

Satoshi Yano (Hiroshima University) **EIC-Asia monthly meeting** 06/20/2024

- Strip-type and pixel-type AC-LGAD are used for BTOF and FTOF, respectively lacksquare
- FCFD and EICROC are used for strip-type and pixel-type AC-LGAD, respectively \bullet

FTOF Module 16 AC-LGADs 16 ASICs 3.2 cm ~12.8 cm Required performance AC-LGAD Timing resolution ~ 30 ps ASIC Spatial resolution $\sim 30 \, \mu m$ SF

Recap of BTOF and FTOF

New TOF DSC organization

New TOF organization members ullet

- DSL: Zhangbu Xu (Kent State Univ.), Deputy DSL: Satoshi Yano (Hiroshima University) ____
- DSTC
 - BTOF: Matthew Gignac (UC Santa Cruise) •
 - FTOF: Mathieu Benoit (ORNL)

Work packages have been created •

- Sensors: Simone Mazza (US Santa Cruise), Satoshi Yano (Hiroshima University)
- Frontend Electronics: Wei Li (Rice Univ.)
- Module integration and assembly: Mathieu Benoit (ORNL), Matthew Gignac (UC Santa Cruise)
- System tests and validation: Takashi Hachiya (Nara Woman Univ.), (FF Liaison) Prithwish Tribedy (BNL)
- Mechanical structure: Andy Jung (Purdue Univ.), Yi Yang (National Cheng-Kung Univ.)
- DAQ & Clock distribution: Tonko Ljubicic (BNL)
- Power system, Detector slow control, monitor and safety system: Frank Geurts (Rice Univ.)
- Simulations, software & calibration: Kantaro Kawade (Shinshu Univ.), (deputy) Tommy Tsang (Kent State Univ.)

TOF DSC General Meeting Wednesday 10:30 AM (BNL time) You can find the indico here

TOF Japan Meeting Monthly / Bi-weekly You can find the indico <u>here</u>

Update since the last EIC Asia meeting

Simulation study

- The regular simulation package meeting has been started by Kentaro and Tommy lacksquareThe latest indico can be found <u>here</u>
- The important tasks are: lacksquare
 - Evaluation of machine-induced background effects on TOF performance (Shinshu University)
 - Evaluation of BTOF material budget on the other detectors (Hiroshima University)

 - T0 determination performance by beam clock and HRPPD of phRICH (TBD)
- Machine-induced background study is urgent and it should be included in pre-TDR • Shinshu University covers the topic

Digitization and geometry of sensor in simulation (Stony Brook University, BNL, Kent University)

Material budget study (Hiroshima)

- Shunichiro Muraoka (M2 student) is working on the BTOF lacksquarematerial effects on hpDIRC and BEMCal performance
- This study is significant for the stave structure design
 - oMPGD is placed just in front of hpDIRC in the latest design \rightarrow Not big effects on angular determination resolution by the BTOF material
 - The material budget of hpDIRC in the active area is approximately $18\% \rightarrow \text{Not big effects on the EMCal performance by the BTOF}$ material
- The study will reveal if the very strict limit of 1% material lacksquarebudget imposed on BTOF is really necessary
 - This will open new options for the stave material selection and 1.3 m FPC design

6

AC-LGAD sensor test (Hiroshima)

- **Kanato Matsutani** (M1 student) is working on the AC-LGAD sensor test
 - 0.4 x 10 mm² strips with 80 µm pitch (Sensor size: 5.48 x 11.15 mm² from KEK
- Tasks we consider as important are:
 - Temperature dependence of the performance
 - Gain stability of the full-size sensor
- The right setup has been established to test performances with the radiation source
 - MCP PMT is used for the trigger ($\sigma \sim 10 \text{ ps}$)

AC-LGAD sensor test (Hiroshima)

- The signal strength and noise level of AC-LGAD are • checked by changing the bias voltage
 - The strength is saturated above ~ -190 V
 - The pedestal noise level increases above ~ -200 V
- V-I curve is also measured
 - Leak current increases above ~-185 V

• After tuning the trigger threshold, the signal rate is ~ 60 Hz • Charge sharing (synchronizing signals) has been observed • The detailed study is ongoing and the results will be presented soon

EICROCO test (Hiroshima)

- EICROC0 characterization
 - Performance evaluation of analog block is being conducted —
- The analog signal response with injected charges lacksquare
 - Timing resolution has been calculated by signal timing differences

Structure thermal test (NCKU)

- **Yu-Tang Wang** is working on the cooling system for the BTOF stave lacksquare
 - The latest presentation can be found here
- ${\color{black}\bullet}$ stave structure

The other news

- Zhenyu has stepped down from eRD112 (AC-LGAD R&D consortium) coordinator
 - Alex Jentsch (BNL) and Matthew Gignac (UC Santa Cruise) are selected as new coordinators instead of Zhenyu
- FY25 proposal of eRD112 is under preparation
 Hiroshima University raised the hand to participate in eRD112 from FY25
- T. Gunji presented the Japanese strategy for the ePIC project at RRB meeting (5/6~5/7)
 - A decision will be made around this December
 - \$10M for 7 years for BTOF is requested from RIKEN to MEXT

ר ר

- The regular simulation meeting has been started and it will be held monthly
- Material budget effects on the other detector study have been started at Hiroshima University
- Study of the machine-induced background has been started at Shinshu University
- AC-LGAD sensor and ASIC R&D has been started at Hiroshima University
 Hiroshima activity will be included in FY25 proposal
- Thermal test of stave structure is ongoing at NCKU

12

- Strip-type and pixel-type AC-LGAD are used for BTOF and FTOF, respectively •
- FCFD and EICROC are used for strip-type and pixel-type AC-LGAD, respectively

BTOF SH is placed in a different place from sensor+ASICs, but FTOF SH is placed in front of sensor+ASICs

Detector Layout of BTOF

- •
- BTOF is composed of 144 modules to make a cylindric 64 AC-LGAD strip sensors are attached to one module – ASIC place is under discussion (depending on the ASIC pixel geometry) Radius is 60 - 63 cm from the beam pipe covering $-1.42 < \eta < 1.77$
- Total material budget in acceptance is ~0.01 X/X₀ lacksquare

BTOF shape

Detector Layout of FTOF

- FTOF is composed of 1816 modules to make a disk •
- 12 or 16 AC-LGAD pixel sensors are attached to one module lacksquare
- Radius is 8 60 cm from the beam pipe covering $1.86 < \eta < 3.85$ lacksquare
- Service hybrid, readout board + power board, is placed in front of sensors lacksquare
- Total material budget in acceptance is ~0.025 X/X₀
- Service hybrid and cooling system design is important for FTOF lacksquare

BTOF shape

- AC-LGAD technology meets the strict spatial and time resolution • requirements
- Strip-type sensor, 3.2 x 4 cm² sensor size with 0.05 x 1 cm² metals, is used in **BTOF**
 - The readout metal geometry in a sensor is 64 x 4 and 256 channels each
- 2 ASICs are attached for each with wire bonding

- Total information
- 9216 sensors
- **10** m²
- **2.4 M readout channels**

_
_

TOFASIC

- Not only high-time resolution TDC (TOA) but also ADC must be measured ${\color{black}\bullet}$
- Due to the large capacitance and readout geometry characteristics caused by the ulletstrip type, care must be taken when selecting an ASIC
- EICROC (32x32) is one of the common ASICs used in ePIC lacksquare
 - Design focuses on pixel AC-LGAD readout (tuned for low capacitance)
 - 10-bit TDC and 8-bit ADC is now available (EICROC0)
 - Modification is necessary to read higher capacitance sensor (strip AC-LGAD)
- FCFD is a new ASIC to use strip AC-LGAD readout lacksquare
 - FCFD can read higher capacitance AC-LGAD sensor
 - Multiple-channel analog is available for FCFDv1
- The possibility of HGCROC has begun to be discussed ullet
 - It can measure ADC, TOA, and TOT
 - We have to investigate the possibility of the chip as soon as possible and make collaboration with the experts

EICROCO

FCFDv0

ASIC

TOF structure

Barrel-TOF (BTOF) Forward-TOF (FTOF) • – Pixel-type AC-LGAD – Strip-type AC-LGAD – ASIC (FCFD) – ASIC (EICROC) – Sensor-ASIC integration – Sensor-ASIC integration – Module – Module – Service-Hybrid Service-Hybrid — – Mechanical structure – Mechanical structure – Global integration

– Global integration

Common system

– DAQ

- Cooling
- Software (Rec. & Calib.)
- HV & LV
- Slow control

New clean room (100m²) @ HU

	2024			2025		2026	
Sensor							
ASIC							
Flex module PCB					 	 	
		 				 • • • • • • • •	
ensor-ASIC integration							
Module Structure							
Service Hybrid						 	
		 			 	 •••••	
Module Assembly							
Support structure			1 1 1				
& cooling		 			 	 	
a cooms							
Backend electronics		 			 	 	
		 			 	 •••••	
Alignment & Deteksee							
& Database		 			 	 	
Assembly							
Install into DIC							
			-			 	

2027			2028		2029		2030	
	1 1 1							
	1 1 1							

Schedule of sensor and ASIC

			2026		
		Va	alidation		
Validation					
			Fabrication		Validation
Fabricatio	n l	Va	idation		
			Fabrica	tion	
: :	: :	: :	: :	; ;	Validation

Power budget of TOF

- BTOF power consumption is larger than the FTOF due to the size difference lacksquare
- Sensors+ASICs and SH of FTOF are placed on the same board, so the cooling power is lacksquaredesigned for the sum of the consumption
- SH of BTOF is located in a different place than sensors + ASICs lacksquare

BTOF

	Power	
Sensors	4kW	
FCFD	9.4kW	
DC-DC	3.3kW	сц _ л
FPGA	1kW	3⊓ = 4
Total	17.7kW	

FTOF

	Power
Sensors	0.3kW
EICROC	3.6kW
DC-DC	2.5kW
FPGA	1kW
Total	7.4kW

.3kW

Institutes in TOF tasks (official)

- Brookhaven National Laboratory (USA) •
- Fermi National Accelerator Laboratory (USA) ullet
- Rice University (USA) lacksquare
- Oak Ridge National Laboratory (USA) lacksquare
- Ohio State University (USA) ${\color{black}\bullet}$
- Purdue University (USA) ullet
- University of California Santa Cruz (USA) ${\color{black}\bullet}$
- University of Illinois at Chicago (USA) ${\color{black}\bullet}$
- Hiroshima University (JP) lacksquare
- RIKEN (JP) lacksquare
- Shinshu University (JP) ${}^{\bullet}$
- Nara Woman University (JP) lacksquare
- National Chen-Kung University (TW) ullet
- National Taiwan University (TW) lacksquare
- IJCLab, OMEGA, CEA-Saclay (FR) lacksquare

Tasks in BTOF

AC-LGAD sensor

- BNL
- ORNL
- Univ. of California, Santa Cruz
- Univ. of Illinois, Chicago
 - Hiroshima University
 - Shinshu University

Frontend ASIC

- Fermilab
- Rice University
- Hiroshima University
- National Taiwan University
- IJCLab/OMEGA/CEA-Saclay

Sensor-ASIC integration

- BNL
- ORNL
- Univ. of California, Santa Cruz
- Univ. of Illinois, Chicago
- National Taiwan University

- Module structure
- Purdue University
- National Cheng-Kung University
- Module assembly
- BNL
- ORNL
- Ohio State University
- Univ. of California, Santa Cruz
 - Hiroshima University
- RIKEN
- Nara Woman University
- National Taiwan University
- Flex PCB
- Nara Woman University
- Service Hybrid
- Rice University
- **Backend electronics** BNL

