Experimental beta-decay half-lives and beta-delayed neutron emission probabilities in medium-mass nuclei (A ~ 110)

Contents

- Nuclear structure and astrophysical motivations
- ✤ Measuring P_{xn} with BRIKEN: experimental details.
- Results and discussion
- Future projects with new beta-decay station at RIBF
- Summary

RI Physics Laboratory, RIKEN Nishina Center, Japan for the BRIKEN collaboration

Vi Ho Phong

[RIBF ULIC mini-WS] Structure of neutron-rich matter revealed by beta decay I July 29th, 2024

Beta-delayed neutron emission (βn) probabilities - P_{xn} values

Sensitivity of P_{xn} values to nuclear structure information

P_{xn} value measure the fraction of the β strength function above the neutron separation energy S_{xn}

 \rightarrow Sensitive to the low-lying states just above S_{xn}

For very neutron-rich nuclei, P_{xn} values together with halflives (T_{1/2}) provide first access to nuclear structure information

- P_{xn} values provides important benchmarks to improve theoretical models
- First-fobbiden transitions, also with small matrix element could contribute to the β-intensity and thus affecting the predictions of P_{xn} value and T_{1/2} due to phase space factor

P. Möller et. al., PRC **67**, 055802 (2003).

Beta-delayed neutron emission (βn) probabilities

4

The mid-shell region around A~110

 \Box This talk: Experimental P_{1n}, P_{2n} and T_{1/2} around the neutron-rich mid-shell region 50<N<82

=> Well deformed region up to N=70 (¹¹⁰Zr for Zr chain)

=> Deformation persist toward more neutron-rich region?

Beta-delayed neutrons of the r-process progenitor nuclei

Experimental nuclear properties relevant to the r-process

- Complementary approach on the "experimental nuclear properties" for the *r*-process:
- Measurements of key-nuclei with most-significant direct impact:
 - On the "r-process path".
 - Near the neutron shell-closure or "waiting point" nuclei.
- Measurements of key-nuclei that benchmark theoretical models and improve them.
- Measuring properties of a large number of neutron-rich nuclei in **one** or a **series of experiments** => This talk: experimental P_{1n} , P_{2n} and $T_{1/2}$ around the neutron-rich mid-shell region **50**<**N**<**82**.

Properties on r-Process Nucleosynthesis, Progress in Particle and Nuclear Physics **86**, 86 (2016).

V. H. Phong et al., β -Delayed One and Two Neutron Emission Probabilities South-East of ¹³²Sn and the Odd-Even Systematics in r-Process Nuclide Abundances, Phys. Rev. Lett. 129, 172701 (2022)

G. Lorusso et al., β -Decay Half-Lives of 110 Neutron-Rich Nuclei across the N = 82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process, Phys. Rev. Lett. 114, 192501 (2015).

The r-process "freeze-out" and the role of P_{xn} values

r-process "freeze-out":
Free neutrons are depleted
\Gamma Neutron-to-seed ratio drop bellow unity
\Gamma Matters decay to stability

- β-delayed x neutron branching ratios emission probabilities (P_{xn})
 - Altering the β -decay path to stability during freezeout
 - => Modifying the odd-even staggering pattern
 - Additional source of neutrons for additional neutron-captures during freeze-out

r-process progenitors right-wing of the second r-process peak

V. H. Phong | RIBF ULIC mini-WS | 29 July 2024

Experimental setup: the BRIKEN project

BRIKEN: Beta-delayed neutron measurements at RIKEN

Total beam time: ~ 42 days **Physics papers:** PRC x 3, PLB x1, PRL x 1, ApJ x 1 and counting...

Figure 4. *BRIKEN hybrid setup with schematic positions of the AIDA detectors and the two HPGe clovers.*

Data analysis: data merging and fits to extract P_{1n} , P_{2n} and $T_{1/2}$

- Merging the data from 3 DAQs based on time-stamp
- * Time and position correlation $\rightarrow \beta$ decay curves: T_{β} T_{implant} with/without neutron gates
- Unbinned MLH fits to Bateman functions that include corrections for random coincidences to extract $T_{1/2}$, P_{1n} and P_{2n}

(V. H. P. et al., **CIP** 28, 311 (2018), A. Tolosa-Delgado et al., **NIMA** 925, 133 (2019))

New BRIKEN data of neutron-rich mid-shell region 50<N<82

Upcoming BRIKEN data of neutron-rich mid-shell region 50<N<82: Systematics trend vs mass number

- Half-lives (T_{1/2}) mostly agreed
 with literature values
- Some noticable differences with previous data for P_{1n} values, mainly coming from old ISOLDE data.
- Theoretical calculations widely used for *r*-process calculations
 do not predict well both T_{1/2} and P_{1,2n} values.

Upcoming BRIKEN data of neutron-rich mid-shell region 50<N<82: Odd-even systematic vs mass number A

Dashed line: RHB+pnQRPA+HF [F. Minato et. al., PRC 104, 044321 (2021)]

Upcoming BRIKEN data of neutron-rich mid-shell region 50<N<82: Systematics trend

- The degree of odd-even staggering does not only depend on the change in the Q_{βxn} window, but also:
 - Details of the β-strengh function
 - Competition between neutron/gamma emission channels

More ellaborated theoretical models needed to accurately describe P_{xn} values
 Measurements of β-strengh functions above S_n are needed

 S_{1n}

¹⁰¹Rb

S_{2n}

 $Q_{\beta 1 n}$

(Preliminary) Impact of the new BRIKEN data on the r-process

- Reaction network calculations ultilizing the SkyNet code [1] and the HOKUSAI BigWaterfall2 computing system
- Mass-weighted trajectories from the output the 3D hydrodynamical simulations in Ref. [2]
- Update REACLIB V2.2 [3] with latest nuclear properties from NUBASE2020 [4] and FRDM2012 [5] and neutron-capture rates from TALYS calculation [6]
- Update with fission rate and fragment distribution from the latest FRLDM models and TALYS code [6-9]

(Preliminary) Impact of the new BRIKEN data \sim A=110 on elemental abundance the r-process

Comparion with final abundances calculated with the reaction network with new BRIKEN data and the network without new BRIKEN data.

— Mass-weighted

(Preliminary) Impact of the new BRIKEN data ~A=110 on elemental abundance the r-process on the correlation parameters

Using stellar samples from [I. U. Roederer et al., Science 382, 1177 (2023)] and plot the elemental ratio versus log(Eu/Zr) ratios

- Correlations analogous to that in [I. U. Roederer et al., Science 382, 1177 (2023)] can be seen
- Direct comparison with simulation results reveal the impacts of the BRIKEN data on the correlation parameters

New β -decay station for Beta-delayed Neutrons Time-of-flight spectroscopy in tandem with the ZD-MRTOF mass measurement setup

- GARi : Gas-cell Active detector for Radioisotope decay
 - Segmented plastic scintillator: EJ-228 (150×100×6 mm³)
 - PSPMT: Hamamatsu H12700 (x6)
- *** TOFU**: Time **O**f **F**light detector array for **U**niversal purposes
 - 70 plastic scintillator bars at 100 cm, \sim 8% efficiency for 1 MeV neutron
- Several HPGE clover and LaBr₃ detectors will be installed
- ***** Fully digital DAQ (for beamline, MRTOF and β decay station detectors)

See Z. Quanbo talks for more details

Beta hit pattern (⁹⁰Sr source)

Preliminary results from a parasitic experiment and future experiment with new β -decay station

- ✓ Several test experiments in parasitic mode have been recently performed.
- \checkmark In-beam/transmission cross-section, mass and β-decay spectroscopy using same beam => Efficient use of RI beam.

Nudat3
 I. Cox et al., PRL **132**, 152503 (2024)
 Z. Y. Xu *et al.*, PRL **133**, 042501 (2024)

Summary and perspectives

 $\clubsuit T_{1/2}$ and $P_{xn}\,$ were studied for wide range of neutron-rich

nuclei spanning mid-shell region 50<N<82

Odd-even staggering effects can be seen: Awaiting further

investigations.

The results provide benchmarks for development of theoretical β-decay models.

- Preliminary astrophysics impacts are presented
- \clubsuit New β-decay station in tandem with the mass

measurement program at RIKEN RIBF

Thank you for your attention!

PHYSICAL REVIEW LETTERS 129, 172701 (2022)

β -Delayed One and Two Neutron Emission Probabilities South-East of ¹³²Sn and the Odd-Even Systematics in *r*-Process Nuclide Abundances

V. H. Phong^(b),^{1,2,*} S. Nishimura^(b),^{1,†} G. Lorusso,^{1,3,4} T. Davinson,⁵ A. Estrade,⁶ O. Hall,⁵ T. Kawano,⁷ J. Liu,^{1,8} F. Montes,⁹ N. Nishimura,^{10,1} R. Grzywacz,¹¹ K. P. Rykaczewski,¹² J. Agramunt,¹³ D. S. Ahn,^{1,14} A. Algora,¹³ J. M. Allmond,¹² H. Baba,¹ S. Bae,¹⁴ N. T. Brewer,^{12,11} C. G. Bruno,⁵ R. Caballero-Folch,¹⁵ F. Calviño,¹⁶ P. J. Coleman-Smith,¹⁷ G. Cortes,¹⁶ I. Dillmann,^{15,18} C. Domingo-Pardo,¹³ A. Fijalkowska,¹⁹ N. Fukuda,¹ S. Go,¹ C. J. Griffin,⁵ J. Ha,^{1,20} L. J. Harkness-Brenna,²¹ T. Isobe,¹ D. Kahl,^{5,22} L. H. Khiem,^{23,24} G. G. Kiss,^{1,25} A. Korgul,¹⁹ S. Kubono,¹ M. Labiche,¹⁷ I. Lazarus,¹⁷ J. Liang,²⁶ Z. Liu,^{27,28} K. Matsui,^{1,29} K. Miernik,¹⁹ B. Moon,¹⁴ A. I. Morales,¹³ P. Morrall,¹⁷ N. Nepal,⁶ R. D. Page,²¹ M. Piersa-Siłkowska,¹⁹ V. F. E. Pucknell,¹⁷ B. C. Rasco,¹² B. Rubio,¹³ H. Sakurai,^{1,29} Y. Shimizu,¹ D. W. Stracener,¹² T. Sumikama,¹ H. Suzuki,¹ J. L. Tain,¹³ H. Takeda,¹ A. Tarifeño-Saldivia,^{16,13} A. Tolosa-Delgado,¹³ M. Wolińska-Cichocka,³⁰ P. J. Woods,⁵ and R. Yokoyama^{11,31}

