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Energy Regression Calibration with

— . Machine | earning Method __

» Purpose of energy regression : Energy deposited in
the calorimeter may not always be directly
proportional to the energy of the incident particle due
leakage, noise, etc. By accurately estimating the
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 Machine learning techniques can be used as a
method to perform the energy regression.

(1) Collect large MC sample and select training

parameters (Emax, E3x3, E5x5) and target

..................

parameters (ratio of Ebeam/E5x5).

(2) Model training with large MC sample.
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| l;g.r?gllx;:o;o (3) Validate trained model with separated MC sample.
(4) Apply the trained MC to data.

« Attention : One have to make sure MC and data are
agreed at certain level. (We are still working on it!)
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XGBoost (Extreme Gradient Boosting)

Step1l : Classify events  F (x)

F,(X)

Like the computer game X

Data Set: (X, Y)
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Tree 2

StepO : Data set

X : training variables

Y : target variables
Fp (X)

Tree m

Input: age, gender, occupation, ...
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prediction score in each leaf

Step2 : Compute the residue
and loss function(avoid over
fitting) of 15t tree/classification

Step3 : The 18t tree is usually
not the best classification. The
2nd tree/classification add a
parameter obtained from the
1sttree, al, to improve the
classification.
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Compute Compute ¢y Compute Compute cx; Compute Compute &;  Compute Compute v,
Residuals Residuals Residuals Residuals
(1) (r2) (ri) (T'm)

StepN : The fame process keep repieating to improve th% classification.

Fm{X} — m—l{X} +amhm(X: 7'm—l}s
where ;, and ; are the regularization parameters and residuals computed with the " tree respectfully, and h;

is a function that is trained to predict residuals, 7; using X for the i tree. To compute cy; we use the residuals
L)
computed, 7; and compute the following: arg min = Z L(Y;, F; 1 (X;) + ahi (X, ri_1)) where
o
i=1
L(Y, F(X)) is a differentiable loss function.

= Final output :
The predictions of all trees/classifications are combined to produce the final output.

Reference : https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://docs.aws.amazon.com/zh tw/sagemaker/latest/dg/xgboost-Howlt\Works.html
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Training Conditions

« XGBoost in Python T T ]
Esxs
« Training MC sample ] =
® 197MeV — E
@ 30k events —
(20% test, 80% training) T
« Training variables (X):
O E1x1
@ E3x3
® E5x5 197MeV positron beam
@ E1x1/E5x5 S0 D3 oronou=o1semen |
® E1x1/E3x3 1
® E3x3/E5x5 3k i
« Target variable (Y) : t i
® Ebeam/E5x5 1 .

Target : Ebeam/E5x5
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Importance of train variables, X

Features

Validate ML Model
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« Among all the training variables, E5x5 is the most important one.
« The training output shows reasonable prediction of target variable, Ebeam/E5x5, with
less than 5% uncertainty.
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Impact of Energy Regression

Before regression After regression
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 Anew MC sample generated w/ 197MeV positron beam w/ 30k events.
« After applying energy regression, the beam energy is will reconstructed by ML model
and energy resolution improved from 5% to 1%.
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< EReco/ ETrue >
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Impact of Energy Regression
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New MC samples with energy beam = 197MeV to 823 MeV are tested.
Ebeam is well predicted and energy resolution is also improved after regression
regardless the beam energy.
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Summary and To Do

- A method of energy regression w/ machine learning
technique Is developed. We use XGBoost package
provided by Python.

« MC sample is used as both training and test sample
for now. The ML regression model shows a great
performance to improve the prediction of beam energy
(20%) and reduce the energy resolution (5%->1%).

» We will apply this technigue once we have relatively
more realistic MC simulation ready.
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