Heavy-Quark Spin Symmetry Violation effects in Charmed Baryon Production - A Concise Clarification -

Daris Samart¹ in collaboration with Nantana Monkata¹ Prin Sawasdipol¹ Nongnapat Ponkhuha¹ Ahmad Jafar Arifi^{2,3}

¹KKPaCT, Department of Physics, Khon Kaen University, Thailand

²Few-body Systems in Physics Laboratory, RIKEN Nishina Center, Wako 351-0198, Japan

³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

9-10 August 2024, International workshop on quark structures of hadron 2024, RIKEN, Japan

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Table of Contents

- Background and Motivation
 - HQSS and its Succesfull
 - Drawbacks of HQSS
 - Research Objectives
- 2 Heavy Quark Spin Symmetry (HQSS)
 - Heavy Quark Super Fields
 - CHQSS and VHQSS Lagrangians
- SU(2)_f Effective Lagrangians
 Heavy Quark Mass Expansion
- Onserved and Violated Contributions
 - Matching Relation
 - Preliminary results
 - Summary and Outlook

Heavy Quark Symmetry

• QCD Lagrangian:
$$\mathcal{L}_Q = \bar{Q}(i\not\!\!D - m_Q)Q, \quad D_\mu = \partial_\mu - igA^a_\mu T^a,$$

- $1/m_Q$ expansion of positive energy state Q_v with velocity v: (Manohar, Wise, Luke, Grinstein, ...) $\mathcal{L}_{\text{HQET}} = \underbrace{\bar{Q}_v v \cdot i D Q_v}_{\text{LO}} + \bar{Q}_v \frac{(iD_{\perp})^2}{2m_Q} Q_v - g_s \bar{Q}_v \frac{\sigma_{\mu\nu}G^{\mu\nu}}{4m_Q} Q_v + \mathcal{O}(1/m_Q^2)$
- In LO, heavy quark spin in $m_Q \to \infty$ is <u>conserved</u>
- At NLO: $1/m_Q$ expansion

$$\mathcal{L}_{\text{HQET}} = \bar{Q}_v v \cdot i D Q_v + \underbrace{\bar{Q}_v \frac{(iD_{\perp})^2}{2m_Q} Q_v - \underbrace{g_s \bar{Q}_v \frac{\sigma_{\mu\nu} G^{\mu\nu}}{4m_Q} Q_v}_{\text{NLO in } 1/m_Q \text{ expansion}} + \mathcal{O}(1/m_Q^2)$$

Heavy Hadron Effective Theory

- At LO: $1/m_Q$ expansion in quark $\iff 1/M$ expansion in hadron HQS gives doublet/singlet in mass spectrum in exotic heavy hadrons and nuclei
- LO + NLO:
 - HQS doublet:
 - Baryon: $\Sigma_c \left(J^P = \frac{1}{2}^+ \right) \iff \Sigma_c^* \left(J^P = \frac{3}{2}^+ \right)$ • Meson: $\overline{D} \left(J^P = 0^- \right) \iff \overline{D}^* \left(J^P = 1^- \right)$
 - Meson: $D\left(J^{-1}=0\right) \iff D^{-1}\left(J^{-1}=1\right)$
 - HQS singlet: $\Lambda_c \left(J^P = \frac{1}{2}^+ \right)$

イロト イヨト イヨト イ

Table of Contents

- Background and Motivation
 - HQSS and its Succesfull
 - Drawbacks of HQSS
 - Research Objectives
- 2 Heavy Quark Spin Symmetry (HQSS)
 - Heavy Quark Super Fields
 - CHQSS and VHQSS Lagrangians
- SU(2)_f Effective Lagrangians
 Heavy Quark Mass Expansion
- Onserved and Violated Contributions
 - Matching Relation
 - Preliminary results
 - Summary and Outlook

Image: A matrix

• Reduction of Degrees of Freedom: by decoupling the spin of the heavy quark from its dynamics

(日)

- Reduction of Degrees of Freedom: by decoupling the spin of the heavy quark from its dynamics
- Model Independence: allows physicists to derive model-independent relations between different states

・ロト ・ 日 ト ・ ヨ ト

- Reduction of Degrees of Freedom: by decoupling the spin of the heavy quark from its dynamics
- Model Independence: allows physicists to derive model-independent relations between different states
- **Relating Spectra:** to understand the structure and transitions between these states more systematically

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Reduction of Degrees of Freedom: by decoupling the spin of the heavy quark from its dynamics
- Model Independence: allows physicists to derive model-independent relations between different states
- **Relating Spectra:** to understand the structure and transitions between these states more systematically
- **Predictive Power:** predicting the mass splittings between states in a heavy quark system that differ only in their spin configurations

(日)

- Reduction of Degrees of Freedom: by decoupling the spin of the heavy quark from its dynamics
- Model Independence: allows physicists to derive model-independent relations between different states
- **Relating Spectra:** to understand the structure and transitions between these states more systematically
- **Predictive Power:** predicting the mass splittings between states in a heavy quark system that differ only in their spin configurations
- **Spin-Dependent Interactions:** such as hyperfine splittings, which are small corrections to the mass and decay rates due to spin-spin interactions between the quarks

イロト イヨト イヨト イ

- Reduction of Degrees of Freedom: by decoupling the spin of the heavy quark from its dynamics
- Model Independence: allows physicists to derive model-independent relations between different states
- **Relating Spectra:** to understand the structure and transitions between these states more systematically
- **Predictive Power:** predicting the mass splittings between states in a heavy quark system that differ only in their spin configurations
- **Spin-Dependent Interactions:** such as hyperfine splittings, which are small corrections to the mass and decay rates due to spin-spin interactions between the quarks
- **Development of HQET:** is a cornerstone of Heavy Quark Effective Theory (HQET), an effective field theory that systematically expands in inverse powers of the heavy quark mass

・ロト ・日 ・ ・ ヨ ・ ・

- Reduction of Degrees of Freedom: by decoupling the spin of the heavy quark from its dynamics
- Model Independence: allows physicists to derive model-independent relations between different states
- **Relating Spectra:** to understand the structure and transitions between these states more systematically
- **Predictive Power:** predicting the mass splittings between states in a heavy quark system that differ only in their spin configurations
- **Spin-Dependent Interactions:** such as hyperfine splittings, which are small corrections to the mass and decay rates due to spin-spin interactions between the quarks
- **Development of HQET:** is a cornerstone of Heavy Quark Effective Theory (HQET), an effective field theory that systematically expands in inverse powers of the heavy quark mass
- Universal Predictions: ensures consistency in predictions across different heavy quark systems, due to the similar behavior under HQSS

イロト イヨト イヨト イ

- Reduction of Degrees of Freedom: by decoupling the spin of the heavy quark from its dynamics
- Model Independence: allows physicists to derive model-independent relations between different states
- **Relating Spectra:** to understand the structure and transitions between these states more systematically
- **Predictive Power:** predicting the mass splittings between states in a heavy quark system that differ only in their spin configurations
- **Spin-Dependent Interactions:** such as hyperfine splittings, which are small corrections to the mass and decay rates due to spin-spin interactions between the quarks
- **Development of HQET:** is a cornerstone of Heavy Quark Effective Theory (HQET), an effective field theory that systematically expands in inverse powers of the heavy quark mass
- Universal Predictions: ensures consistency in predictions across different heavy quark systems, due to the similar behavior under HQSS
- Study of Multiquark Systems: of exotic states, such as tetraquarks and pentaquarks

・ロト ・ 日下・ ・ ヨト・

• Approximate Symmetry: that holds only in the limit of infinitely heavy quark masses, the corrections must be taken into account for real quarks

Image: A math a math

- Approximate Symmetry: that holds only in the limit of infinitely heavy quark masses, the corrections must be taken into account for real quarks
- **Power Corrections:** the corrections are often complex which arise from finite quark masses and could involve non-perturbative QCD effects

- Approximate Symmetry: that holds only in the limit of infinitely heavy quark masses, the corrections must be taken into account for real quarks
- **Power Corrections:** the corrections are often complex which arise from finite quark masses and could involve non-perturbative QCD effects
- Less Effective for Charm Quarks: because the charm quark mass is not sufficiently large compared to the chiral symmetry breaking scale $(\Lambda_{\chi} \approx 4\pi f_{\pi}^2)$

• • • • • • • •

- Approximate Symmetry: that holds only in the limit of infinitely heavy quark masses, the corrections must be taken into account for real quarks
- **Power Corrections:** the corrections are often complex which arise from finite quark masses and could involve non-perturbative QCD effects
- Less Effective for Charm Quarks: because the charm quark mass is not sufficiently large compared to the chiral symmetry breaking scale $(\Lambda_{\chi} \approx 4\pi f_{\pi}^2)$

• • • • • • • •

- Approximate Symmetry: that holds only in the limit of infinitely heavy quark masses, the corrections must be taken into account for real quarks
- **Power Corrections:** the corrections are often complex which arise from finite quark masses and could involve non-perturbative QCD effects
- Less Effective for Charm Quarks: because the charm quark mass is not sufficiently large compared to the chiral symmetry breaking scale $(\Lambda_{\chi} \approx 4\pi f_{\pi}^2)$
- HQSS is relevant based on the assumption that heavy quarks are *highly on-shell*

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Approximate Symmetry: that holds only in the limit of infinitely heavy quark masses, the corrections must be taken into account for real quarks
- **Power Corrections:** the corrections are often complex which arise from finite quark masses and could involve non-perturbative QCD effects
- Less Effective for Charm Quarks: because the charm quark mass is not sufficiently large compared to the chiral symmetry breaking scale $(\Lambda_{\chi} \approx 4\pi f_{\pi}^2)$
- HQSS is relevant based on the assumption that heavy quarks are *highly on-shell*
- For $p\bar{p} \to Y_c \bar{Y}_c$, the charmed quark production is *highly off-shell*, which not satisfy with HQSS assumption

・ロト ・ 日 ト ・ ヨ ト

- Approximate Symmetry: that holds only in the limit of infinitely heavy quark masses, the corrections must be taken into account for real quarks
- **Power Corrections:** the corrections are often complex which arise from finite quark masses and could involve non-perturbative QCD effects
- Less Effective for Charm Quarks: because the charm quark mass is not sufficiently large compared to the chiral symmetry breaking scale $(\Lambda_{\chi} \approx 4\pi f_{\pi}^2)$
- HQSS is relevant based on the assumption that heavy quarks are *highly on-shell*
- For $p\bar{p} \to Y_c \bar{Y}_c$, the charmed quark production is *highly off-shell*, which not satisfy with HQSS assumption
- We assert that the charmed baryon production process can be explained by HQSS framework, but to what extent?

・ロト ・ 一下・ ・ ヨト ・

- Approximate Symmetry: that holds only in the limit of infinitely heavy quark masses, the corrections must be taken into account for real quarks
- **Power Corrections:** the corrections are often complex which arise from finite quark masses and could involve non-perturbative QCD effects
- Less Effective for Charm Quarks: because the charm quark mass is not sufficiently large compared to the chiral symmetry breaking scale $(\Lambda_{\chi} \approx 4\pi f_{\pi}^2)$
- HQSS is relevant based on the assumption that heavy quarks are *highly on-shell*
- For $p\bar{p} \to Y_c \bar{Y}_c$, the charmed quark production is *highly off-shell*, which not satisfy with HQSS assumption
- We assert that the charmed baryon production process can be explained by HQSS framework, but to what extent?
- Thus, we would like to know whether how much of HQSS is *conserved* or *violated*, for the $p\bar{p} \rightarrow Y_c \bar{Y}_c$ processes?

イロト イヨト イヨト イ

Research Objectives

• By now, the study of the HQSS and its violation hasn't been found yet

・ロト ・ 同ト ・ ヨト

Research Objectives

- By now, the study of the HQSS and its violation hasn't been found yet
- In this work we estimate both conserved (CHQSS) and violated (VHQSS) contribution by comparing their differential cross sections to the total cross section of the $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$, $\Sigma_c \bar{\Sigma}_c$, $\Sigma_c^* \bar{\Sigma}_c$ and $\Sigma_c^* \bar{\Sigma}_c^*$ processes

< 口 > < 合

Research Objectives

- By now, the study of the HQSS and its violation hasn't been found yet
- In this work we estimate both conserved (CHQSS) and violated (VHQSS) contribution by comparing their differential cross sections to the total cross section of the $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$, $\Sigma_c \bar{\Sigma}_c$, $\Sigma_c^* \bar{\Sigma}_c$ and $\Sigma_c^* \bar{\Sigma}_c^*$ processes

• Our aim is to investigate the violation in HQSS in terms of the heavy quarks spin quantum number i.e. spin- $\frac{1}{2}$ from Σ_c and spin- $\frac{3}{2}$ from Σ_c^*

Table of Contents

- Background and Motivation
 - HQSS and its Succesfull
 - Drawbacks of HQSS
 - Research Objectives
- 2 Heavy Quark Spin Symmetry (HQSS)
 - Heavy Quark Super Fields
 - CHQSS and VHQSS Lagrangians
- SU(2)_f Effective Lagrangians
 Heavy Quark Mass Expansion
- Onserved and Violated Contributions
 - Matching Relation
 - Preliminary results
 - Summary and Outlook

HQSS properties and its transformation

In the heavy-quark limit $m_Q \to \infty$, the spin interaction between light and heavy quarks is decoupled. As a consequent, the pseudoscalar and vector D mesons as well as spin- $\frac{1}{2}$ and spin- $\frac{3}{2}$ baryons form degenerate states. We find

$$\begin{split} H_a &= P_+(v) \left(D_a^\mu \gamma_\mu + i \gamma_5 D_a \right) &, \ \bar{H}_a &= \gamma_0 H_a^\dagger \gamma_0 \\ T_{ab}^\mu &= P_+(v) \left(\Sigma_{ab}^\mu + \frac{i}{\sqrt{3}} (\gamma^\mu + v^\mu) \gamma_5 \Sigma_{ab} \right) &, \ \bar{T}_{ab}^\mu &= (T_{ab}^\mu)^\dagger \gamma \\ T &= P_+(v) \Lambda &, \ \bar{T} &= T^\dagger \gamma_0 \end{split}$$

where $P_+(v) = \frac{1}{2}(1 + \psi)$ is the positive covariant velocity projection operator and obey the following the HQSS $SU(2)_v$ transformations:

$$\begin{split} H_a &\to e^{-i\theta_{\alpha}S^{\alpha}}H_a, \qquad \bar{H}_a \to \bar{H}_a e^{i\theta_{\alpha}S^{\alpha}} \\ T^{\mu}_{ab} &\to e^{-iS_{\alpha}\theta^{\alpha}}T^{\mu}_{ab}, \qquad \bar{T}^{\mu}_{ab} \to \bar{T}^{\mu}_{ab} e^{i\theta_{\alpha}S^{\alpha}} \\ T \to e^{-iS_{\alpha}\theta^{\alpha}}T, \qquad \bar{T} \to \bar{T}e^{iS_{\alpha}\theta^{\alpha}} \end{split}$$

where S^{α} is the heavy-quark spin operator with the properties:

$$S^{\alpha} = \frac{1}{2} \gamma_5 \left[\not\!\!\!\! \psi, \gamma^{\alpha} \right], \quad S^{\dagger}_{\alpha} \gamma_0 = \gamma_0 S_{\alpha}, \quad \left[\not\!\!\!\! \psi, S_{\alpha} \right] = 0, \quad \left[S_{\alpha}, \gamma_5 \right] = 0$$

10/28

Conserving Heavy Quark Spin Symmetry (CHQSS) and Violating Heavy Quark Spin Symmetry (VHQSS) Lagrangians

- Respect CPT, Lorent Symmetry and Flavor symmetry
- With the super field effective Lagrangians

$$\begin{split} \mathcal{L}^{\text{CHQSS}} &= \frac{1}{2} c_1 \left\langle \bar{T}^{\mu}_{ab} \gamma_5 N_b H_a \gamma_{\mu} + \text{h.c.} \right\rangle \\ &+ \frac{1}{2} c_2 \left\langle \bar{T} \gamma_5 N_a H_a \gamma_5 + \text{h.c.} \right\rangle \\ \mathcal{L}^{\text{VHQSS}} &= -\frac{1}{4} b_1 \left\langle \bar{T}^{\mu}_{ab} \gamma^{\nu} N_b H_a \gamma_{\mu} \gamma_{\nu} \gamma_5 + \text{h.c.} \right\rangle \\ &+ \frac{1}{2} b_2 \left\langle \bar{T} \gamma^{\mu} N_a H_a \gamma_{\mu} + \text{h.c.} \right\rangle \\ &+ \frac{1}{4} b_3 \left\langle \bar{T} \sigma^{\mu\nu} N_a H_a \sigma_{\mu\nu} + \text{h.c.} \right\rangle \end{split}$$

• After tracing all fields in heavy quark spin space

$$\begin{split} \mathcal{L}^{\mathrm{CHQSS}} &= \frac{c_1}{\sqrt{3}} \bar{\Sigma}_{ab} \gamma^{\mu} N_b D^a_{\mu} + c_1 \bar{\Sigma}^{\mu}_{ab} \gamma_5 N_b D^a_{\mu} \\ &\quad + i c_2 \bar{\Lambda} \gamma_5 N_a D^a + \mathrm{h.c.}, \\ \mathcal{L}^{\mathrm{VHQSS}} &= \frac{i \sqrt{3}}{2} b_1 \bar{\Sigma}_{ab} \gamma_5 N_b D_a + \frac{i}{\sqrt{3}} b_1 \bar{\Sigma}_{ab} \sigma^{\mu\nu} N_b D^a_{\mu} v_{\nu} \\ &\quad - i b_1 \epsilon_{\mu\nu\alpha\beta} \bar{\Sigma}^{\mu}_{ab} \gamma^{\nu} N_b D^a_a v^{\beta} \\ &\quad + b_2 \bar{\Lambda} \gamma^{\mu} N_a D^a_{\mu} + i b_3 \bar{\Lambda} \sigma^{\mu\nu} N_a D^a_{\mu} v_{\nu} + \mathrm{h.c.}. \end{split}$$

Conserving Heavy Quark Spin Symmetry (CHQSS) and Violating Heavy Quark Spin Symmetry (VHQSS) Lagrangians

$$\mathcal{L}^{\text{CHQSS}} = \frac{c_1}{\sqrt{3}} \bar{\Sigma}_{ab} \gamma^{\mu} N_b D^a_{\mu} + c_1 \bar{\Sigma}^{\mu}_{ab} \gamma_5 N_b D^a_{\mu} + i c_2 \bar{\Lambda} \gamma_5 N_a D^a + \text{h.c.},$$
$$\mathcal{L}^{\text{VHQSS}} = \frac{i \sqrt{3}}{2} b_1 \bar{\Sigma}_{ab} \gamma_5 N_b D_a + \frac{i}{\sqrt{3}} b_1 \bar{\Sigma}_{ab} \sigma^{\mu\nu} N_b D^a_{\mu} v_{\nu} - i b_1 \epsilon_{\mu\nu\alpha\beta} \bar{\Sigma}^{\mu}_{ab} \gamma^{\nu} N_b D^a_a v^{\beta} + b_2 \bar{\Lambda} \gamma^{\mu} N_a D^a_{\mu} + i b_3 \bar{\Lambda} \sigma^{\mu\nu} N_a D^a_{\mu} v_{\nu} + \text{h.c.}.$$

- We note that the CHQSS terms contain vector couplings between Σ_c , (Σ_c^*) and D^* , whereas the Λ_c couples to pseudoscalar D mesons.
- VHQSS terms contain tensor couplings between Σ_c , (Σ_c^*) and D^* as well as pseudoscalar cloupled to D, whereas the Λ_c couples to D^* with the vector and tensor terms.
- However, the coupling constants, c_1 , c_2 , b_1 , b_2 and b_3 are free parameters. We can obtain the coupling constants from the well-know couplings from the effective Lagrangian in the literature by matching the structures in the heavy quark mass expansion.

Samart, Daris (KKU)

Table of Contents

- Background and Motivation
 - HQSS and its Succesfull
 - Drawbacks of HQSS
 - Research Objectives
- 2 Heavy Quark Spin Symmetry (HQSS)
 - Heavy Quark Super Fields
 - CHQSS and VHQSS Lagrangians
- $SU(2)_f$ Effective Lagrangians
 Heavy Quark Mass Expansion
- Onserved and Violated Contributions
 - Matching Relation
 - Preliminary results
 - Summary and Outlook

・ロト ・ 日 ト ・ ヨ ト

Heavy Quark Mass Expansion

In the large heavy-quark mass limit, single heavy-quark hadrons can be considered as slowly varying fields, $D_v^{\pm}(x)$, $D_v^{\mu\pm}(x)$, $\Sigma_v^{\pm}(x)$, $\Sigma_v^{\pm\mu}(x)$ and Λ_{\pm}

$$\Phi = \{D^{\pm}, D^{*\pm}, \Sigma^{\pm}, \Sigma^{*\pm}, \Lambda^{\pm}\}$$

Φ	$D = \left(D^0 \ D^+ \right)$	$D^* = (D^{*0} \ D^{*+})$	$N = \binom{p}{n}$	$\Lambda_c = \Lambda_c^+$	$\Sigma_c = \begin{pmatrix} \Sigma_c^{++} \\ \Sigma_c^{+} \\ \Sigma_c^{0} \end{pmatrix}$	$\Sigma_c^* = \begin{pmatrix} \Sigma_c^{*++} \\ \Sigma_c^{*+} \\ \Sigma_c^{*0} \end{pmatrix}$	
J^P :	0^{+}	1^{+}	$\frac{1}{2}^{+}$	$\frac{1}{2}^{+}$	$\frac{1}{2}^{+}$	$\frac{3}{2}^+$	
$m (\text{GeV}^2)$	1.867	2.008	0.938	2.286	2.455	2.520	

• For the slowly varying heavy quark mass expansion, one can decompose the hadronic fields as

$$\Phi(x) = \exp\left(-im_{\Phi}v \cdot x\right)\Phi_{v}^{+}(x) + \exp\left(\pm im_{\Phi}v \cdot x\right)\Phi_{v}^{-}(x)$$
$$\psi\Phi_{v} = \Phi_{v}$$

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Effective Lagrangians with heavy quark mass expansion

• $SU(2)_f$ effective Lagrangians

$$\begin{split} \mathcal{L} &= \mathcal{L}^{P} + \mathcal{L}^{A} + \mathcal{L}^{V} + \mathcal{L}^{T} + \text{h.c.} \\ \mathcal{L}^{P} &= g_{1} \bar{\Sigma} i \gamma_{5} N D + g_{2} \bar{\Lambda} i \gamma_{5} N D \\ \mathcal{L}^{A} &= -\frac{g_{3}}{m_{D}} \bar{\Sigma} \gamma^{\mu} \gamma_{5} \partial_{\mu} D N - \frac{g_{4}}{m_{D}} \bar{\Lambda} \gamma^{\mu} \gamma_{5} \partial_{\mu} D N \\ &- \frac{g_{5}}{m_{D}} \bar{\Sigma}^{\mu} \partial_{\mu} D N \\ \mathcal{L}^{V} &= f_{1} \bar{\Sigma} \gamma^{\mu} N D_{\mu} + f_{2} \bar{\Lambda} \gamma^{\mu} N D_{\mu} + f_{3} \bar{\Sigma}^{\mu} i \gamma_{5} N D_{\mu} \\ \mathcal{L}^{T} &= \frac{i h_{1}}{2 m_{D}} \bar{\Sigma} \sigma^{\mu \nu} N D_{\mu \nu} + \frac{i h_{2}}{2 m_{D}} \bar{\Lambda} \sigma^{\mu \nu} N D_{\mu \nu} \\ &+ \frac{i h_{3}}{2 m_{D}} \bar{\Sigma}^{\mu} \gamma^{\nu} \gamma_{5} N D_{\mu \nu} + \frac{i h_{4}}{4 m_{D}} \epsilon_{\mu \nu \alpha \beta} \bar{\Sigma}^{\mu} \gamma^{\nu} N D^{\alpha \beta} \end{split}$$

• With the heavy quark mass expansion

$$\begin{split} \mathcal{L}_{v} &= \mathcal{L}_{v}^{P} + \mathcal{L}_{v}^{A} + \mathcal{L}_{v}^{V} + \mathcal{L}_{v}^{T} + \text{h.c.} \\ \mathcal{L}^{P} &= g_{1} \bar{\Sigma}_{v} i \gamma_{5} N D_{v} + g_{2} \bar{\Lambda} i \gamma_{5} N D \\ \mathcal{L}^{A} &= \frac{g_{3}}{m_{D}} \bar{\Sigma}_{v} i \gamma_{5} D_{v} N + \frac{g_{4}}{m_{D}} \bar{\Lambda}_{v} i \gamma_{5} D_{v} N \\ \mathcal{L}^{V} &= f_{1} \bar{\Sigma}_{v} \gamma^{\mu} N D_{v\mu} + f_{2} \bar{\Lambda}_{v} \gamma^{\mu} N D_{v\mu} + f_{3} \bar{\Sigma}_{v}^{\mu} i \gamma_{5} N D_{v\mu} \\ \mathcal{L}^{T} &= h_{1} \bar{\Sigma}_{v} \sigma^{\mu \nu} N v_{\mu} D_{v\nu} + h_{2} \bar{\Lambda}_{v} \sigma^{\mu \nu} N v_{\mu} D_{v\nu} \\ &+ h_{3} \bar{\Sigma}_{v}^{\mu} \gamma^{\nu} \gamma_{5} N v_{\mu} D_{v\nu} + h_{4} \epsilon_{\mu\nu\alpha\beta} \bar{\Sigma}_{v}^{\mu} \gamma^{\nu} N v^{\alpha} D_{v}^{\beta} \end{split}$$

where $\Sigma_v^{\mu} v_{\mu} = 0 = D_v^{\mu} v_{\mu}$ and $\bar{\Sigma}_v \not v = \bar{\Sigma}_v$ have been used.

Table of Contents

- Background and Motivation
 - HQSS and its Succesfull
 - Drawbacks of HQSS
 - Research Objectives
- 2 Heavy Quark Spin Symmetry (HQSS)
 - Heavy Quark Super Fields
 - CHQSS and VHQSS Lagrangians
- SU(2)_f Effective Lagrangians
 Heavy Quark Mass Expansion
- Onserved and Violated Contributions
 - Matching Relation
 - Preliminary results
 - Summary and Outlook

16/28

Matching Relation

• The expanded $SU(2)_f$ effective Lagrangians

$$\begin{split} \mathcal{L}_{v} &= \mathcal{L}_{v}^{P} + \mathcal{L}_{v}^{A} + \mathcal{L}_{v}^{V} + \mathcal{L}_{v}^{T} + \text{h.c.} \\ \mathcal{L}^{P} &= g_{1} \bar{\Sigma}_{v} i \gamma_{5} N D_{v} + g_{2} \bar{\Lambda} i \gamma_{5} N D \\ \mathcal{L}^{A} &= \frac{g_{3}}{m_{D}} \bar{\Sigma}_{v} i \gamma_{5} D_{v} N + \frac{g_{4}}{m_{D}} \bar{\Lambda}_{v} i \gamma_{5} D_{v} N \\ \mathcal{L}^{V} &= f_{1} \bar{\Sigma}_{v} \gamma^{\mu} N D_{v\mu} + f_{2} \bar{\Lambda}_{v} \gamma^{\mu} N D_{v\mu} + f_{3} \bar{\Sigma}_{v}^{\mu} i \gamma_{5} N D_{v\mu} \\ \mathcal{L}^{T} &= h_{1} \bar{\Sigma}_{v} \sigma^{\mu \nu} N v_{\mu} D_{v\nu} + h_{2} \bar{\Lambda}_{v} \sigma^{\mu \nu} N v_{\mu} D_{v\nu} \\ &+ h_{3} \bar{\Sigma}_{v}^{\mu} \gamma^{\nu} \gamma_{5} N v_{\mu} D_{v\nu} + h_{4} \epsilon_{\mu \nu \alpha \beta} \bar{\Sigma}_{v}^{\mu} \gamma^{\nu} N v^{\alpha} D_{v}^{\beta} \end{split}$$

• The super-multiplet HQSS Lagrangians

$$\begin{split} \mathcal{L}^{\mathrm{CHQSS}} &= \frac{c_1}{\sqrt{3}} \bar{\Sigma}_{ab} \gamma^{\mu} N_b D^a_{\mu} + c_1 \bar{\Sigma}^{\mu}_{ab} \gamma_5 N_b D^a_{\mu} \\ &\quad + i c_2 \bar{\Lambda} \gamma_5 N_a D^a + \mathrm{h.c.}, \\ \mathcal{L}^{\mathrm{VHQSS}} &= \frac{i \sqrt{3}}{2} b_1 \bar{\Sigma}_{ab} \gamma_5 N_b D_a + \frac{i}{\sqrt{3}} b_1 \bar{\Sigma}_{ab} \sigma^{\mu\nu} N_b D^a_{\mu} v_{\nu} \\ &\quad - i b_1 \epsilon_{\mu\nu\alpha\beta} \bar{\Sigma}^{\mu}_{ab} \gamma^{\nu} N_b D^a_a v^{\beta} \\ &\quad + b_2 \bar{\Lambda} \gamma^{\mu} N_a D^a_{\mu} + i b_3 \bar{\Lambda} \sigma^{\mu\nu} N_a D^a_{\mu} v_{\nu} + \mathrm{h.c.}. \end{split}$$

・ロト ・ 日下・ ・ 日下・

Matching Relation 2

- For CHQSS Lagrangians: $c_1 = \sqrt{3}f_1 = \frac{1}{2}f_3 = h_3, \ c_2 = g_2 + g_4$
- For VHQSS Lagrangians: $b_1 = \frac{2}{\sqrt{3}}(g_1 + g_3), \ b_1 = \sqrt{3}h_1, \ b_1 = -2f_4, \ b_2 = f_2, \ b_3 = h_2$
- Input parameters (Coupling constants): SU(3) symmetry relations from $g_{\pi NN}$, replacing strange hadrons by the charmed ones.(Thanat2022):

•
$$g_1 = 3.2, \, g_2 = 16.65, \, g_3 = 10.63, \, g_4 = 14.33$$

•
$$f_1 = 12.7, f_2 = -5.11$$

•
$$h_1 = 5.8, h_2 = -10.4$$

• The form factors

$$F(t) = k^2 \frac{\Lambda^4}{\Lambda^4 + \left(t - m_{\phi}^2\right)^2},$$

$$F_n(t) = k \left(\frac{\Lambda^2}{\Lambda^2 - t}\right)^n, \quad (n = 1, 2),$$

(日)

Preliminary Results: $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$

Image: A matrix

Preliminary Results: $p\bar{p} \to \Sigma_c \bar{\Sigma}_c$

Preliminary Results: $p\bar{p} \to \Sigma_c^* \bar{\Sigma}_c$

Preliminary Results: $p\bar{p} \to \Sigma_c^* \bar{\Sigma}_c^*$

Summary and Outlook

- We constructed the conserving and violating HQSS Lagragians to study $p\bar{p} \rightarrow Y_c \bar{Y}_c$ reactions.
- The conserving terms are vector couplings for Σ_c and D^* and pseudoscalar couplings for Λ_c and D.
- The violating terms are pseudoscalar couplings for Σ_c and D, tensor coupling for Σ_c and D^* and vector and tensor couplings for Λ_c and D^* .
- We calculated the differential cross-section for $p\bar{p} \rightarrow Y_c \bar{Y}_c$ processes and estimated the contributions of the CHQSS and VHQSS.
- We plan to put coupling constants from other theoretical calculations, for instances, Light-Cone QCD sum rules, and etc.

Thank you.

(日)

E 990

a .		/ \
Somo nt		
o a man	. Dalls I	
		/

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Scaling of the Interaction

Samart, Daris (KKU)

2024-08-09, Japan 25/28

Heavy Quark Spin Symmetry

a .		/ \
Somo net		
Samart.	Dalls	INNU

Image: A mathematical states and a mathem

Heavy Quark Flavor Symmetry

A B >
 A
 B >
 A
 A
 B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Summary of Chiral Quark Symmetry

- infinite quark mass limit: $m_Q \to \infty \ (m_Q \gg \Lambda_{\rm QCD})$
- relevant quantum numbers: flavor (f) and spin (s)
- provided relations: $B \Leftrightarrow B^*$, $D \Leftrightarrow D^*$, $\Lambda_c \Leftrightarrow \Lambda_b$ or $\Sigma_c \Leftrightarrow \Sigma_c^*$
- complementary to Chiral Symmetry $(m_q \ll \Lambda_{\rm QCD})$
- <u>NOT</u> a symmetry of the Lagrangians (whole S-Matrix), <u>BUT</u> an Effective Theory (certain matrix elements)
- good approximation to QCD in a certain kinematic region
- $\bullet~Q$ interacts predominantly by the exchange of soft g

			Backu	p						
intermediate		$SU(2)_f$		CHQSS		VHQSS				
particle		Λ	Σ_{ab}	Σ^{μ}_{ab}	Λ	Σ_{ab}	Σ^{μ}_{ab}	Λ	Σ_{ab}	Σ^{μ}_{ab}
D_a	pseudo-scalar (P)	g_2	g_1		Ca				b.	
$\partial^{\mu}D_{a}$	axial-vector (A)	g_4	g_3		c_2				v_1	
D^{μ}_{a}	vector (V)	f_2	f_1	f_3		C	C	b_2	b.	b.
$\partial^{\mu}D_{a}^{\nu}$	tensor (T)	h_2	h_1	h_3,h_4		c_1		b_3	v_1	v_1

E 990

<u> </u>		
Somo nut		
Jamar	, Dalls I	IN IN U I

イロト イロト イヨト イヨト