAL]

NCum = 220E52 + 5E 2
52

V
32.5 k t ons

d
10 kp c

− 2

, (23)

[DUNE − CCAre− NORMAL]

NCum = 90E52 + 4.5E 2
52

V
40 k t ons

d
10 kp c

− 2

, (24)

[JUNO − IBDp − NORMAL]

NCum = 165E52 + 4.5E 2
52

V
20 k t ons

d
10 kp c

− 2

, (25)

[IceCube− IBDp − NORMAL]

NCum = 23000E52 + 600E 2
52

V
3.5 M t ons

d
10 kpc

− 2

,(26)

MNRAS 000, 1–24 (2020)

E   can be estimated from Nν cum

Flavor-integrated emitted neutrino energy
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Neutrino data 
(Ncum)

GW data 
(EGW)

PNS mass 
(MPNS)

TONE (Eν) 
at Tb (>1s)

Survival probability
 of neutrinos

Constraining neutrino oscillation model

Observed data

Constraining neutrino oscillation in CCSNe by joint analysis of 
GW and neutrino signal Nagakura and Vartanyan 2024
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Constraining neutrino oscillation in CCSNe by joint analysis of 
GW and neutrino signal Nagakura and Vartanyan 2024
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Full GR
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Approximate
Transport

Most advanced 
Weak interaction

Full Boltzmann
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Beyond Boltzmann (QKE)

- There remain many issues in CCSN simulations



4 Nagakura et al.

Fig. 2.— Left : Discret ized momentum space of neut rinos in the laboratory frame. Spherical coordinates are employed. T he radial
direct ion corresponds to neut rino energy and the azimuthal dimension is omit ted. The grid in each dimension may not be uniform. Right :
The Lorentz-t ransformed mesh in the fluid-rest frame. The blue lines correspond to the radial l ines whereas the black lines are t ransformed
from the concent ric circles in the left panel. T he brown dots show an isoenergy circle in the fluid-rest frame for comparison. Mat ter is
assumed to move upward in this figure.

ings.
After giving the SR Boltzmann equat ions in the next

sect ion, we present our idea to overcome these difficul-
t ies. We then demonstrate our successful handling of the
isoenerget ic scat terings in the realist ic supernova simu-
lat ions (see Sect ion 7).

4. SR BOLT ZMANN EQUAT IONS FOR NEUT RINOS

We start with the covariant form of Boltzmann equa-
t ion:

pµ ∂f

∂xµ
+

dpi

dτ

∂f

∂pi
=

δf

δτ col
, (1)

which is valid even in curved space-t ime. In the above
expression, f (= f (xµ , pi )) denotes the neutrino distri-
but ion funct ion in phase space; xµ and pµ are space-
t ime coordinates and four-momentum of neutrino, re-
spect ively; sincethe lat ter sat isfiestheon-shell condit ion:
pµ pµ = −m2

ν , in which mν is a neutrino mass, only three
of four components are independent and this is why only
spat ial components appear in the second term on the
left hand side; τ stands for the affine parameter of neu-
trino trajectory. The left hand side of Eq. (1) expresses a
geodesic motion in the phase space, while the right hand
side denotes symbolically the so-called collision terms,
i.e., the terms that give the rate of changes in f due to
neutrino-matter interact ions.

On the spherical coordinates in flat space-t ime, which
arethecoordinatesweemploy for the laboratory framein
our Eulerian approach, Eq. (1) is cast into the following

conservat ion form:

∂f

∂t
+

µν

r 2

∂

∂r
(r 2f ) +

1− µ2
ν cos φν

r sin θ

∂

∂θ
(sin θf )

+
1− µ2

ν sin φν

r sin θ

∂f

∂φ
+

1

r

∂

∂µν

[(1 − µ2
ν )f ]

−
1− µ2

ν

r

cos θ

sin θ

∂

∂φν

(sin φν f ) =
δf

δt

lb

col
, (2)

where r , θ, φ denote the spat ial variables; as three in-
dependent components of neutrino four-momentum, we
do not use its spacial components but adopt energy and
two angles, θν and φν (see Figure 3); µν is defined as
µν ≡ cosθν . In Eq. (2) and the rest of this paper, we as-
sume that neutrinos are massless, which is well just ified
as long as neutrino oscillat ions are ignored.

The collision term in Eq. (2), which is expressed with
the laboratory t imet, is related with theoriginal collision
term in equat ion (1) as

δf

δτ col
= εlb δf

δt

lb

col
, (3)

where εlb(≡ pt ) denotes the neutrino energy measured in
the laboratory frame. Similarly, the collision term in the
fluid-rest frame can be expressed with the proper t ime of
each fluid element (t̃) as

δf

δτ col
= εfr δf

δt̃

fr

col
, (4)

where εfr (≡ pt̃ ≡ − uµpµ ) denotes the neutrino energy
in the fluid-rest frame. Here uµ is the four-velocity of
matter.

x

p
Neutrino

dp

dx

3

3

(Real Space)

6 dimensional Phase Space

(Time evolution + Advection Term) (Collision Term)

Conservative form of GR Boltzmann eq.

General relativistic 
full Boltzmann neutrino transport

10

Nagakura et al. 2014, 2017, 2019
Akaho et al. 2021

Shibata and HN et al. 2014
(See also Cardall et al. 2013)



- 3D CCSN simulations with full Boltzmann neutrino transport
Iwakami et al. 2020, 2021

11



GR simulations with full Boltzmann neutrino transport

12

Gravitational redshift in Black hole spacetime

Akaho et al. 2020

Akaho et al. 2023



Quantum Kinetics neutrino transport:

Density matrix

Hamiltonian

Vlasenko et al. 2014, Volpe 2015,
Blaschke et al. 2016, Richers et al. 2019 

Transport terms 
(same as Boltz eq.)

Collision term Oscillation term 

f is not a 
“distribution function”
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Neutrino oscillation induced by self-interactions

Sea of neutrinos

1. Refractions by self-interactions induce neutrino flavor conversions, which is analogy 
to matter effects (e.g., MSW resonance).

2. The oscillation timescale is much shorter than the global scale of CCSN/BNSM. 

3. Collective neutrino oscillation induced by neutrino-self interactions commonly 
occurs in CCSNe and BNSM environments.

Pantalone 1992



15

Rich flavor-conversion phenomena 
driven by neutrino-neutrino self-interactions

- Slow-mode

- Fast-mode (FFC)

- Collisional instability

- Matter-neutrino resonance

・Energy-dependent flavor conversion occurs. 
・The frequency of the flavor conversion is proportional to  

(Duan et al. 2010) Vacuum:
Matter:
Self-int:

・Collective neutrino oscillation in the limit of ω → 0.
・The frequency of the flavor conversion is proportional to
・Anisotropy of neutrino angular distributions drives the fast flavor-conversion. 

(Sawyer 2005)

(Johns 2021)

・Asymmetries of matter interactions between neutrinos and anti-neutrinos
drive flavor conversion.  

4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

n
e

n e

n x

n
e

Cri tical Ye

0.1

0.2

0.3

0.4

0.5

FIG. 2. The crit ical elect ron fract ion Y cr i t
e below which the

system is predicted to be collisionally unstable, shown as a

funct ion of n⌫x / n⌫̄e and n⌫̄e / n⌫e and assuming n⌫x = n⌫̄x .
Since Ye . 0.2 is typical in the neut rino decoupling region,
the majority of this parameter space is unstable.

support the same solut ions, assuming the init ial state is

seeded with flavor coherence. As a matter of fact , such

a system does enter into the decay mode, but never into

the growing one. From the vantage point of Eq. (5), the

significance of the oscillat ion terms is that they cause the

polarizat ion vectors to wander through di↵erent config-

urat ions in flavor space unt il chancing upon the growing

solut ion. Fast instabilit ies, by way of contrast , really can

arise with ! = 0 as long as coherence is seeded. The µ

terms serve double duty in those cases, prompt ing the

explorat ion of flavor space and driving the instabilit ies

themselves.

Linear stability analysis provides a complementary

perspect ive. For this we return to the density matri-

ces. Linearizing in o↵-diagonal elements and adopt ing a

matter-suppressed mixing angle✓m
⇠= 0,

i@t⇢ex =
⇣
− ! −

p
2GF (n⌫̄e

− n⌫̄x
) − iΓ

⌘
⇢ex

+
p

2GF (n⌫e
− n⌫x

)⇢̄ex

i@t ⇢̄ex =
⇣

+ ! +
p

2GF (n⌫e
− n⌫x

) − i Γ̄
⌘
⇢̄ex

−
p

2GF (n⌫̄e
− n⌫̄x

)⇢ex . (13)

Seeking collect ive modes, we now take⇢ex = Qe− i⌦t and

⇢̄ex = Q̄e− i⌦t . The dispersion relat ion results from plug-

ging these expressions into Eqs. (13) and dispensing with

Q and Q̄. It can be solved analyt ically:

Im ⌦⇠= ±
Γ − Γ̄

2

µS
p

(µD )2 + 4! µS
−

Γ + Γ̄

2
, (14)

where S = |S(0)| = n⌫e
− n⌫x

+ n⌫̄e
− n⌫̄x

and D =

|D (0)| = n⌫e
− n⌫x

− n⌫̄e
+ n⌫̄x

. (S and D are assumed

FFC + col l isional instabi l i ty

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

t ( s)

D
e
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si
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3
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-

3
)

FIG. 3. Collisionally and fast -unstable evolut ion in
an anisot ropic calculat ion: n⌫e (thick black curve), n⌫̄e

(medium), n⌫x (thin), and neut rino coherence density |P T |/ 2
(teal). The very thin curves show the results when Γ and Γ̄

are art ificially set to the average of their actual values (hence
Γ = Γ̄). The rapid oscillatory mot ion is the swinging of the

fast pendulum [21]. No conversion would be visible if the
system were stable to fast flavor conversion (FFC).

to point along z init ially, but the formulas are easily

adapted.) If µD 2
p

! µS, which is usually expected

of the set t ing we have in mind, then the instability crite-

rion coincides with Eq. (6). If µD < 2
p

! µS and ! < 0

(indicat ing the inverted hierarchy), then Eq. (14) is in-

validated by intervent ion of the bipolar instability.

Up to this point the analysis has assumed monochro-

mat icity, isot ropy, and homogeneity. The first of these

is just ified by the high neutrino density. Though not

presented here, numerical calculat ions with mult iple en-

ergies confirm that collisional instability a↵ects them col-

lect ively.

Calculat ions also confirm the presence of collisionally

unstable evolut ion in anisot ropic set-ups. An interest -

ing case is one where collisional and fast instabilit ies are

present together. Fig. 3 shows the results of such a cal-

culat ion. The parameters are the same as those used

in making Fig. 1 except that n⌫e
has been decreased to

2.6⇥1033 cm− 3 and the angular dist ribut ions have been

made anisot ropic, so as to make the system unstable to

fast oscillat ions. As with the other parameters, the an-

gular dist ribut ions are chosen to be representat ive of real

condit ions in a supernova. They are specified by the flux

factors (i .e., the rat ios of energy flux to energy density)

f ⌫e
= 0.05, f ⌫̄e

= 0.10, and f ⌫x
= f ⌫̄x

= 0.15. Radiat ive

pressures are prescribed using M1 closure [22].

The onset of fast flavor conversion prompts the growth

of the collisional instability on a much shorter t imescale

than was seen in Fig. 1. Furthermore, significant ly

greater flavor t ransformat ion occurs when Γ 6= Γ̄ than

when Γ = Γ̄, test ifying to the fact that the results

observed in Fig. 3 are not simply caused by decoher-

ence. In a more realist ic set t ing, collisional relaxat ion

Γ: Matter-interaction rate

・The resonance potentially occur in BNSM/Collapsar environment (but not in CCSN).
・Essentially the same mechanism as MSW resonance.

(Malkus et al. 2012)
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FFC occurs in both CCSN and BNSM 

6

Time

Any type of crossings (PNS convection)

Type II crossings
(neutrino absorption)

Type II crossings [Exp-only] 
(asymmetric ν emission)

Type I crossings [Exp-only] 
(nucleon-scattering + α    1 + cold matter)

Shock wave

Space-time diagram of ELN-angular crossings in CCSNe

1 s

200 km

FIG. 4. Space-t ime diagram for appearance of ELN crossings. The bold red line port rays a t ime
t rajectory for the shock wave in exploding models. The thin and dashed line represents the counterpart
of shock t rajectory for non-exploding models. The color code for enclosed regions dist inguishes types

of ELN crossing. The green, blue, and brown color denote Type I, Type I I , and any type of crossings,
respect ively. In each region, we provide some representat ive characterist ics of ELN-crossings. The

remark ” Exp-only” denotes that the ELN-crossing appears only in exploding models. See text for
more detail.

anism for these is di↵erent . In Sec. I I I B, we conduct an
in-depth analysis of their physical origin.

We provide a schemat ic space-t ime diagram of ELN
crossings in Fig. 4. This figure summarizes the over-
all t rends of crossings observed in our CCSN models.
We note that crossings relevant to PNS convect ion and
the pre-shock region drawn in Fig. 4 are not included in
Fig. 3. There is a technical reason why we do not include
the case with PNS convect ion in Fig. 3. This issue will be
discussed later. To facilitate the readers’ understanding,
the color in Fig. 4 dist inguishes types of ELN-crossings.
Below, we turn our at tent ion to the physical origin of
ELN crossing generat ion.

B . G ener at ion m echanism of EL N cr ossings

1. Type-I I crossings at early post-bounce phase

Let us start by analyzing the Type-I I crossings that
appear at the early post -bounce phase (⇠ 100 ms) in all
CCSN models (see the top left panel in Fig. 3). We first
present the result from the 12 solar mass model as a rep-
resentat ive case. The progenitor-dependence is discussed
later. In Fig. 5, we show Mollweide project ions of the
ELN crossing and some important quant it ies at 130 km
for the 12 solar mass model case. We find that the Type
I I crossing has a rather scat tered dist ribut ion (see the

top left panel). To see the trend more quant itat ively, we
show ∆ Gout in the left middle panel in Fig. 5, which cor-
responds to the ELN at µ = 1. Here ∆ Gout and ∆ Gin

are defined as follows. The energy-integrated number of
neut rinos at µ = 1 and − 1 are writ ten as

Gout =

Z

d(
"3

3
)f out (" ),

Gin =

Z

d(
"3

3
)f in (" ),

(2)

respect ively, where " denotes the neutrino energy in units
of MeV. We st ress that both f out and f in in Eq. 2 are the
basic output of our angular reconst ruct ion computat ion
complemented by the ray-t racing method (see Sec. I I B).
Here ∆ G is the di↵erence of the⌫e and ⌫̄e G values:

∆ G = G⌫e
− G⌫̄e

, (3)

where we omit the subscript ” out ” or ” in” in Eq. 3. As
shown in Fig. 5, we find that ⌫̄e dominates over ⌫e in
some regions (blue-colored area), and these regions are
in one-to-one correspondence to the regions of Type-I I
crossings. The one-to-one correspondence is at t ributed
to the fact that ⌫e always overwhelms ⌫̄e in µ = − 1
(incoming) direct ion.

We find some interest ing correlat ions between the
Type-I I crossings and other physical quant it ies. These
correlat ions provide useful insight for studying the phys-
ical origin of the crossings. To quant ify the correlat ions,

Nagakura et al.  PRD 2021 Sumiyoshi et al. in prep

Core-collapse supernova Binary neutron star merger

ir503ith76

r= 1.8041E+07 cm
mu( 76) =   8.9018E-01
theta=27.1 deg

run03l.analysis2

t=20 ms

x

hmns-t000020rev2.hr.iamax24
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Collisional instability also occurs in both CCSN and BNSM

Core-collapse supernova
Binary neutron star merger

Akaho et al. 2023

4

FIG. 3. The⌫ELN excess parameter D = 1 − n⌫̄e / n⌫e (upper row) and the frequency ⌦= ! P + iγ of the normal mode with
the maximum growth rate γ > 10− 3 µs− 1 (middle and lower rows) at three snapshots (as labeled) in the BH accret ion disk

model M3A8m3a5 of Ref. [15]. The solid and dashed curves are the contours with F⌫e = 1/ 3 and F⌫̄e = 1/ 3, respect ively. [See
Eq. (19)]. The dot -dashed curves are the contours with D = 0.

model can be found in Refs. [15, 25].

For the neut rino gases with discrete energy groups,

Eq. (6) becomes

X

j

{ [⌦a + ! e↵ (E i )]δi j + µgj ∆ E j } Sa
j = 0, (18)

where E j , gj , and ∆ E j are the energy, the⌫ELN weight ,

and the width of the neut rino in the j th energy group, re-

spect ively. (The ant ineutrinos are counted as the neut ri-

nos with negat ive energies.) There are N normal modes

for N discrete neut rino energy groups, and ⌦a and Sa

(a = 1, . . . , N ) are theeigenvaluesand eigenvectorsof the

matrix with the elements⇤i j = − [! e↵ (E i )δi j + µgj ∆ E j ],

respect ively. We solve the frequencies of the normal

modes in M3A8m3a5 with ∆ m2 = 2.5⇥10− 3 eV2, ✓=

8.6°, and the emission and absorpt ion rates of ⌫e and ⌫̄e

in Eq. (1) [26]. In Fig. 3 we show both the real and imag-

inary components of the frequency of the normal mode

that has the largest growth rate in each spat ial grid. One

can see that the growth rates of theflavor instabilit ies are

the largest where the net ⌫ELN is negligible which is ex-

pected from the previous analysis.

St rict ly speaking, Eqs. (6) and (18) are valid only for

a homogeneous and isot ropic neut rino gas. Following

Ref. [25], we plot

F⌫(t, r ) =

R
v f ⌫(t, r , p) d3p
R

f ⌫(t, r , p) d3p
=

1

3
(19)

in Fig. 3 for ⌫= ⌫e and ⌫̄e as the solid and dashed curves,

respect ively. The condit ion of homogeneity and isot ropy

is approximately sat isfied in the inner part of the disk

where F⌫ is small.

Throughout the BH-torus system, one hasΓ/ Γ̄ > 1 be-

cause the collision rates are dominated by the neut rino

absorpt ion rates and there are more neut rons than pro-

tons in this region. Although the ent ire accret ion disk

tends to emit more ⌫̄e than ⌫e, the density of ⌫e in the

inner torus is actually larger where the chemical poten-

t ial of the elect ron is significant . Therefore, we expect

only the CFI of the plus type (with ! P / µ ⇡ 0) can ex-

ist in the inner torus. Earlier in Fig. 1 we have shown

the frequency ⌦of the normal mode with the largest

growth rate in the equatorial plane of the accret ion disk

at t = 20ms. It is clear from Figs. 1 and 3 that the CFI

in the inner torus is indeed of the plus type, while the

instability in the outer region of the torus is of the minus

type [! P / (n⌫e
− n⌫̄e

)] if our analysis can be generalized

to the anisot ropic environment .

Discussion and conclusions We have shown that

there exist two types of CFI in a dense neut rino gas that

preserves the homogeneity and isot ropy. The CFI t ran-

sit ions from one type to the other where the net ⌫ELN is

zero and has a resonance-like instability that grows at a

rate / n
1/ 2
⌫ . But this is only part of the story. There can

exist the CFI that breaks these symmetries or even in

the inhomogeneous and anisot ropic environment as one

maps out the full dispersion relat ion ⌦(K ) of the col-

Xiong et al. 2022



- Global Simulations of FFC (in CCSN) Nagakura PRL 2023

Numerical setup:

Collision terms are switched on.

Fluid-profiles are taken from a 
CCSN simulation.

General relativistic effects are 
taken into account.

A wide spatial region is covered.

Three-flavor framework

Neutrino-cooling is enhanced by 〜30%
Neutrino-heating is suppressed by 〜40%

Huge impact on shock revival

See also Mori’s poster



Black: Classical transport
Red: QKE 

Average energy Energy flux

- Global Simulations of FFC (in CCSN) Nagakura PRL 2023



- Global Simulations of FFC (in CCSN) Nagakura PRL 2023

Neutrino angular distributions

T=100ms  R=60km

Angular distributions become 
very complicated.

Requiring multi-angle treatments
in neutrino transport



- FFC can change explosive nucleosynthesis in CCSN ejecta
Fujimoto and Nagakura 2023
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- Neutron star kick powered by neutrino flavor conversions
Nagakura and Sumiyoshi 2024

PNS core

Low Ye

High Ye

α〜1
FFC enhances 

neutrino flux

Flavor –integrated 
neutrino flux

Linear momentum 
of neutrinos

PNS recoil 
by neutrinos

High Ye region

Low Ye region



Appearance of flavor swap and EXZS:

Flavor coherency

23

- Global simulations of FFC (in binary neutron star merger)

νe

νx

Nagakura 2023

Colliding-beam model
Zaizen and Nagakura 2024

Neutrino flavor swap are inevitable.

νe

νe



- Analytic scheme to determine asymptotic states of FFC
Zaizen and Nagakura 2022

Conservation law of neutrinos
+

Stability condition 
(disappearance of ELN-XLN crossings)
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Radial-angular distributions for survival probability of electron-type neutrinos

- BGK Subgrid model Nagakura et al. 2024  

: Full QKE

: Relaxation-time approximation
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Remarkable progress on numerical modeling of CCSN have been made 
during the last decade.

Observable signals can be discussed with realistic theoretical models.

However, there are still many uncertainties in input physics. Neutrino 
quantum kinetics is the greatest one in the current CCSN theory.

These uncertainties should not be overlooked, as they may be a game-
changing ingredient.

BGK subgrid model can offer a way to incorporate effects of flavor 
conversions into classical CCSN simulations.

Summary:
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