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e Convective stellar structure

 Core collapse and neutrino heating
e Jet launching (B-field+rotation)
 Explosive burning

 Reverse shock

 Decay of radiative isotopes
 Plasma and Radiative instabilities

e Colliding with CSM and ISM
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Obs. Signatures

t = 1600s
t =2400s

Density spike in 1D magnetar (KC+ 16)
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Impact of Mixing on SN Observational
Sighatures

Flux ( 1E38 erg/s)
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A Type la Example from Kasen+ 2008

Multidimensional Radiation Transport Simulations will be ideal !!



Mixing on Breakout Signatures

New 2D radiation transport simulations with CASTRO
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Chen W.-Y., KC, Ono, 2024, ApJ, 976, 147.



Ken’s SN Simulations

1D Models
30-60, 80 - 250 Mo Stars (Heger & Woosley)

CASTRO
Massive Parallel, Adaptive Mesh Refinement (AMR), Multi-D,

Radiation, Hydro+( Burning, Rotation, GR ...)
(Almgren+ 2010, Zheng+ 2011 2012, KC+ 2013)

Supercomputers




Resolving Scales of Mixing
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Resolving Scales of Mixing
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Magg tar-powered SNe
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What is a Magnetar?

A magnetar is an exotic type of neutron star, its defining feature that it has an ultra-
powerful magnetic field. The field is about 1,000 times stronger than a normal neutron

star and about times stronger than the Earth's. Magnetars are, by far, the
most magnetic stars in the universe.




Mighty Magnetar!
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Superluminous SNe by Magnetar

Original Ideas from Maeda, Kasen, Bildsten, Woosley

45 T T T T
/ ™N B=4e14G PTF10cwr
N Py=1ms

1 1 1 1 1 1 1 1

1 | | |

PTF11rks

Pyo=5ms

N
o
] | | 1 1 L L 1 L

1 1 1 1 1 1 1 1

0 50 100 150 200

ke B3 adays]



e

0.02115

0.0004472

1 . 5 =]
9.457e-06 '

FEEEE— 2 000e-07
Max: 229.7
Min: 2.530e-07

1.0

0.5

0.5 1.0 1.5
R-Axis (x10"12 cm)



e

0.02115

0.0004472

1 . 5 =]
9.457e-06 '

FEEEE— 2 000e-07
Max: 229.7
Min: 2.530e-07

1.0

0.5

0.5 1.0 1.5
R-Axis (x10"12 cm)



R (x10"9 cm)

Ejecta Structure

Forward shock driven by magnetar bubble
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Radiation Breakout
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1D vs 2D
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Bridging the Central Magnetar to its SNR
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Pulsatlonal Palr-lnstablllty SNe
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Based on Stan’s Model
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Woosley+ 2007, Woosley 2017

Woosley Priv. Comm.

For still larger helium cores, the
pulses become more violent and
the intervals between them longer.
Multiple supernovae occur but

: usually just one of them is very
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Eruption History

The star produces three violent outbursts.The first, P1, ejects most of the hydrogen
envelope, making a faint Type Il supernova and leaving a residual of 50.7 Msun, just a bit
more than the helium core itself. After 6.8 yr the core again contracts and encounters the
pair instability, twice in rapid succession. The total mass of the second and third pulses (P2
and P3) is 5.1 Msun and their kinetic energy is 6e50 erg. P3 collides with P2 at large optical
depths that are not visible to an external observer. These combined shells then overtake P1
at 1e15 cm and speeds of a few 1000 km/s.
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Physical Properties of Colliding Shells
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Physical Properties of Colliding Shells




1D+2D+3D Radiation Transport Simulations of PPSNe

KC+ 2023
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1D+2D+3D Radiation Transport Simulations of PPSNe
KC+ 2023
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3D Rad-hydro simulations of PPSNe

KC+ 2024
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‘Take Home Message
+ SNe/SN Rs are: beaﬂ;.;ful but messy

* Violent mlx’ing occur‘sat é?ses of
explosnons i3 S e

P

. Drlvers of mlxmg contam rléh physucs

. Mlxmg physncs in 1D SN Ilgh’t curves and
spectra is cor pletely mngsmg |

,& NS

e Multi-D rad- hydro surhUlzatlons are powerful
tools to model the mlxmg and sugnatures

properly.



