Self introduction and Run23 dN/dŋ analysis

National Central University & RIKEN

June 4th, 2024 RNRC exp. group meeting

Cheng-Wei Shih

Self introduction

- Name : Cheng-Wei Shih
- National : Taiwan (Republic of China, ROC)
- Institute: Department of Physics, National Central University
- Grade: 2nd year of PHD program
- Relation to RIKEN: IPA program (start: May 1st 2024)
- Experience:
 - CEPC, circular electron positron collider
 - Period : the whole 3rd year of bachelor
 - G4 simulation study of the potential geometry of the luminosity calorimeter
 - sPHENIX (current)
 - Participated in INTT group on May 5th 2019 (5 years from now) INTT ladder assembly, beam test analysis, ladder quality classification,
 - commissioning, etc
 - Current main focus : dN/dŋ analysis

SPHE

Cheng-Wei Shih (NCU, Taiwan)

Part of previous work : INTT ladder assembly SPHENIX

Half-ladder = 1 HDI + 26 chips + 2 siliconsensors (Type A + B) Ladder = 2 half-ladders + 1 CFC stave

INTT ladder explosion plot

Taiwan Silicon Detector Facility (TSiDF)

40 ladders (1/3 of total) of ladders were assembled in Taiwan

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Ladders assembled in Taiwan

The 2-min assembly video

in Taiwan

Pick up tools

Part of previous work : INTT ladder assembly SPHENIX

Half-ladder = 1 HDI + 26 chips + 2 siliconsensors (Type A + B) Ladder = 2 half-ladders + 1 CFC stave

INTT ladder explosion plot

Taiwan Silicon Detector Facility (TSiDF)

40 ladders (1/3 of total) of ladders were assembled in Taiwan

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Pick up tools

Ladders assembled in Taiwan

The 2-min assembly video

Cosmic test performed in Taiwan

Part of previous work : Beam test analysis

- Beam test 2019 @ Fermilab & Beam test 2021 @ ELPH Tohoku
- Configuration: 3 layers of INTT ladders + 2 scintillators (trigger)
- Bias voltage: 50 V
- Main scope: study the efficiency (to understand the 96% of second beam test)
- Plan to publish before dN/dŋ submission

RNRC exp. group meeting

Part of previous work : on-site

RNRC exp. group meeting

Introduction to dN_{ch}/dn

- Tells how the energy is re-distributed in phase space
- Heavy-ion collision includes elastic and inelastic scatterings
 - inelastic: diffractive and non-diffractive
- Experimental inputs are crucial to characterize initial states
- Well measured observable across different experiments (> 26 relevant publications)
- Roughly grouped by collision energy
- A baseline measurement to prove that sPHENIX can do the right things

RNRC exp. group meeting

SPHE

- $N \propto \sqrt[4]{s_{\rm NN}}$

sPHENIX dN/dn analysis with Run23 data

• Utilized by the tracklet analysis with the INTT run23 data taken in zero-field env.

10 INTT zero-field runs in total in run 23, taken on July 8th 2023

RunNumber (ZF)	Nevents
20864	417,729
20866	26,404
20867	317,047
20868	288,481
20869	550,123
20878	89,238
20880	171,760
20881	31,736
20883	94,249
20885	357,343
Sum	2,344,110

Nom

Currently focus on one run, run 20869 vertex off by -20 cm (at almost south edge of INTT)

Cheng-Wei Shih (NCU, Taiwan)

RNRC exp. group meeting

Property	Value	
Run	20869	
Production tag	2023n011	
Centrality calibration tag	1 tag	
sPHENIX software build	ana.404	
Total number of events in DST	550121	
$\langle z_{vertex}^{ ext{MBD}} angle$	$-22.03\mathrm{cm}$	
$\sigma(z_{vertex}^{ ext{MBD}})$	$8.67\mathrm{cm}$	
minal MIN. BIAS trigger efficiency	0.88	

Vertex Z distribution of the run 20869

Reconstructed by INTT (INTT coverage : ±23 cm in Z axis)

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

sPHENIX dN/dn analysis with Run23 data

- Utilized by the tracklet analysis with the INTT run23 data taken in zero-field env.
- Analysis procedures (the skeleton):
 - → Average vertex XY
 - \rightarrow Per event vertex Z
 - → Tracklet reconstruction
 - → Derive the correction factor
 - → Distribution comparison

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

Two correlation plots for **each corner**

Cheng-Wei Shih (NCU, Taiwan)

- Approach 2: Line-filled method
- **Purpose:** crosscheck
- **Ideal:** vertex can be obtained by populating the tracklets into a 2D histogram
- **Procedures:**
 - 1. Define the searching window. Nominally, 3 mm x 3mm, center given by Approach 1
 - 2. Fill the trajectories of tracklets with $\Delta \phi < 5$ degrees
 - 3. Remove the background
 - 4. Take the averages of both axes as the vertex position XY

Cheng-Wei Shih (NCU, Taiwan)

- Approach 2: Line-filled method
- **Purpose:** crosscheck
- Ideal: vertex can be obtained by populating the tracklets into a 2D histogram
- **Procedures:**
 - 1. Define the searching window. Nominally, 3 mm x 3mm, center given by Approach 1
 - 2. Fill the trajectories of tracklets with $\Delta \phi < 5$ degrees
 - 3. Remove the background
 - 4. Take the averages of both axes as the vertex position XY

Status: Have the code ready, which can read the files produced by ntuplizer, and find the vertex

SPHE

- Quadrant method + 2D line filled method
 - $20 < selected_NClus < 350$
 - 15k events per data point
 - Take the total average as the final avg vtxXY

final average vertex XY should be used : line filled X : -0.224174 +/- 0.0167306 line filled Y : 2.74193 +/- 0.0198086 quadrant X : -0.194661 +/- 0.074547 quadrant Y : 2.82335 +/- 0.0784097 avg: {-0.209417 mm, 2.78264 mm}

Data file : Data_CombinedNtuple_Run20869_HotDead_BCO_ADC_Survey.root Cheng-Wei Shih (NCU, Taiwan) 14

- Correct the cluster φ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

icted average vertex XY mbinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}

- Correct the cluster φ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

icted average vertex XY mbinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}

- Correct the cluster φ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

icted average vertex XY mbinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}

- Correct the cluster φ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

icted average vertex XY mbinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}

- Correct the cluster φ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

icted average vertex XY mbinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}

- Correct the cluster φ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

icted average vertex XY mbinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}

- Correct the cluster φ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

icted average vertex XY mbinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}

- Correct the cluster φ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

icted average vertex XY mbinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Z axis

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Z axis

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Z axis

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Z axis

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Z axis

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Z axis

Single event

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

MC zvtx: Gaussian (-20 cm, 5 cm) \rightarrow -30 cm ~ 0 cm

General speaking, ~ 2.3 mm resolution

The comparison between MBD reco. vertex Z

SPHE

Cheng-Wei Shih (NCU, Taiwan)

•2 approaches: both start with the clusters in the inner layer and search for the clusters in the outer layer to form tracklets; different in:

radian, and subtracted afterwards to obtain the number of tracklets

combination with the least ΔR is preserved and the others are discarded

RNRC exp. group meeting

- oPHOBOS approach (loose): one inner cluster can match to multiple outer clusters. The combinatorial background is estimated by fitting the sideband region of $\Delta \phi$, $|\Delta \phi| > 0.0175$
- oCMS approach (tight): one inner cluster can only match to one outer cluster. The cluster

- Loose method (PHOBOS/PHENIX) & tight method
- Derive the alpha correction by 40k events, tested by 40k events

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

INTT reco zvtx-reco. tracklet coverage

Loose method (PHOBOS), background estimated by comparing the tracklet $\Delta \phi$

Cheng-Wei Shih (NCU, Taiwan)

RNRC exp. group meeting

SPHE

distributions of the original data and the one with inner clusters rotated by π in ϕ angle

- Loose method (PHOBOS/PHENIX) & tight method
- Derive the alpha corrections by 40k events, tested by 40k events

RNRC exp. group meeting

Tracklet reconstruction - α corrections

- Loose method (PHOBOS/PHENIX) & tight method
- Derive the alpha corrections by 40k events, tested by 40k events

Loose method

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Tight method

η

Generally, from 0.5 to 0.7

- Loose method (PHOBOS/PHENIX) & tight method
- Derive the alpha corrections by 40k events, tested by 40k events

RNRC exp. group meeting

Vertex Z distribution of the run 20869

• 1D line fill method for zvtx reconstruction

Use the centrality region 0-70% as what the zvtx distribution suggested

Cheng-Wei Shih (NCU, Taiwan)

SPHE

Loose method (PHENIX/PHOBOS)

RNRC exp. group meeting

Loose method (PHENIX/PHOBOS)

RNRC exp. group meeting

Tracklet reconstruction - latest result

The latest plots we can have now CMS approach by Hao-Ren, PHOBOS approach by Cheng-Wei

SPHE

Distribution comparison - cluster

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

Cluster η and ϕ updated by vertex position

cluster adc > 35cluster phi size < 6NClus > 1000

is_min_bias_wozdc == 0 Centrality == Centrality MBD z == MBD zIMBD_charge_assyl > 0.75 0-70%

 $3 \text{ cm} < zvtx_fit_width < 8 \text{ cm}$ 4 < zvtx group bkg cut width < 11 cm -30 < INTT reco. Z < -6 cm -5 < INTTz-MBDz < 3 cm (data)-4 < INTTz-MBDz < 4 cm (MC)

Distribution comparison - tracklet

Loose (PHOBOS approach)

RNRC exp. group meeting

Tight

Cluster η and ϕ updated by vertex position

cluster adc > 35cluster phi size < 6NClus > 1000

is_min_bias_wozdc == 0 Centrality == Centrality $MBD_z == MBD_z$ IMBD_charge_assyl > 0.75 0-70%

 $3 \text{ cm} < zvtx_fit_width < 8 \text{ cm}$ 4 < zvtx group bkg cut width < 11 cm -30 < INTT reco. Z < -6 cm -5 < INTTz-MBDz < 3 cm (data)-4 < INTTz-MBDz < 4 cm (MC)

Summary

- The PPG02 was formed after the QM23
- We have developed the analysis workflow down to the very end we can reach now
- Issues to be solved
 - MC truth too high
 - dNdeta Data distribution is different that of MC
 - Weird correlation between INTTz and MBDz
 - Incorrect centrality correction for both data and MC
 - No 0 to 5% events in MC

 - (Consistency in vertex reconstruction b/w to approaches)? - Decent QA check to compare the data and MC in all aspects (across the different centrality binning)
- As long as the discrepancy can be addressed/mitigated, we will be ready for the preliminary (paper ?), we are getting there!

RNRC exp. group meeting

Back up

INTT geometry

INTT: 2 sensors X 2 sides of half-ladders X 56 ladders = 224 sensors

Notation: B_xL_{yzz} x: Barrel ID (0 for inner or 1 for outer) y: Layer ID (0 for inner or 1 for outer) zz: Ladder ID (from 0 to 15)

Axis (Right-haded coordinate) x-axis: $\vec{y} \times \vec{z}$ y-axis: Vertically upward direction

RNRC exp. group meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

