Transition GPDs and non-diagonal DVCS off spinless target in resonance region:

A unified framework for the meson case $\gamma^*\pi \rightarrow \gamma\pi\pi$

Sangyeong Son

In collaboration with Kirill Semenov-Tyan-Shanskiy

Kyungpook National University, Korea

National Research Centre Kurchatov institute: Petersburg Nuclear Physics Institute, Russia

2024.08.09

RIKEN Workshop on Quark Structure of Hadrons

3D Structure of Hadrons

Generalized parton distribution (GPD)

 $\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{iP^{+}z^{-}} \langle h' | \bar{\psi}(-z^{-}/2)[-z/2,z/2] \gamma^{+} \psi(z^{-}/2) [-z/2,z/2] \gamma^{+} \psi(z^{-$

• (2+1)-D tomography in (x, \dot{b}_T)

- Transverse spatial distribution of quarks in hadron resonances

spin-J

- Mechanical properties such as the angular momentum, stress, etc.

$$2) \left| h \right\rangle \Big|_{z^+ = z_\perp = 0}$$

Form factors of local QCD operators with

D. Müller et. al., Fortsch. Phys. 42, 101 (1994) A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997) X. Ji, Phys. Rev. Lett. 78, 610 (1997) X. Ji, Phys. Rev. D 55, 7114 (1997)

 $x^{J-1}H(x,\xi,t)$

Generalized FFs

Non-diagonal hard exclusive reactions

of nucleon/resonance

angular momentum, mass

S. Diehl et. al., White paper on *Exploring resonance structure with transition GPDs*, arXiv:2405.15386

Recent developments in the non-diagonal hard exclusive reactions

S. Diehl et. al. (CLAS collaboration), Phys. Rev. Lett 131, 021901 (2023)

• Beam-spin asymmetry measurement of $\gamma^* p \to \pi^- \Delta^{++} \to \pi^- p \pi^+$ by the CLAS collaboration

> K. Semenov-Tyan-Shanskiy and M. Vanderhaeghen, Phys. Rev. D 108, 034021 (2023)

• DVCS of $\gamma^*N \rightarrow \gamma \pi N$ with $N \rightarrow \Delta, N^*$ transition GPDs

• DVMP of $\gamma^* p \to \pi^- \Delta^{++}$ with $p \to \Delta^{++}$ transition GPDs

P. Kroll and K. Passek-Kumericki, Phys. Rev. D 107, 054009 (2023)

Transition GPDs

 π $N \rightarrow \pi N$

- Excitation of hadrons with non-local QCD probe (resonance region)
- Natural test ground of the chiral dynamics (near-threshold region) Π.
- Non-diagonal matrix elements of the QCD energy-momentum tensor III.

 \checkmark Transition GPDs such as $N \rightarrow \pi N$ GPDs depend on more arguments; the invariant mass and the decay angles of produced hadronic states

Two-pion Generalized distribution amplitude

 $\rightarrow \pi\pi$

Cross channel of $\gamma^*\pi \to \gamma\pi$

$$\begin{split} \Phi_{q}^{h\bar{h}}(z,\zeta,W^{2}) &= \int \frac{dy^{-}}{2\pi} e^{i(2z-1)P^{+}y^{-}/2} & \gamma^{*} \\ &\times \langle h(p)\bar{h}(p')|\bar{q}(-y/2)\gamma^{+}q(y/2)|0\rangle \Big|_{y^{+}=\vec{y}_{\perp}=0} \end{split}$$

- Analytic continuation in $t \to W^2 > 0$: encodes $\pi\pi$ invariant mass spectra
- Dispersive analysis on $\pi\pi$ generalized distribution amplitude (GDA) in resonance region
- Application of $\pi\pi$ GDA for mechanical properties of pion

M. Polyakov, Nucl. Phys. B 555, 231 (1999) B. Lehmann-Droke et. al., Phys. Rev. D 63, 114001 (2001)

S. Kumano, Q.-T. Song, O. V. Teryaev, Phys. Rev. D 97, 014020 (2018)

Froissart-Gribov projection

M. Froissart, Phys. Rev. 123, 1053 (1961) V. N. Gribov, Nucl. Phys. 22, 249 (1961)

Response of hadron to non-local QCD string-like probe • by means of FG projection

Cross channel PW expansion of Compton FF ●

$$\mathscr{H}(\cos\theta_t, t) = \sum_J F_J(t)P_J$$

Dispersion relation for Compton FF

Re
$$\mathscr{H}(\xi, t) = P \int_0^1 dx \frac{2xH(x, x, \xi^2)}{\xi^2 - x^2}$$

FG projections can, in principle, be examined directly from measurements (spin asymmetries)

K. M. Semenov-Tian-Shansky and P. Szajder, Phys. Rev. D 109, 054010 (2024)

 $N(p', \lambda')$

 $e^{-}\pi \rightarrow e^{-}\gamma \pi^{+}\pi^{0}$ DVCS

due to hadron spin.

- Study the $\pi \to \rho$ contribution to the $\pi \to \pi \pi$ GPDs. Express the $e\pi \rightarrow e\gamma\pi\pi$ cross section and work out its angular distribution near $W_{\pi\pi} \simeq m_{\rho}$.
- Invariant mass distribution of $\pi \to \pi \pi$ GPDs from • dispersive analysis
- Application of the Froissart-Gribov projection of the $\pi \rightarrow \pi \pi$ Compton FF

A preceding work to develop the framework of the partial wave analysis of transition GPDs for further generalization to $N \rightarrow \pi N$ GPDs

In this work, we study the non-diagonal DVCS of $\gamma^*\pi \to \gamma\pi\pi$ to avoid complications

 $e^-\pi \to e^-\gamma \pi^+\pi^0$ DVCS

Sudakov expansion of momenta in light cone vectors

$$\begin{split} \bar{P} &= \tilde{p} + \frac{\bar{P}^2}{2}n \\ q &= -2\xi'\tilde{p} + \frac{Q^2}{4\xi'}n \\ \Delta &= -2\xi\tilde{p} + \left(\bar{P}^2\xi + \frac{W_{\pi\pi}^2 - m_{\pi}^2}{2}\right)n + \Delta_{\perp} \\ p_{\pi\pi} &= (1-\xi)\tilde{p} + \left[\frac{\bar{P}^2}{2}(1+\xi) + \frac{W_{\pi\pi}^2 - m_{\pi}^2}{4}\right]n + \frac{\Delta_{\perp}}{2} \end{split}$$

Production plane

 $W_{\pi\pi}^2$

8 Kinematic variables

$$Q^{2} = -q^{2} = -(l-l')^{2}, \quad t = (p_{\pi\pi} - k)^{2} = \Delta^{2}$$

$$x_{B} = \frac{Q^{2}}{2k \cdot q}, \quad y = \frac{k \cdot q}{k \cdot l}, \quad W_{\pi\pi}^{2} = p_{\pi\pi}^{2} = (k_{1} + k_{2})^{2}$$

$$\Omega_{\pi}^{*} = (\theta_{\pi}^{*}, \ \phi_{\pi}^{*}), \quad \Phi$$

Our choice of kinematic variables: helicity angles in $\pi\pi$ CMS

$$\cos \theta_{\pi}^{*} = \frac{\vec{q}' \cdot \vec{k}_{2}}{|\vec{q}'| |\vec{k}_{2}|} \Big|_{\vec{k}_{1} = -\vec{k}_{2}},$$

$$\cos \varphi_{\pi}^{*} = \frac{(\vec{q}' \times \vec{k}) \cdot (\vec{q}' \times \vec{k}_{2})}{|\vec{q}' \times \vec{k}| |\vec{q}' \times \vec{k}_{2}|} \Big|_{\vec{k}_{1} = -\vec{k}_{2}},$$

 $t', s_2 \leftrightarrow \theta_{\pi}^*, \phi_{\pi}^*$

GPD parameterizations

Twist-2 (Un)polarized isoscalar and isovector $\pi \rightarrow \pi \pi$ GPDs

$$\mathcal{F}(x)\left\langle\pi^{b}(k_{1})\pi^{c}(k_{2})\right|\left\{\begin{array}{c}\hat{O}_{S}\\\hat{O}_{V}^{d}\end{array}\right\}\left(-\frac{\lambda n}{2},\frac{\lambda n}{2}\right)\left|\pi^{a}(k)\right\rangle = \underbrace{i\varepsilon(n,\bar{P},\Delta,k_{1})}{f_{\pi}^{3}}\left\{\begin{array}{c}i\varepsilon^{abc}H_{S}^{\pi\to\pi\pi}(x,\xi,t;W_{\pi\pi}^{2},\theta_{\pi}^{*},\phi_{\pi}^{*})\\\sum_{I=0}^{2}P_{da}^{I,bc}H_{V,I}^{\pi\to\pi\pi}(x,\xi,t;W_{\pi\pi}^{2},\theta_{\pi}^{*},\phi_{\pi}^{*})\right\}$$

$$\mathcal{F}(x) \left\langle \pi^{b}(k_{1}) \pi^{c}(k_{2}) \middle| \left\{ \hat{O}_{5S} \atop \hat{O}_{5V}^{d} \right\} \left(-\frac{\lambda n}{2}, \frac{\lambda n}{2} \right) \middle| \pi^{a}(k) \right\rangle = \frac{i}{f_{\pi}} \left\{ \sum_{I=0}^{i \varepsilon^{abc}} \tilde{H}_{S}^{\pi \to \pi\pi}(x, \xi, t; W_{\pi\pi}^{2}, \theta_{\pi}^{*}, \phi_{\pi}^{*}) \right\}$$

 $\mathcal{F}(x)$: Fourier transform

Non-local twist-2 QCD operators

$$\begin{cases} \hat{O}_S \\ \hat{O}_V^d \end{cases} \left(-\frac{\lambda n}{2}, \frac{\lambda n}{2} \right) = \bar{\psi} \left(-\frac{\lambda n}{2} \right) \not n \begin{cases} 1 \\ \tau^d \end{cases} \psi \left(\frac{\lambda n}{2} \right) \\ \end{cases}$$

$$\begin{cases} \hat{O}_{5S} \\ \hat{O}_{5V}^d \\ \end{cases} \left(-\frac{\lambda n}{2}, \frac{\lambda n}{2} \right) = \bar{\psi} \left(-\frac{\lambda n}{2} \right) \# \gamma_5 \begin{cases} 1 \\ \tau^d \end{cases}$$

 $\pi(k_2)$

 $\sim |\sin\theta_{\pi}^*|\sin\phi_{\pi}^*|$

 P^{I} : projector into isospin I

 $\frac{\lambda n}{2}$ $\left\{\psi\left(\frac{\lambda n}{2}\right)\right\}$

GPD near the soft-pion region

Chiral dynamics provides parameter-free prediction of $\pi \to \pi \pi$ transition GPDs near the threshold in terms of the pion GPD.

PCAC relation allows us to write the pion field in terms of the axial current and by \bullet the LSZ reduction soft pion reduces to the chiral rotation of the operator.

Soft-pion theorem

$$\langle \pi^b(k_1)\pi^c(k_2) | \hat{O} | \pi^a(k) \rangle = -\frac{i}{f_\pi} \langle \pi^c(k_2) | [Q_5^b, \hat{O}] | \pi^a(k) \rangle$$

 $\tilde{H}_{V}^{\pi \to \pi \pi}(x,\xi,t;4m_{\pi}^{2},\theta_{\pi}^{*},\phi_{\pi}^{*}) \sim H_{V}^{\pi}\left(\frac{2x}{2-\alpha(1-\xi)},\frac{2\xi+\alpha(1-\xi)}{2-\alpha(1-\xi)},t'\right)$

P. Pobylitsa, M. Polyakov, and M. Strikman, Phys. Rev. Lett. 87, 022001 (2001)

Longitudinal momentum distribution of final state pion

$$\alpha = \frac{1}{2} \left(1 - \sqrt{1 - \frac{4m_{\pi}^2}{W_{\pi\pi}^2}} \cos \theta \right)$$

10

 H_V^{π} : Pion GPD

Vector meson resonance

- Investigate the effect due to intermediate $\rho(770)$ resonance
- Well-described by the Breit-Wigner distribution and $\rho\pi\pi$ effective vertex

 $\mathcal{M}(e^{-}\pi \to e^{-}\gamma \rho \to e^{-}\gamma \pi \pi) = C_{\rm iso}g_{\rho\pi\pi}(k)$

$$(k_1 - k_2)_{\mu} \frac{i \sum_s \mathcal{E}^{\mu}(p_{\pi\pi}, s) \mathcal{E}^{*\nu}(p_{\pi\pi}, s)}{W_{\pi\pi}^2 - m_{\rho}^2 + i m_{\rho} \Gamma_{\rho}} \mathcal{M}_{\nu}(e^-\pi \to e^-\gamma\rho)$$

Vector meson resonance

Bethe-Heitler (BH) process ۲

DVCS process \bullet

$$H(e^{-}\pi \to e^{-}\gamma\rho) = \frac{e^{3}}{t} \varepsilon^{*\nu}(q',\lambda_{\gamma})\bar{u}(l',\lambda'_{e}) \left[\gamma_{\nu}\frac{1}{l'+\not{q}'}\gamma_{\mu} + \gamma_{\mu}\frac{1}{l-\not{q}'}\gamma_{\nu}\right] u(l \times \langle\rho(p_{\pi\pi},s) | J^{\mu}_{em}(0) | \pi(k)\rangle,$$

~ $\pi \rightarrow \rho$ transition EM form factor

$$= -\frac{1}{2}g_{\perp}^{\mu\nu}\int_{-1}^{1}dxC^{+}(x,\xi)\frac{\varepsilon\left(n,\mathcal{E}^{*}(p_{\pi\pi},s),\bar{P},\Delta\right)}{m_{\rho}}H^{\pi\to\rho}(x,\xi,t)$$
$$+\frac{i}{2}\varepsilon_{\perp}^{\mu\nu}\int_{-1}^{1}dxC^{-}(x,\xi)\frac{1}{f_{\pi}}\left[(\mathcal{E}^{*}\cdot\Delta)\tilde{H}_{1}^{\pi\to\rho}(x,\xi,t)+m_{\rho}^{2}(\mathcal{E}^{*}\cdot n)\tilde{H}_{2}^{\pi\to\rho}(x,\xi,t)\right]$$

 $\pi \rightarrow \rho$ transition GPDs

Comparing DVCS amplitude to the $\pi \to \pi \pi$ hadronic tensor yields $\pi \to \pi \pi$ GPDs near $W_{\pi\pi} = m_{\rho}$

Vector meson resonance

Unpolarized $\pi \to \pi \pi$ GPD near $W_{\pi\pi} = m_{\rho}$

$$H^{\pi \to \pi\pi}(x,\xi,t;W_{\pi\pi}^2,\theta_{\pi}^*,\phi_{\pi}^*)\Big|_{\rho(770)} = -2C_{\rm iso}\frac{f_{\pi}^3g_{\rho\pi\pi}}{m_{\rho}}\frac{1}{W_{\pi\pi}^2 - m_{\rho}^2 + im_{\rho}\Gamma_{\rho}}H^{\pi \to \rho}(x,\xi,t),$$

• $W_{\pi\pi}$ -dist is solely governed by the Breit-Wigner

Polarized $\pi \to \pi \pi$ GPD near $W_{\pi\pi} = m_{\rho}$

$$\begin{split} \tilde{H}^{\pi \to \pi \pi}(x,\xi,\Delta^{2};W_{\pi\pi}^{2},\theta_{\pi}^{*},\phi_{\pi}^{*})\Big|_{\rho(770)} &= C_{\mathrm{iso}}g_{\rho\pi\pi}\frac{1}{W_{\pi\pi}^{2}-m_{\rho}^{2}+im_{\rho}\Gamma_{\rho}}\sqrt{1-\frac{4m_{\pi}^{2}}{W_{\pi\pi}^{2}}}\sqrt{\frac{4\pi}{3}}\\ &\times \left[\left(R_{1,0}\tilde{H}_{1}^{\pi \to \rho}(x,\xi,\Delta^{2})+m_{\rho}^{2}(1-\xi)\tilde{H}_{2}^{\pi \to \rho}(x,\xi,\Delta^{2})\right)Y_{1,0}(\theta_{\pi}^{*},\phi_{\pi}^{*})\\ &+R_{1,1}\tilde{H}_{1}^{\pi \to \rho}(x,\xi,\Delta^{2})Y_{1,1}(\theta_{\pi}^{*},\phi_{\pi}^{*})\right], \end{split}$$
 \bullet Only the angular sture

- Pseudotensor structure cancels $Y_{1,-1}$

- angular sturctures of $Y_{l=1,m}$ remain
- Describe contribution due to the resonance of spin l

Partial-wave expansion of GPDs

Double PW expanded $\pi \rightarrow \pi \pi$ **GPDs**

$$H^{\pi \to \pi\pi}(x,\xi,t;W^2_{\pi\pi},\theta^*_{\pi},\phi^*_{\pi}) = \frac{1}{|\sin\theta^*_{\pi}|\sin\phi^*_{\pi}} \sum_{l=1}^{\infty} \sum_{m=-l}^{-1} H^{l,m}(x,\xi,t;W^2_{\pi\pi}) \, \mathcal{Y}_{l,m}(\theta^*_{\pi},\phi^*_{\pi}),$$

$$\tilde{H}^{\pi \to \pi\pi}(x,\xi,t;W^2_{\pi\pi},\theta^*_{\pi},\phi^*_{\pi}) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \tilde{H}^{l,m}(x,\xi,t;W^2_{\pi\pi}) \, \mathcal{Y}_{l,m}(\theta^*_{\pi},\phi^*_{\pi}).$$

- PW expansion coefficients $H^{l,m}$ describe the intermediate resonance state of spin J = l. •
- with the requirements of parity invariance.

Selection rules for m implies the unpolarized GPD is odd and polarized GPD is even in ϕ_{π}^* , which agree

Phenomenological models for GPDs

(i) Unpolarized quark distribution

$H^{\pi \to \rho}(x, \xi, t) = H_{DD}(x, \xi) F^{\rho \pi}(t)$

Radyushkin double distribution

$$H_{DD}(x,\xi) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \delta(x-\beta-\alpha\xi)h(\beta,\alpha)q$$

With the profile function (b = 1) and the quark distribution (r = -0.5, s = 2)

$$h(\beta, \alpha) = \frac{1}{2^{2b+1}} \frac{\Gamma(2b+2)}{\Gamma^2(b+1)} \frac{[(1-|\beta|)^2 - \alpha^2]^b}{(1-|\beta|)^{2b+1}}$$

q(x)

Phenomenological models for GPDs

(ii) Pion pole dominance model

$$\tilde{H}_{1}^{\pi \to \rho}(x,\xi,t) = \phi_{\pi}\left(\frac{x}{\xi}\right)\theta(\xi - |x|)\frac{1}{3}\frac{4f_{\pi}^{2}g_{\rho\pi\pi}}{m_{\pi}^{2} - t}$$

 $\tilde{H}_2^{\pi \to \rho}(x, \xi, t) = 0$

 $e\pi \rightarrow e\gamma \rho \rightarrow e\gamma \pi \pi \operatorname{cross} \operatorname{section}$

$$Q^2 = 2.0 \text{ GeV}^2, \ -t = 0.5 \text{ GeV}^2, \ y = 0.8, \ \Phi = \frac{\pi}{2}$$

$$\int_{0}^{2\pi} d\varphi_{\pi}^{*} \left| \mathcal{M}(e^{-}\pi \to e^{-}\gamma\rho \to e^{-}\gamma\pi) + e^{-}\gamma\pi \right| \\ = C_{iso}^{2} g_{\rho\pi\pi}^{2} \frac{W_{\pi\pi}^{2} - 4m_{\pi}^{2}}{(W_{\pi\pi}^{2} - m_{\rho}^{2})^{2} + m_{\rho}^{2}\Gamma_{\rho}^{2}} \frac{4\pi}{3} \\ \times \sum_{s} \left| \mathcal{M}(e^{-}\pi \to e^{-}\gamma\rho(W_{\pi\pi}, s)) + \sum_{s} \left| \frac{3}{2}\cos^{2}\theta_{\pi}^{*}\delta_{s,0} + \frac{3}{4}\sin^{2}\theta_{\pi}^{*}\left(\delta_{s,1} + \frac{3}{4}\sin^{2}\theta_{\pi}^{*}\right) \right| \right| \\ \times \left[\frac{3}{2}\cos^{2}\theta_{\pi}^{*}\delta_{s,0} + \frac{3}{4}\sin^{2}\theta_{\pi}^{*}\left(\delta_{s,1} + \frac{3}{4}\sin^{2}\theta_{\pi}^{*}\right) + \frac{3}{4}\sin^{2}\theta_{\pi}^{*}\left(\delta_{s,1} + \frac{3}{4}\sin^{2}\theta_{\pi}^{*}\right) \right]$$

Pion decay angular distribution estimated for $-t = -t_{min} \simeq 0.2 \text{ GeV}^2$ and $-t = 0.5 \text{ GeV}^2$

Dispersive analysis on GPD

Watson's final state interaction theorem

- ✓ Imaginary part of GPD is given by discontinuity along the cut
- $\checkmark \pi\pi$ invariant mass spectra of $\pi \rightarrow \pi\pi$ GPDs in resonance region from the dispersive analysis

$$\operatorname{Im} \mathcal{F}(x) \langle \pi_b(k_1) \pi_c(k_2) | \hat{O}_S \left(-\frac{\lambda n}{2}, \frac{\lambda n}{2} \right) | \pi_a(p_\pi) \rangle$$

= $\frac{1}{2!} \int d(\operatorname{phase space}) \mathcal{F}(x) \langle \pi_{b'}(k_1') \pi_{c'}(k_2') | \hat{O}_S \left(-\frac{\lambda n}{2}, \frac{\lambda n}{2} \right) | \pi_a(p_\pi) \rangle^* P_{bc}^{I=1\,b'c'}$ Im $\mathscr{M} \sim \operatorname{disc} \mathscr{M} \times A_{\pi\pi}^{I=1}(k_1, k_2 | k_1', k_2')$

$$\mathrm{Im}H^{l,m}(x,\xi,t;W^{2}_{\pi\pi}) = \tan \delta_{l}^{I=1}(W^{2}_{\pi\pi})\mathrm{Re}H^{l,m}(x,\xi,t;W^{2}_{\pi\pi})$$

Dispersive analysis on GPD

Omnés representation

$$H_{l,m}^{I}(x,\xi,t;W_{\pi\pi}^{2}) = \sum_{n=0}^{N-1} \frac{w^{2n}}{n!} \frac{d^{n}}{dw^{2n}} H_{l,m}^{I}(x,\xi,t;W_{\pi\pi}^{2}=0) + \frac{w^{2N}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds \frac{\mathrm{Im}H_{l,m}^{I}(x,\xi,t;s)}{s^{N}(s-W_{\pi\pi}^{2}-i\epsilon)}$$

> N-subtracted dispersion relation for the PW expanded $\pi \to \pi\pi$ GPDs

1-subtracted Omnés solution

$$H_{l,m}^{I}(x,\xi,t;W_{\pi\pi}^{2}) = H_{l,m}^{I}(x,\xi,t;W_{\pi\pi}^{2}=0)\Big|_{th}\Omega_{l}^{I}(W_{\pi\pi}^{2})$$

$$\Omega_{l}^{I}(W_{\pi\pi}^{2}) = \exp\left[\frac{W_{\pi\pi}^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds \frac{\delta_{l}^{I}(s)}{s(s - W_{\pi\pi}^{2} - i\epsilon)}\right]$$

R. Omnés, Nuovo Cim. 8, 316 (1958)

Dispersive analysis on GPD

 $H^{l,m}$ ansatz model at the threshold

$$H^{l,m}(x,\xi,t;(W_{\pi\pi}^{th})^2) = N_{l,m}H_{DD}(x,\xi)F(t)$$
$$N_{1,-1} \simeq 0.02$$
$$F(\Delta^2) = \frac{1}{1 - \Delta^2/(0.63 \text{ GeV}^2) + \Delta^4/(2.48 \text{ GeV}^4)}$$

Parameters are fitted to $\pi \rightarrow \pi \pi$ GPD in the vicinity of $\rho(770)$

$$H^{\pi \to \pi \pi}(x,\xi,t;W^2_{\pi\pi},\theta^*_{\pi},\phi^*_{\pi})\Big|_{\rho(770)} = -2C_{\rm iso}\frac{f^3_{\pi}g_{\rho\pi\pi}}{m_{\rho}}\frac{1}{W^2_{\pi\pi}-m^2_{\rho}+im_{\rho}\Gamma_{\rho}}H^{\pi \to \rho}(x,\xi,t)$$

Imaginary part yields the $\pi\pi$ invariant mass spectra

Froissart-Gribov projection

M. Froissart, Phys. Rev. 123, 1053 (1961) V. N. Gribov, Nucl. Phys. 22, 249 (1961)

> K. M. Semenov-Tian-Shansky and P. Szajder, Phys. Rev. D 109, 054010 (2024)

Cross channel PW expansion of Compton FF •

$$\mathcal{H}^{l,m}(\cos\theta_t, t, W_{\pi\pi}^2) = \sum_J F_J^{l,m}(t, W_{\pi\pi}^2) P_J(\cos\theta_t)$$
$$\cos\theta_t \simeq \cos\theta_t \simeq 0$$

Ignoring mixing of the cross channel PWs

FG projections for the (un)polarized $\pi \to \pi\pi$ Compton FFs •

$$\begin{split} F_J^{\ell m}(t,W_{\pi\pi}^2) &= 2\int_0^1 dx H^{\ell,m}(x,x,t,W_{\pi\pi}^2) \frac{2J+1}{J(J+1)} \frac{(-1)}{x} \sqrt{\frac{1}{x^2} - 1} \, Q_J^1(1/x) \\ \tilde{F}_J^{\ell m}(t,W_{\pi\pi}^2) &= 2\int_0^1 dx \tilde{H}^{\ell,m}(x,x,t,W_{\pi\pi}^2) (2J+1) \frac{Q_J(1/x)}{x^2} \end{split}$$

Neumann integral formula for Legendre function of the 2nd kind

$$Q_J(z) = \frac{1}{2} \int_{-1}^{1} dz' \frac{P_J}{z'}$$

• FG projection with $J \ge 1$, $-l \le m < 0$ of the unpolarized $\pi \to \pi \pi$ Compton FF

$$F_J^{\ell m}(t, W_{\pi\pi}^2) = 2 \int_0^1 dx H^{\ell,m}(x, x, t, W_{\pi\pi}^2) \frac{2J+1}{J(J+1)} \frac{(-1)}{x} \sqrt{\frac{1}{x^2} - 1} Q_J^1(1/x)$$

Imaginary part of FG FF yields the $\pi\pi$ invariant mass spectra

Summary & Outlook

- region.
- constructed simple ansatz for PW expanded GPDs, $H^{l,m}$
- local QCD string operator.
- can be extracted from the data

Thank you for your attention!

• We studied the angular structure of the $\pi \to \pi\pi$ GPDs and $e\pi \to e\gamma\pi\pi$ cross section in meson resonance

• We worked out the dispersive analysis on GPDs with the help of the double partial wave expansion and

• Along with $H^{l,m}(x, x, t; W^2_{\pi\pi})$ the Froissart-Gribov projection FFs can be evaluated, which encode hadronic transition from pion to spin-l state induced by the cross channel probe of a particular spin-J from the non-

• The FG projections come from the cross channel PW expansion of the Compton FFs which, in principle,