Spin-1 quarkonia in a rotating frame and their spin contents

ref) PLB 843 (2023) 137986

Hyungjoo Kim

WPI-SKCM2, Hiroshima University

Spin-Rotation Coupling(SRC)

 H_i : Inertial frame energy

 H_r : Rotating frame energy

S: Spin

 Ω : Angular velocity

Vector meson spin alignment

In non-central HICs,

=> Detailed mechanism is complex and still not clearly understood.

Q. $H_{SRC} = -S \cdot \Omega$ is universal for any spin?

Spin-1/2: Dirac eq. in a rotating frame using G.R.

$$\left[i\partial_{x} + gA(x) + \mathbf{\Sigma} \cdot \mathbf{\Omega} - m\right] \Psi(x) = 0 \text{ where } \mathbf{\Sigma} = \gamma^{0}(\mathbf{S} + \mathbf{L})$$
$$=> \mathbf{H}_{SRC} = -\mathbf{S} \cdot \mathbf{\Omega} \text{ for spin-1/2}$$

- Spin-1: No strict derivation based on G.R. until recently
- PRD102(2020)12,125028 J.Kapusta, E.Rrapaj, S.Rudaz
 - Proca eq. for massive spin-1 particle using G.R.

-
$$H_{SRC} = -\left(\frac{1}{2}\right) S \cdot \Omega$$
 for spin-1!

- contradictory to naive expectation and quark model

Motivation

=> Clarify the strength of SRC for spin-1 particle in a different way!

Outline

- We study SRC of (the simplest) spin-1 heavy $Q\bar{Q}$ system
- Introduce a free parameter " g_{Ω} " which indicates the strength of SRC,

$$H_{SRC} = -g_{\Omega} S \cdot \Omega$$

"Total SRC = All reaction of quark + gluon in a rot frame"

- We prove that $g_{\Omega}=g_{\Omega}^{quark}(Q^2)+g_{\Omega}^{gluon}(Q^2)=1$ for spin-1 QQ system
- Each component of g_{Ω} carried by quarks and gluons = Spin content
- We study spin contents of J/ψ , $\Upsilon(1S)$ for V and χ_{c1} , χ_{b1} for AV

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

$$\epsilon_{\mu}^{+} = (0,1,i,0)/\sqrt{2}$$

2. Pick out a right circularly polarized state => $\Pi^{+}(\omega) = \epsilon_{\mu}^{+} \epsilon_{\nu}^{+*} \Pi^{\mu\nu}(\omega,0)$

Energy of $|11\rangle$ will be shifted by ' $-\Omega$ ' i.e. $\omega \to \omega - \Omega$

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

$$\epsilon_{\mu}^{+} = (0,1,i,0)/\sqrt{2}$$

- 2. Pick out a right circularly polarized state => $\Pi^{+}(\omega) = \epsilon_{\mu}^{+} \epsilon_{\nu}^{+*} \Pi^{\mu\nu}(\omega,0)$
- 3. Put the system at the center of the rotation => $q_{\mu} = (\omega, \vec{0})$

- No external OAM
- ullet Expand Ω linear term

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

$$\epsilon_{\mu}^{+} = (0,1,i,0)/\sqrt{2}$$

- 2. Pick out a right circularly polarized state => $\Pi^+(\omega) = \epsilon_\mu^+ \epsilon_\nu^{+*} \Pi^{\mu\nu}(\omega,0)$
- 3. Put the system at the center of the rotation => $q_{\mu}=(\omega,\vec{0})$
- 4. Up to linear terms in Ω

$$\Pi^{+}(\omega) = \omega^{2} \Pi^{vac}(\omega^{2}) + \omega \Pi^{rot}(\omega^{2}) \Omega + \mathcal{O}(\Omega^{2})$$

 Π^{vac} : ordinary vacuum invariant ftn. vacuum properties ex) mass

 Π^{rot} : new function appearing in a rotating frame. spin information

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

$$\epsilon_{\mu}^{+} = (0,1,i,0)/\sqrt{2}$$

- 2. Pick out a right circularly polarized state => $\Pi^+(\omega) = \epsilon_\mu^+ \epsilon_\nu^{+*} \Pi^{\mu\nu}(\omega,0)$
- 3. Put the system at the center of the rotation => $q_{\mu}=(\omega,\vec{0})$
- 4. Up to linear terms in Ω

$$\Pi^{+}(\omega) = \omega^{2} \Pi^{vac}(\omega^{2}) + \omega \Pi^{rot}(\omega^{2}) \Omega + \mathcal{O}(\Omega^{2})$$

 Π^{vac} : ordinary vacuum invariant ftn. vacuum properties ex) mass

 Π^{rot} : new function appearing in a rotating frame. spin information

- 5. Extract g_{Ω} by comparing two different descriptions of Π^{rot}
 - (a) Directly compute Feynman diagrams in a rotating frame
 - (b) Phenomenological derivation from Π^{vac}

Method (a) - direct computation in a rotating frame Feynman diagrams in Operator Product Expansion (OPE)

Leading perturbative diagram

• Leading non-perturbative diagrams : Gluon condensates $\langle (\alpha_{\rm s}/\pi)G^2
angle$

- Compute in an inertial frame $\to \Omega$ independent terms $\to \Pi^{vac}$
- Compute in a rotating frame \rightarrow collect Ω linear terms $\rightarrow \Pi^{rot}$

Quarks in a rotating frame

Recall Dirac eq. in a rotating frame

$$\left[i\partial_x + gA(x) + \mathbf{\Sigma} \cdot \mathbf{\Omega} - m\right] \Psi(x) = 0 \text{ where } \mathbf{\Sigma} = \gamma^0 (\mathbf{S} + \mathbf{L})$$

Quark propagator in a rotating frame

$$\left[i\partial_x + gA(x) + \mathbf{\Sigma} \cdot \mathbf{\Omega} - m\right] S(x) = \delta(x)$$

- It is difficult to find full propagator
- We can expand in terms of 'g' and ' Ω '

$$S^{\text{full}} \approx S^{(0)} + S^{(0)} \Big[g \mathcal{A} + \Sigma \cdot \Omega \Big] S^{(0)} + S^{(0)} \Big[g \mathcal{A} + \Sigma \cdot \Omega \Big] S^{(0)} \Big[g \mathcal{A} + \Sigma \cdot \Omega \Big] S^{(0)} + \cdots$$

$$= \frac{iS^{(0)}(x-y)}{g \hat{A}(z) + \Sigma \cdot \Omega} + \frac{iS^{(0)}(z-y)}{g \hat{A}(z_1) + \Sigma \cdot \Omega} + \frac{iS^{(0)}(z-z_1)}{g \hat{A}(z_2) + \Sigma \cdot \Omega} + \cdots$$

Gluons in a rotating frame

• Covariant derivatives in curved space-time(Γ^a_{bc} : Christoffel symbols)

$$D_c G_{ab} = \partial_c G_{ab} - \Gamma^d_{ca} G_{db} - \Gamma^d_{cb} G_{ad}$$

• Fock-Schwinger gauge($x^{\mu}A_{\mu}=0$) in curved space-time

$$\begin{split} A_{\mu}(x) &= -\frac{1}{2} x^{\nu} G_{\mu\nu} - \frac{1}{3} x^{\nu} x^{\alpha} \underline{\partial_{\alpha}} G_{\mu\nu} + \cdots \\ &= -\frac{1}{2} x^{\nu} G_{\mu\nu} - \frac{1}{3} x^{\nu} x^{\alpha} \underline{D_{\alpha}} G_{\mu\nu} - \frac{1}{3} x^{\nu} x^{\alpha} (\Gamma^{d}_{\alpha\mu} G_{d\nu} + \Gamma^{d}_{\alpha\nu} G_{\mu d}) + \cdots \end{split}$$

additional contribution in curved space-time

• $\Gamma_{01}^2 = \Omega$, $\Gamma_{02}^1 = -\Omega$ in a rotating frame.

$$\mathcal{A}^{\text{new}}(x) = -\frac{1}{3} x^{\nu} x^{\alpha} \gamma^{\mu} (\Gamma^{d}_{\alpha\mu} G_{d\nu} + \Gamma^{d}_{\alpha\nu} G_{\mu d}) \propto \vec{x} \times (\vec{E} \times \vec{B}) \cdot \Omega = J_g \cdot \Omega$$

• Kapusta et al. thought that $D_cG_{ab}=\partial_cG_{ab}$ in a rotating frame. (Their result might be wrong)

Summary of method (a)

$$\begin{split} S_{\text{quark}} &\approx S^{(0)} + S^{(0)} \big[\underline{g} \cancel{A} + \underline{\Sigma} \cdot \underline{\Omega} \big] S^{(0)} + \cdots \\ &\qquad \qquad (S_{\text{q}} + L_{\text{q}} + J_{\text{g}}) \, \underline{\Omega} \end{split}$$

In a rot frame, we can compute $\Pi_{(a)}^{rot}$ while decomposing the given diagrams into quark and gluon AM according to their origin

Method (b) - Phenomenological derivation

In an inertial frame

$$\Pi^{+}(\omega) = \epsilon_{+}^{\mu^{*}} \epsilon_{+}^{\nu} \Pi_{\mu\nu}(\omega, 0) = \omega^{2} \Pi^{vac}(\omega^{2})$$

Energy shift of all right circularly polarized state in a rotating frame

$$=> \omega \to \omega - g_{\Omega} \Omega \qquad (\because H_{SRC} = -g_{\Omega} S \cdot \Omega)$$

$$\Pi^{+}(\omega + g_{\Omega}\Omega) = (\omega + g_{\Omega}\Omega)^{2} \Pi^{vac}((\omega + g_{\Omega}\Omega)^{2})$$

$$= \omega^{2} \Pi^{vac}(\omega^{2}) + \omega \Pi^{rot}(\omega^{2}) \Omega + \mathcal{O}(\Omega^{2})$$

Simple expression of rotating part in terms of vacuum invariant ftn.

$$\Pi_{(b)}^{rot}(\omega^2) = 2g_{\Omega} \left\{ \Pi^{vac}(\omega^2) + \omega^2 \frac{\partial \Pi^{vac}(\omega^2)}{\partial \omega^2} \right\}$$
unknown

=> We can directly derive Π^{rot} from Π^{vac} but it includes unknown g_{Ω}

g_{Ω} in perturbative region

Inertial frame

$$\Pi_{pert}^{vac} =$$

Rotating frame

$$\Pi_{(a)}^{rot} =$$
quark spin + orbit

description (a)
all responses of quarks in a rot frame
quark's spin + orbital AM

$$\Pi_{(b)}^{rot} = 2g_{\Omega} \left\{ \Pi^{vac}(\omega^2) + \omega^2 \frac{\partial \Pi^{vac}(\omega^2)}{\partial \omega^2} \right\}$$

description (b) **phen. derivation** based on the energy shift of total system by "- $g_{\Omega}\Omega$ ".

 $g_{\Omega} = 1 \text{ in the perturbative region}$

When two free quarks form a spin-1 state in a rel. way, they follow $H_{SRC}=-\,S\cdot\Omega$

c.f. Quark Model

$$H_r = m_{J/\psi} - \Omega$$

g_{Ω} in non-perturbative region

Inertial frame

Rotating frame

description (b) **phen. derivation** based on the energy shift of total system by "- $g_{\Omega}\Omega$ ".

Even in non-pert region, spin-1 system follows $H_{SRC} = - S \cdot \Omega$

Physical meaning of $g_{\Omega} = 1$?

Method (b)

- = SRC of the total system
- = $g_{\Omega}\langle \vec{S} \rangle$ where \vec{S} is spin-1 operator where $\langle \cdots \rangle = \int d^4x e^{iq \cdot x} \langle 0 \, | \, T[j(x) \cdots j(0)] \, | \, 0 \rangle$

Method (a)

= Ω linear terms in all responses of quarks and gluon in a rotating frame

$$= \langle \vec{J}_{\rm QCD} \rangle \text{ where } \vec{J}_{\rm QCD} = \int d^3x (\frac{1}{2} \bar{\psi} \vec{\gamma} \gamma_5 \psi + \psi^\dagger (\vec{x} \times (-i \vec{D})) \psi + \vec{x} \times (\vec{E} \times \vec{B}))$$

Therefore, we can conclude that $g_{\Omega} = \langle \vec{J}_{\rm QCD} \rangle / \langle \vec{S} \rangle$

- $g_{\Omega}=1$ means $\langle \vec{S} \rangle = \langle \vec{J}_{\rm QCD} \rangle$
- This should be valid for any Feynman diagram (: AM conservation)

Application - g_{Ω} of ground states

From Kallen-Lehmann(or spectral) rep,

" $g_{\Omega} = 1$ " is universal for all physical states that can couple to $j^{\mu}(x)$.

If we can extract the ground state,

=> Fraction of g_{Ω} carried by each a.m. inside the ground state

$$\begin{split} g_{\Omega}^{\text{ground}} &= \frac{\langle J_{\text{QCD}} \rangle}{\langle S_{\text{tot}} \rangle} = \frac{\langle S_q \rangle + \langle L_k \rangle + \langle L_p \rangle + \langle J_g \rangle}{\langle S_{\text{tot}} \rangle} = 1 \\ S_q &= \frac{1}{2} \gamma^1 \gamma^2 : \text{quark spin,} \\ L_k &= r \times p : \text{kinetic part of quark orbital a.m,} \\ L_p &= r \times gA : \text{potential part of quark orbital a.m,} \end{split}$$

 $J_{\varrho} = r \times (E \times B)$: gluon total a.m.

=> Spin content of the ground state

Result - spin contents of spin-1 quarkonia

With the help of 'QCD sum rule' + simple 'pole+continuum' ansatz.

		Vector (%)			Axial (%)		
		S-wave	$\Upsilon(1S)$	J/ψ	P-wave	χ_{b1}	χ_{c1}
$ \begin{cases} spin \\ r \times p \end{cases} $	S_q	100	92	88	50	43	40
	L_k	0	7.6	11	50	57	61
$r \times gA$	L_p	0	0.003	0.2	0	-0.001	0.08
Gluon $r \times (E \times B)$	J_g	0	0.015	0.8	0	-0.005	-1.5

- Total sum of 4 pieces becomes 1
- Classical picture from the naive Q.M.
 S-wave: quark spin(100%), P-wave: quark spin(50%) quark oam(50%)
- Spin contents are slightly different from the classical picture. As the quark mass becomes lighter, spin contents deviate more from the classical picture ex) J/ψ is considered as S-wave but quarks do not carry all of the total spin $\Upsilon(1S)$ is still comparable with the classical picture

Summary

For a given Feynman diagram in an inertial frame, there is a counterpart in a rotating

- 1. We prove that spin-1 composite systems follow $H_{SRC} = -\; S \cdot \Omega$
- 2. We examine spin contents of ground states in a relativistic way using QCD Sum Rules

Future plans, possible extensions

1. Light quark system

vector mesons

	Q.M.	$\Upsilon(1S)$	J/ψ	ρ, ω, ϕ
S_q	100	92	88	?
L_k	0	7.6	11	?
L_p	0	0.003	0.2	?
J_g	0	0.015	0.8	?

nucleons

	Q.M.	p, n
S_q	100	?
L_k	0	?
L_p	0	?
J_g	0	?

2. vacuum -> medium

 $\langle 0 | \cdots | 0 \rangle \rightarrow \langle \Omega | \cdots | \Omega \rangle$ Lorentz symmetry broken

3. uniform rotation -> local vorticity

4. away from the center, 3-momentum, finite size effect, non-inertial effects, etc

Back up