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Abstract: The current understanding of the mechanism of core-collapse supernovae
(CCSNe), one of the most energetic events in the universe associated with the death of massive
stars and the main formation channel of compact objects such as neutron stars and black holes, is
reviewed for broad readers from different disciplines of science who may not be familiar with the
object. Therefore, we emphasize the physical aspects than the results of individual model
simulations, although large-scale high-fidelity simulations have played the most important roles in
the progress we have witnessed in the past few decades. It is now believed that neutrinos are the
most important agent in producing the commonest type of CCSNe. The so-called neutrino-heating
mechanism will be the focus of this review and its crucial ingredients in micro- and macrophysics
and in numerics will be explained one by one. We will also try to elucidate the remaining issues.
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CCSN explosions can be reproduced in numerical simulations
Nagakura et al. 2019

See also:
Takiwaki’s talk for a general review
Wang’s talk for more recent results
Boccioli’s poster for systematic studies




Comparison between theory (CCSN simulations) and observations

Explosion energy:
Theoretical Explosion Energies (this paper)
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Gravitational waves:
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— See Sotani’s talk: PNS asteroseismology for CCSN GWs.



Neutrino signal:
1. Explosion models have low
neutrino luminosity than those
with non-explosions

(due to less accretion components)

2. The average energy of electro-
type neutrinos and their anti-
partners are lower in 3D than 1D.

3. Neutrino luminosity of heavy-
leptonic neutrinos are higher in 3D
than 1D.

(due to PNS convection)
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Nakanishi’s poster for neutrino detection

Nagakura et al. 2021



Correlation between TONE (E, ) and N_ ., in neutrino detector
- . .. Nagakura et al. 2021
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Constraining neutrino oscillation in CCSNe by joint analysis of
GW and neutrino signal Nagakura and Vartanyan 2024

GW data
(Ecw)

Observed data

Mpns = 1.36 + 0.104 Eg,y + 0.0318 E2g,y |

Neutrino data
(Ncum)

Survival probability
of neutrinos

Constraining neutrino oscillation model

TONE (Ev)
at To (>1s)

PNS baryon-mass [M.]

SK-IBD-p at 10kpc
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Constraining neutrino oscillation in CCSNe by joint analysis of
GW and neutrino signal Nagakura and Vartanyan 2024

. SK-IBD-p at 10kpc
- Tp=4 (s)




- There remain many issues in CCSN simulations

: : : Beyond Boltzmann (QKE)
Dimensionality
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General relativistic
full Boltzmann neutrino transport

of  dp' of of )
col’

Nagakura et al. 2014, 2017, 2019
Akaho et al. 2021
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- 3D CCSN simulations with full Boltzmann neutrino transport

Iwakami et al. 2020, 2021
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\/ GR simulations with full Boltzmann neutrino transport
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N Gravitational redshift in Black hole spacetime
T 1
20 | | |
18 40
] e
1H 30 g E E
€ 2 P 0.1 8
1 20 & g iz
2 S
10
i 0.01
| 10 15 20 25 30 35 40 45 50 55
| | | | 0 radius r (km)

0 5 10 15 20

x (km) Akaho et al. 2020
Akaho et al. 2023



Quantum Kinetics neutrino transport: Vlasenko et al. 2014, Volpe 2015,
Blaschke et al. 2016, Richers et al. 2019
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(same as Boltz eq.)
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Neutrino oscillation induced by self-interactions

Pantalone 1992

Sea of neutrinos

1. Refractions by self-interactions induce neutrino flavor conversions, which is analogy
to matter effects (e.g., MSW resonance).

2. The oscillation timescale is much shorter than the global scale of CCSN/BNSM.

3. Collective neutrino oscillation induced by neutrino-self interactions commonly
occurs in CCSNe and BNSM environments.
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Rich flavor-conversion phenomena
driven by neutrino-neutrino self-interactions

- Slow-mode (Duan et al. 2010) Vacuum: =

Matter: ) = v2Gpn,,
- Energy-dependent flavor conversion occurs. Self-int: |, = V26,
= The frequency of the flavor conversion is proportional to -\

- Fast-mode (FFC) (sawyer 2005)

* Collective neutrino oscillation in the limit of w = 0.
- The frequency of the flavor conversion is proportional to
= Anisotropy of neutrino angular distributions drives the fast flavor-conversion.

- Collisional instability (Johns 2021)

= Asymmetries of matter interactions between neutrinos and anti-neutrinos

drive flavor conversion. Fr+r .
g | [ Matter-interaction rate

p: -
(D)2 + 4! uSs
- Matter-neutrino resonance (Malkus et al. 2012)

* The resonance potentially occur in BNSM/Collapsar environment (but not in CCSN).

A+ pf ~ Jw]

- Essentially the same mechanism as MSW resonance.
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FFC occurs in both CCSN and BNSM

Core-collapse supernova

Space-time diagram of ELN-angular crossings in CCSNe

Shock wave Type | crossings [Exp-only]

. (nucleon-scattering + a~1 + cold matter)
Type Il crossings

(neutrino absorption)

Type Il crossings [Exp-only] T,
(asymmetric v emission)

< Any type of crossings (PNS convection)

Nagakura et al. PRD 2021

Binary neutron star merger

fxnelnflag

Sumiyoshi et al. in prep
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Collisional instability also occurs in both CCSN and BNSM

Core-collapse supernova
Binary neutron star merger
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x (km) Xiong et al. 2022

Akaho et al. 2023
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- Global Simulations of FFC (in CCSN) nagakura PRL 2023

Numerical setup:

Collision terms are switched on.

Fluid-profiles are taken from a
CCSN simulation.

General relativistic effects are

! NFC(H=R=0) — taken into account.

M3F ——
M3FGR
M2F —— Three-flavor framework

M3FH

A wide spatial region is covered.
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Neutrino-cooling is enhanced by ~30% : :
, o Huge impact on shock revival
Neutrino-heating is suppressed by ~40%

See also Mori’s poster



- Global Simulations of FFC (in CCSN) nagakura PRL 2023

Average energy Energy flux
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- Global Simulations of FFC (in CCSN) nagakura PRL 2023

Neutrino angular distributions

T=100ms R=60km NFC(H=H=0)

Angular distributions become
very complicated.

Radial ‘

direction
Requiring multi-angle treatments

in neutrino transport

0 3
N((9,) cos 6, [10°2 cm™]




- FFC can change explosive nucleosynthesis in CCSN ejecta
Fujimoto and Nagakura 2023
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- Neutron star kick powered by neutrino flavor conversions
Nagakura and Sumiyoshi 2024
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- Global simulations of FFC (in binary neutron star merger)

Colliding-beam model
\/ Appearance of flavor swap and EXZS: Zaizen and Nagakura 2024

Flavor coherency Nagakura 2023
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- Analytic scheme to determine asymptotic states of FFC
Zaizen and Nagakura 2022
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- BGK Subgrid model nagakura et al. 2024
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Summary:

Remarkable progress on numerical modeling of CCSN have been made
during the last decade.

Observable signals can be discussed with realistic theoretical models.

However, there are still many uncertainties in input physics. Neutrino
guantum kinetics is the greatest one in the current CCSN theory.

These uncertainties should not be overlooked, as they may be a game-
changing ingredient.

BGK subgrid model can offer a way to incorporate effects of flavor
conversions into classical CCSN simulations.
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