# *Physics at Electron-lon Collider (EIC)*

2024.6.20 at RIKEN Yuji Goto (RIKEN)

### Outline of this talk

- Basics and history
  - Quark-gluon structure
- Physics at EIC
  - Origin of nucleon mass and spin
  - 3D structure of the nucleon and nucleus
  - Gluon saturation
  - Hadronization

#### Physics of Quarks and Gluons



- Experimental study of quantum chromodynamics (QCD)
  - Study of quark-gluon plasma (QGP)
  - Study of the spin structure of protons, solving the spin puzzle

#### Physics of Quarks and Gluons

- We need much higher resolution than that of the electron microscope
- → Electron Ion Collider



### Electron-Ion Collider (EIC)

- 2020.1.9: U.S. Department of Energy selected Brookhaven National Laboratory to host major new nuclear physics facility, the Electron-Ion Collider
- World's first polarized electron + proton / light-ion / heavy-ion collider



#### **Project Design Goals**

- High Luminosity: L= 10<sup>33</sup> 10<sup>34</sup>cm<sup>-2</sup>sec<sup>-1</sup>, 10 – 100 fb<sup>-1</sup>/year
- Highly Polarized Beams: 70%
- Large Center of Mass Energy Range: E<sub>cm</sub> = 29 140 GeV
- Large Ion Species Range: protons Uranium
- Large Detector Acceptance and Good Background Conditions
- Accommodate a Second Interaction Region (IR)

Polarized beam: e, p, d, <sup>3</sup>He

#### Atomic structure

- Scattering experiment of  $\alpha$  -rays
  - $\alpha$  -ray irradiation to gold foil
  - Only small angle scattering if charge is uniformly distributed in atoms (Thomson model)
  - Observation of large angle scattering, discovery of point nuclei, concentration of charge in a narrow region
- Rutherford scattering (1911)



#### Structure of nucleus and nucleon

- Electron Beam Scattering Experiment
  - Mott scattering
  - Electron spin 1/2, target recoil

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Rutherford}} \cdot \cos^2 \frac{\theta}{2} \cdot \frac{1}{2}$$

- Electron-proton elastic scattering
  - Electron beam at SLAC (1950s-60s)
  - Form factor measurement



- Momentum transfer dependence of angular distribution
- Rosenbluth formula

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1+\tau} + 2\tau G_M^2(Q^2) \tan^2 \frac{\theta}{2}\right]$$

- $G_E$ : Electric form factor
- $G_M$ : Magnetic form factor
- Measurement of proton size: 0.8 fm
  - Internal structure of nucleons shown as a mean distribution

#### Nucleon structure

Deep Inelastic Scatterin (DIS) Experiment

$$\frac{d^2\sigma}{dQ^2d\nu} = \sigma_{\text{Mott}} \left[ W_2(Q^2,\nu) + 2W_1(Q^2,\nu)\tan^2\frac{\theta}{2} \right]$$



Friedman Kendall

- MIT-SLAC experiment (1969, Friedman, Kendall, Taylor)
  - Scattering cross section does not decrease as Q<sup>2</sup> increases
    - Large angle scattering
    - Point-like components in the proton (parton)
  - Scattering with point-like components rather than <sup>10</sup> scattering by the nucleon as a whole





#### Quark-Parton Model (QPM)

• Bjorken scaling rule

$$\frac{d^2\sigma}{dQ^2dx} = \frac{4\pi\alpha^2}{Q^4} \frac{E'}{E} \frac{1}{x} \left[ F_2(Q^2, x) \cos^2\frac{\theta}{2} + \frac{Q^2}{2x^2M^2} 2xF_1(Q^2, x) \sin^2\frac{\theta}{2} \right]$$

- $F_2$  and  $F_1$  are functions of x only, independent of  $Q^2$
- Dirac scattering: spin 1/2 target like muon

$$\left(\frac{d\sigma}{dQ^2}\right)_{\text{Dirac}} = \frac{4\pi Z^2 \alpha^2}{Q^4} \left(\frac{E'}{E}\right)^2 \left[\cos^2\frac{\theta}{2} + \frac{Q^2}{2M^2}\sin^2\frac{\theta}{2}\right]_{k}$$

- Callan-Gross relation • Parton spin 1/2 as muon  $\frac{d^2\sigma}{dQ^2dx} = \frac{4\pi\alpha^2}{xQ^4} \{1 + (1 - y)^2\}F_2(Q^2, x)$ • DIS is the superposition of elastic scattering with a point-like component (parton) in the proton • Parton Distribution Function (PDF) F\_2 = x \sum\_{q} e\_q^2 q(x)
  Electron q = k - k'  $Q^2 = -q^2$   $x = Q^2/2Pq$ 
  - Internal structure of nucleon shown as parton distribution
  - q(x): parton distribution function of quark qJune 20, 2024

### From QPM to QCD

- Breaking of the scaling rule
  - When measured precisely, the Callan-Gross relation is broken
    - $F_2$  depends on  $Q^2$
  - Gluon presence
- QCD
  - Asymptotic freedom and confinement





Gross Politzer Wilczek

### Nucleon structure

- Constituent-quark model
  - Quarks with the effective mass (caused by the gluon)
  - Explains the magnetic moment of the nucleons
  - But, the quark spin cannot explain the nucleon spin ("spin puzzle")
- Quark-gluon model
  - Current quarks and gluon interaction
  - Initial state of high-energy hadron colliders
- Understanding the differences (or gap) of these models
  - Chiral symmetry (breaking)
  - Confinement







#### Nucleon structure

- Nucleon: the simplest multi-body system for studying dynamics of confined quarks and gluons
- Simple parton picture
  - 1-dimensional picture: in "longitudinal" direction
  - The nucleon consists of incoherent quarks and gluons
  - Described by the parton distribution functions (PDF)



#### Quark-gluon structure

10

10

10

- Deep inelastic scattering (DIS) of lepton (electron)
  - Large  $Q^2 (Q^2 = -q^2)$ provides a hard scale to resolve quarks and gluons in the proton
- Parton distribution function (PDF) of quarks and gluons
  - 1D longitudinal motion of partons
  - x: momentum fraction of quarks and gluons
  - Significant improvement of precision of the polarized PDF at EIC

![](_page_12_Figure_7.jpeg)

10

10-2

10

#### Physics at EIC

- How does the mass of the nucleon arise?
  - The Higgs mechanism accounts for only  ${\sim}1\%$  of the mass of the proton.
- How does the spin of the nucleon arise?
  - The spin of the quarks accounts for only one-third of the spin of the proton.
- What are the emergent properties of dense system of gluons?
  - The gluon saturation describes a new state of matter at extreme high density.

![](_page_13_Picture_7.jpeg)

![](_page_13_Picture_8.jpeg)

![](_page_13_Picture_9.jpeg)

#### Mass

- The Higgs mechanism accounts for only ~1% of the mass of proton.
- The symmetry breaking emerges the mass.

![](_page_14_Figure_3.jpeg)

# Origin of the nucleon spin 1/2

• EMC experiment at CERN J. Ashman et al., NPB 328, 1 (1989).  $\int_{0}^{1} dx g_{1}^{p}(x) = \frac{1}{2} \left[ \frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right]$   $= 0.123 \pm 0.013 (\text{stat}) \pm 0.019 (\text{syst})$ 

![](_page_15_Figure_2.jpeg)

combining with neutron and hyperon decay data

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s = 12 \pm 9(\text{stat}) \pm 14(\text{syst})\%$  "proton spin puzzle" "proton spin puzzle"

- total quark spin constitutes a small fraction of the nucleon spin
- integration in  $x = 0 \sim 1$  makes uncertainty
  - more data to cover wider x region with more precise data necessary
- → SLAC/CERN/DESY/JLAB experiments

### Spin

- Spin puzzle
  - Origin of the nucleon spin in the quark-gluon structure

$$\frac{1}{2} = \left[\frac{1}{2}\Delta\Sigma + L_Q\right] + \left[\Delta g + L_G\right]$$

 $\begin{array}{l} \Delta\Sigma/2 = \mbox{Quark contribution to Proton Spin} \\ L_Q = \mbox{Quark Orbital Ang. Mom} \\ \Delta g = \mbox{Gluon contribution to Proton Spin} \\ L_G = \mbox{Gluon Orbital Ang. Mom} \end{array}$ 

- Quark-spin contribution is only 20%-30% of the nucleon spin
- Gluon polarization measurement with polarized DIS at EIC
  - Small Bjorken-x region with QCD evolution (DGLAP equation)

![](_page_16_Picture_8.jpeg)

Integrated gluon polarization

![](_page_16_Figure_10.jpeg)

#### 3D structure of the nucleon

- Conclusive understanding of the nucleon spin
  - Orbital motion inside the nucleon and orbital angular momenta of quarks and gluons
- TMD (Transverse-Momentum Dependent) distribution function
  - Correlation between the (orbital) motion, spin of partons, and spin of the nucleon

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)

GPD (Generalized Parton Distribution)
Spatial distribution or tomography

![](_page_17_Figure_8.jpeg)

![](_page_17_Figure_9.jpeg)

## Tomography of the nucleon / nucleus

- EIC = color dipole microscope
  - Exclusive process and diffractive process
  - 3D distribution: transverse spatial distribution

![](_page_18_Figure_4.jpeg)

- GPD (Generalized Parton Distribution)
  - Spatial imaging of gluons and quarks = tomography
    - HERA: 1<sup>st</sup> generation
    - EIC: 2<sup>nd</sup> generation (high luminosity, heavy ion, polarization)
  - Orbital angular momentum
- Ji's sum rule  $J_q^z = \frac{1}{2} \sum_{q} \Delta q + \sum_{q} L_q = \frac{1}{2} \left( \int_{-1}^{1} x dx (H^q + E^q) \right)$  Origin of the nucleon spin

June 20, 2024

# Tomography of the nucleon / nucleus

- DVCS
  - Deeply virtual Compton scattering

Spatial distribution of sea quarks at EIC 100 fb<sup>-1</sup> and corresponding density of partons in the transverse plane

![](_page_19_Figure_4.jpeg)

![](_page_19_Figure_5.jpeg)

- Meson production
  - Gluon tomography by measuring J/ $\psi,\,\phi,\,\rho,$  etc.
  - Precision measurement at large radius with high luminosity

![](_page_19_Figure_9.jpeg)

x-dependence of spatial distribution of gluons to be obtained by the exclusive J/ $\psi$  production at EIC

![](_page_19_Figure_11.jpeg)

June 20, 2024

![](_page_20_Figure_0.jpeg)

21

#### Mass of the nucleon

• Sum rule for the nucleon mass

![](_page_21_Figure_2.jpeg)

#### Gluon saturation

000000

- Gluon emission
  - Divergence at small *x*
- Gluon recombination
  - Restriction of divergence
- Gluon saturation in balanced
  - Based on classical idea of the saturation
- Discovery of quantum collective gluon
  - Saturated gluon model, the color glass condensate (CGC) model, allows precision comparison with experiments
- Precision understanding of nucleus with the quark-gluon picture necessary as the initial state of the QGP for understanding its production mechanism

![](_page_22_Figure_10.jpeg)

![](_page_22_Figure_11.jpeg)

#### Hadronization in the nucleus

- Hadron and jet production from quarks and gluons in the nucleus (cold nuclear matter)
  - Response of nuclear matter to fast moving color charge passing through it?
  - Structure of jet?
- Mass dependence of hadronization
  - Energy loss by light vs. heavy quarks
- Comparison with hot nuclear matter (QGP)

![](_page_23_Figure_7.jpeg)

![](_page_23_Figure_8.jpeg)

### EIC physics vs luminosity & energy

![](_page_24_Figure_1.jpeg)

#### Development of lattice QCD

- Lattice QCD over the next decade will match or exceed experimental accuracy
  - Advances in computational technology
  - Need for computational projects
- Quark and gluon physics advances toward EIC as lattice QCD advances
- Study QCD by comparing precise theoretical calculations with precise experimental measurements to establish an understanding of nucleons, nuclei, and QGP

![](_page_25_Picture_6.jpeg)

Supercomputer Fugaku

#### Summary of this talk

- Basics and history
  - Quark-gluon structure
- Physics at EIC
  - Origin of nucleon mass and spin
  - 3D structure of the nucleon and nucleus
  - Gluon saturation
  - Hadronization
  - Ultra-precise electron microscope, revealing the origin of mass and spin in three dimensions
  - Discovery of emergent high-density gluon state (gluon condensation)