Can nuclear physics solve "the missing gold problem" in the evolution of Galaxy?

Nobuya Nishimura (西村信哉) CNS, The University of Tokyo

RIBF ULIC WS, 29-30 Jul. 2024

- •<u>Astrophysics part:</u> a brief summary on the missing problem in GCE, or a bit ironical overview from nucleosynthesis person
- Nucleosynthesis part:
 - production of 3rd r-process peaks)
 - basics: production of r-process peaks
 - previous and on-going studies
 - ·MC-based sensitivity study
- <u>Summary and perspective</u> (personal)

Talk plan

1. <u>Astrophysics part:</u> "The missing gold problem" in GCE

Evolution of r-process elements

13.77 billion years

solar abundances

The beginning of the story

C. Kobayashi, A. Karakas, M. Lugaro, ApJ 2020

"The origin of Elements from Carbon to Uranium" • challenge to explain all the isotopes in GCE (Galactic Chemical Evolution)

 \cdot they assume supernovae are the main source of r-process (than NS mergers)

Astrophysical r-process sites

Massive stars

(10>M_{sun})

core-collapse SNe

- NO direct r-process observation
- Theoretically difficult
 - not very neutron-rich

NS (binary) mergers

The "observational" evidence with gravitational waves (GW170817)

proto-NS

SN explosion

ν -driven wind

(long time duration)

<u>Magneto-rotational SN scenario</u>

hypernova/jet-like SN

magnetars

- variety of r-process patterns in metal-poor stars
- \cdot can be rare $\sim 1\%$ of ccSN rate
- Galactic chemical evolution
 - needed as external sources with NS mergers?
 - MR-SNe, "hypernovae", collapsars etc.?? (see, e.g., Wehmeyer+2015, Tsujimoto&NN 2015, Cescutti+2017, Siegel+2019, Kobayashi+2020 etc.)

Magnetars

• strong magnetic field $\sim 10^{15}$ G $(\sim 1 \% \text{ of all neutron stars})$

- <u>Magneto-driven Supernovae?</u>
 - GRB central engine
 - •Hypernovae?
 - (magnetar driven) Super luminous SNe?

Cowan+2021

Prequel story?

update my r-process calculations (β -decay)

comparison of different beta-decay rates

Prequel story?

Evolution of galaxy

Hierarchical structure formation

galaxy formation simulation

Takeda, Nukatani, Saito (2007)

Our Galaxy (Milky Way) was merged with a dwarf galaxy (Gaia-Enceladus) 10 billion yrs ago

<u>GCE: early dwarf spheroidal galaxies</u>

Tsujimoto & NN, ApJL (2015)

Tsujimoto & NN ApJL (2015) (see also, Tsujimoto+ PASJ 2015)

Chemical evolution models

<u>GCE models suggest:</u>

```
- rate event: 1/200 CC-SNe
```

- large Eu ejection: $\sim 10^{-5}$ Msun agree with our MR-SN models (e.g. Nishimura+ 2015)

2. <u>Nucleosynthesis part:</u> N = 126 isotones and production of the r-process 3rd peak

<u>r-process nucleosynthesis "flow"</u>

Theoretical Prediction

r-process path is beyond experimental accessible region

Atomic number Z

theory prediction astrophysics 10 solar r-abundance - mass-averaged 10 g 10' 10⁻⁵ 10-6 10' 80 30 40 50 60 70 .90 10⁻⁸

100 150 mass number

50

0

200

250

reliability?? large uncertainty in theory

•<u>nuclear physics</u>

- (1) r-process path : $(n, \gamma)/(\gamma, n)$ equilibrium \rightarrow nuclear mass
- (2) r-process abundance : half life (ratio) on the path $\rightarrow \beta$ decay
 - (abundance) / (β -decay half life) = constant
- ③ decay : smoothing by n-emission $\rightarrow \beta$ -delayed n emission
 - (fission of heavy nuclei : cannot consider?) \rightarrow fission

|r-process path = (n, γ) and (γ, n) balance

2 abundance

- (in contract to the s-process determined by (n,g) rate)

\cdot "classical" solution : (n, γ)/(γ , n) equilibrium, waiting-point aprox.

determined by the ratio of β -decay rate (half life) on the path;

Modern nucleosynthesis simulations

Nuclear physics

- method : calculations by nuclear reaction network
 - ·consider all possible reactions and decays
 - (n,g)/(g,n) partially achieved or not realized (cold r-process)
 - $\cdot \beta$ -decay, (n,g), fission for a wide range of n-rich nuclei

reaction network and decays not realized (cold r-process) le range of n-rich nuclei

160

<u>**B-decay impacts on the 3rd peak</u>**</u>

Collective uncertainties on the r-process

impacts on reaction/decay rate variation with MC nucleosynthesis (n,g) x50, β x10

Individual impacts Impacts on the r-process of individual rates

<u>Summary and perspective(personal)</u>

1. <u>"The missing gold problem" in GCE</u>

- It may be caused by "insufficient" theoretical prediction
- •Though variation/differences by astrophysical parameters, significant underproduction of Au (gold) in some particular GCE studies would be improved by r-process prediction ·Anyway, Galactic chemical evolutions studies are difficult…

2. N = 126 halflives and the 3rd peak formation

- $\cdot \beta$ decay of n-rich N = 126 isotones have significant impacts on the 3rd peak formation •This is also (obviously) confirmed by comprehensive MC sensitivity calculation
- - \rightarrow investigations by improved "theory" data is also expected

3. Future perspective (personal)

- ·Recent theoretical progresses in Japanese community (DFT studies, Minato-san, Anil etc) •Personally, although I had already done, it would be worth to revisit it now.
- \cdot I need to clear up any confusion ("the missing gold problem") in the GCE study.

