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Contents

1. γ p → φ p,      γ 4He → φ 4He

2. γ p → J/ψ p,   γ A → J/ψ A (A = d, 4He, 12C, 16O, 40Ca)

❏ Based on our dynamical reaction model (a), we will apply for the model (b) to
    make predictions for J/ψ photproduction for future experiments at EIC and JLab.

❏ We will improve the model (b) to relate the phenomenological c quark-nucleon 
    potential to gluon GPD in nucleon, such that the gluon distributions in nuclei
    can be predicted for EIC experiments.
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◻ Photoproduction of light vector mesons offers an ideal opportunity
    for studying gluonic interactions at high energies.
◻ Pomeron exchange is responsible for describing slow rising total cross section.
◻ The production mechanism at low energies should be investigated with the recent experimental data.

Introduction [Exclusive photoproduction of vector mesons]

γ p → φ p

[Dey,              CLAS, PRC.89. 055208 (2014)
 Seraydaryan, CLAS, PRC.89.055206 (2014)
 Mizutani,      LEPS, PRC.96.062201 (2017)]

[Pentchev, GlueX, PRL.123.072001 (2019)
 Duran,      JLab, Nature.615.813 (2023)
 Pentchev, GlueX, PRC.108.025201 (2023)]

low
energy :
data

low
energy :
data

Sangho Kim (SSU)



1. γ p → φ p,   γ 4He → φ 4He



- - - - Pomeron     
• • • • Pomeron + ƒ₂  ——  total
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γ p → φ p

[Laget,PLB.489.313(2000)]
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- - - - Pomeron     
• • • • Pomeron + ƒ₂  ——  total

❏ high energy
❏ We focus on γ p → φ p.

❏ low energyγ p → φ p

[Laget,PLB.489.313(2000)]

◻ σ [γp → φp] ≈ σ [γp → ωp]
◻ FN: isoscalar EM form factor
          of the nucleon

◻ 𝛼P(t) = 1.08 + 0.25t

◻ σ[γp → φp] << σ[γp → (ρ,ω)p]
   due to the OZI rule
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❏ high energy
❏ We focus on γ p → φ p.

❏ low energy

❏ high energy:
The two-gluon exchange is
simplified by the Donnachie-Landshoff (DL)
model which suggests that
the Pomeron couples to the nucleon like
a C = +1 isoscalar photon and its coupling is
described in terms of FN(t).
[Pomeron Physics and QCD (Cambridge University, 2002)]

❏ low energy:
We need to clarify the reaction mechanism.
[Exp: Dey,              CLAS, PRC.89. 055208 (2014)
          Seraydaryan, CLAS, PRC.89.055206 (2014)
          Mizutani,      LEPS, PRC.96.062201 (2017)]
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◻ σ [γp → φp] ≈ σ [γp → ωp]
◻ FN: isoscalar EM form factor
          of the nucleon

◻ 𝛼P(t) = 1.08 + 0.25t

◻ σ[γp → φp] << σ[γp → (ρ,ω)p]
   due to the OZI rule

1. Introduction [γ p → φ p] Sangho Kim (SSU)



Born term

◻ Ward-Takahashi identity

❏ Scattering amplitude:
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2. Formalism [γ p → φ p] Sangho Kim (SSU)



◻ EM vertex

◻ strong vertex

Born term
❏ Scattering amplitude: ❏ Effective Lagrangians
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◻ EM vertex

◻ strong vertex

❏ Effective Lagrangians
Born term
❏ Scattering amplitude:
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final state interaction (FSI)

+

FSI=

◻ decay mode of φ-meson

❏ Scattering amplitude:
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final state interaction (FSI)

+

FSI=

FSI=

◻ decay mode of φ-meson

❏ Scattering amplitude:
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final state interaction (FSI)
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final state interaction (FSI)

: meson-baryon propagator
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2. Formalism [γ p → φ p] Sangho Kim (SSU)



(a)           (b,c)          (d,e,f)   MB = (KΛ, KƩ, πN, ρN)

◻ To leading order,
    we obtain these FSI diagrams.

final state interaction (FSI)

: meson-baryon propagator
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◻ We consider both parts numerically.

final state interaction (FSI)

: meson-baryon propagator

(a)           (b,c)          (d,e,f)   MB = (KΛ, KƩ, πN, ρN)
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◻ The J/ψ-N potential from the LQCD data 
   ~ Yukawa form (υ0 = 0.1, α = 0.3 GeV)
     [Kawanai, Sasaki, PRD.82.091501(R) (2010)]

◻ which is assumed in our work, φ-N potential
   The best fit was obtained by (υ0 = 0.2, α = 0.5 GeV).
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final state interaction (FSI)

2. Formalism [γ p → φ p] Sangho Kim (SSU)2. Formalism [γ p → φ p]2. Formalism [γ p → φ p]



◻ The potential is obtained by taking the nonrelativistic limit of
   the scalar-meson exchange amplitude calculated from the Lagrangian:

    Фσ is a scalar field with mass α (V0 = -8υ0πMφ).

◻

10

final state interaction (FSI)

Sangho Kim (SSU)2. Formalism [γ p → φ p]

◻ The J/ψ-N potential from the LQCD data 
   ~ Yukawa form (υ0 = 0.1, α = 0.3 GeV)
     [Kawanai, Sasaki, PRD.82.091501(R) (2010)]

◻ which is assumed in our work, φ-N potential
   The best fit was obtained by (υ0 = 0.2, α = 0.5 GeV).



11

final state interaction (FSI)

◻ The φ-N potential from the LQCD   [Lyu, PRD.106.074507 (2022)]

    

◻ The simple fitting functions such as
   “the Yukawa form” and “the van der Waals form ~ 1/rk with k=6(7)”
   cannot reproduce the lattice data.
> We need to update our results based on the LQCD data.

2. Formalism [γ p → φ p] Sangho Kim (SSU)

◻ The J/ψ-N potential from the LQCD data 
   ~ Yukawa form (υ0 = 0.1, α = 0.3 GeV)
     [Kawanai, Sasaki, PRD.82.091501(R) (2010)]

◻ which is assumed in our work, φ-N potential
   The best fit was obtained by (υ0 = 0.2, α = 0.5 GeV).



total cross section [γ p → φ p]Born term

12

3. Numerical Results [γ p → φ p] Sangho Kim (SSU)



Born term

◻ Our Pomeron model describes
   the high energy regions quite well.

γ p →
ρ0

ω
φ
J/ψ
ϒ(1s)

12

total cross section [γ p → φ p]

3. Numerical Results [γ p → φ p] Sangho Kim (SSU)



Born term with FSI

γ p →
ρ0

ω
φ
J/ψ
ϒ(1s)

◻ The contributions of the FSI terms are
    almost very small. 12

total cross section [γ p → φ p]

◻ Our Pomeron model describes
   the high energy regions quite well.

3. Numerical Results [γ p → φ p] Sangho Kim (SSU)



[Exp: Dey (CLAS),
PRC.89. 055208 (2014)] 13

Born term

differential cross sections
[γ p → φ p]

3. Numerical Results [γ p → φ p] Sangho Kim (SSU)



[Exp: Dey (CLAS),
PRC.89. 055208 (2014)] 13

◻ The strong peak at √s ≃ 2.2 GeV 
    persists only in cosθ = 0.925 &
    vanishes around cosθ = 0.8.

◻ The backward peaks at
   √s ≃ 2.1 & 2.3 GeV are due to
   two N*’s although the magnitudes
   are far more suppressed.

differential cross sections
[γ p → φ p]

3. Numerical Results [γ p → φ p] Sangho Kim (SSU)



3. Numerical Results [γ p → φ p] Sangho Kim (SSU)

◻ They considered only
   the imaginary part of the propagator.
   The real part should be considered.

[Ryu, PTEP.2014.023D03 (2014)]
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❏ We employ a distorted-wave impulse approximation.

◻ Including the FSI term, we can write DCS for spin J=0 nuclei: Fc (FN) : nuclear (nucleon) charge FF

16

γ 4He → φ 4He                                             γ p → φ p
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❏ We employ a distorted-wave impulse approximation.

◻ Including the FSI term, we can write DCS for spin J=0 nuclei: Fc (FN) : nuclear (nucleon) charge FF

16

γ 4He → φ 4He                                             γ p → φ p

◻ TIMP: the term that φ meson is produced from a single nucleon in the nucleus
◻ TFSI: the effect due to the scattering of the outgoing φ with the recoiled nucleus

(in c.m.)

◻ Within multiple-scattering theory, φA potential
   is expressed in terms of φN scattering amplitude.

4. [γ 4He → φ 4He] Sangho Kim (SSU)



❏ We employ a distorted-wave impulse approximation.

◻ Including the FSI term, we can write DCS for spin J=0 nuclei: Fc (FN) : nuclear (nucleon) charge FF

17

γ 4He → φ 4He                                             γ p → φ p

◻ The total cross section for φ4He production is about 4 times larger than φN production. 

4. [γ 4He → φ 4He] Sangho Kim (SSU)

1 10 100
Eγ [GeV]

0

1

2

3

σ
 [

µ
b

]

Pomeron
full
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γ 4He → φ4He



❏ We employ a distorted-wave impulse approximation.

◻ Including the FSI term, we can write DCS for spin J=0 nuclei: Fc (FN) : nuclear (nucleon) charge FF
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γ 4He → φ 4He                                             γ p → φ p

◻ The FSI contributions are relatively suppressed by factors of 101 – 103.

4. [γ 4He → φ 4He] Sangho Kim (SSU)



γ p → φ p                                                      γ 4He → φ 4He

◻ The peak position is similar to each other.
   Any relation between them?

‣ is not due to the N* contribution.
‣ may arise from another mechanism.

19

[Exp: Hiraiwa (LEPS), PRC.035208.5 (2017)]

4. [γ 4He → φ 4He] Sangho Kim (SSU)



2. γ p → J/ψ p, γ 4He → J/ψ 4He

                            γ d → J/ψ d



◻ They obtain the phenomenological J/ψ potentials, VJ/ψN → J/ψN, with
   no VMD assumption by taking the cc structure of J/ψ into account
   to define the model Hamiltonian: H = H0 + 𝛤γ,cc + vcc + vcN

◻ It is assumed that the interactions between the cc quarks in J/ψ and
   the nucleon can be defined by a phenomenological quark-N potential vcN.

◻ The γ N → J/ψ N amplitude, Bγ N → J/ψ N, and J/ψ N → J/ψ N potential, VJ/ψN → J/ψN,
    are defined by the cc-loop mechanisms.

[S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

1. Dynamical Model [γ p → J/ψ p]

20
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◻ They obtain the phenomenological J/ψ potentials, VJ/ψN → J/ψN, with
   no VMD assumption by taking the cc structure of J/ψ into account
   to define the model Hamiltonian: H = H0 + 𝛤γ,cc + vcc + vcN

◻ It is assumed that the interactions between the cc quarks in J/ψ and
   the nucleon can be defined by a phenomenological quark-N potential vcN.

◻ The γ N → J/ψ N amplitude, Bγ N → J/ψ N, and J/ψ N → J/ψ N potential, VJ/ψN → J/ψN,
    are defined by the cc-loop mechanisms.

◻ The unitary condition requires the J/ψ-N FSI effects must be included.
   Ttotal

γ N → J/ψ N = TD
γ N → J/ψ N                        + TPom

γ N → J/ψ N

                        = (Bγ N → J/ψ N + Tfsi
γ N → J/ψ N) + TPom

γ N → J/ψ N

   with Tfsi
γ N → J/ψ N = TJ/ψ N → J/ψ N                               Bγ N → J/ψ N

◻ TJ/ψ N → J/ψ N scattering amplitude is calculated from VJ/ψN → J/ψN potential, 
   by solving the Lippman-Schwinger equation : 
   TJ/ψ N → J/ψ N = VJ/ψ N → J/ψ N + VJ/ψ N → J/ψ N GJ/ψN → J/ψN TJ/ψ N → J/ψ N

[S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

1. Dynamical Model [γ p → J/ψ p]

20
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◻ It is assumed that the VN potential can be constructed by the Folding
   model using the quark-N interaction vcN and the wave function φJ/ψ :

◻ The wave function and vcN potential are also used to construct the amplitude:

> TD
γ N → J/ψ N is completely determined by vcN (r).

[S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

1. Dynamical Model [γ p → J/ψ p]
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◻ It is assumed that the VN potential can be constructed by the Folding
   model using the quark-N interaction vcN and the wave function φJ/ψ :

◻ The wave function and vcN potential are also used to construct the amplitude:

> TD
γ N → J/ψ N is completely determined by vcN (r).

◻ To establish correspondence with the LQCD calculations, vcN (r) is chosen such
   that the predicted VJ/ψN

 (r) at large distances exhibits the Yukawa potential form :

◻ 1Y model : 𝛼 = -0.067, 𝜇 = 0.3 GeV, cs = 0
   2Y model : 𝛼 = -0.145, 𝜇 = 0.3 GeV, cs = 1, 𝜇1=5𝜇

[S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

1. Dynamical Model [γ p → J/ψ p]

[Kawanai, PRD.82.091501(R) (2011)]

21
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1. Dynamical Model [γ p → J/ψ p]
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◻ DL Pomeron exchange alone is not sufficient for describing the diff. cross section data.
◻ Together with the determined vcN (r) and wave function φJ/ψ generated from CQM, B model,
   the diff. cross section data could be well reproduced at low energies.

4.5 5.0 5.5 6.0 6.5
W [GeV]

10
-2

10
-1

10
0

10
1

σ
 [

n
b

]

Cornell 75
SLAC 75
GlueX 19
GlueX 23
(1,0,0)
(0,1,0)
(1,1,0)
(1,1,1)

(1, 30, 0.2)

γ p → J/ψ p

2Y model

2Y model

(TPom, B, Tfsi)

22

Sangho Kim (SSU)



1. Dynamical Model [γ p → J/ψ p]

short range behavior of vcN (r)

◻ The large difference is observed at -t > 2 [GeV2] between the two models.
◻ It originates from the very different short range behaviors of the potential vcN (r). 

1Y &  2Y models

23
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1. Dynamical Model [γ p → J/ψ p]

◻ The cross sections in the very near threshold region are largely
   determined by the FSI term.

◻ These demonstrate that J/ψ-N interactions can be extracted rather
   clearly from the J/ψ photoproduction data within this model.

◻ More precise data from JLab in the very threshold region and
   in the large scattering angles are called for.

◻ The parametrization of quark-nucleon potential vcN (r)
   is guided by the Yukawa form extracted from LQCD calculation
   and must be improved by using more advanced LQCD calculations
   of J/ψ N scattering, in particular the short-range part of the potential.

24

Sangho Kim (SSU)

◻ Talk by S. Sakinah tomorrow in detail



❏ We employ a distorted-wave impulse approximation.

◻ Including the FSI term, we can write DCS for spin J=0 nuclei: Fc (FN) : nuclear (nucleon) charge FF

25
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❏ We employ a distorted-wave impulse approximation.

◻ Including the FSI term, we can write DCS for spin J=0 nuclei: Fc (FN) : nuclear (nucleon) charge FF

25
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Ttotal = TD           + TPom

        = (B + Tfsi) + TPom

Tfsi
 = T                               B

γ 4He → J/ψ 4He : 



❏ We employ a distorted-wave impulse approximation.

◻ Including the FSI term, we can write DCS for spin J=0 nuclei: Fc (FN) : nuclear (nucleon) charge FF

26
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Sangho Kim (SSU)1. Dynamical Model [γ 4He → J/ψ 4He]

◻ The data from EIC and JLab is called for to shed light on the mechanism of J/ψ 4He photoproduction.

TD = B        + Tfsi

Ttotal = TD       + Tpom
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◻ The dip structures shown at -t ≈ 2 [GeV2] are
   due to the structure of the 4He form factor FT (t).

◻ The FSI contributions are relatively suppressed by factors of about 102.

◻ The 4He form factor for V18 (Argonne V18) and NV (Norfolk-Verginia)
   model exhibits rather different shapes at large angles.

(TPom, B, Tfsi)(TPom, B, Tfsi)
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◻ The dip structures shown at -t ≈ 2 [GeV2] are
   due to the structure of the 4He form factor FT (t).

◻ The FSI contributions are relatively suppressed by factors of about 102.

◻ The 4He form factor for V18 (Argonne V18) and NV (Norfolk-Verginia)
   model exhibits rather different shapes at large angles.
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◻ With only the total cross section, it is difficult to distinguish the 4He form factor used in calculation.
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◻ For spin J = 1 deuteron, there are two form factors F0(k) and F2(k)
   due to the s and d wave parts of the deuteron wavefunction, respectively.

◻ F2(k) is due to the crucial tensor force of the NN potential and 
   can be probed by J/ψ exclusive production process clearly.

◻ The very near threshold covers only large -t regions where the cross sections are mainly
   due to F2(k) and thus is very effective in testing the d-wave state of deuteron wavefunction.

◻ At high energies, small -t regions are also covered such that the dip structure is shown.

preliminary results
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◻ How do the cross sections depend on the NN model used in generating deuteron wavefunctions?

preliminary results

F0(k) F2(k)

◻ They can be distinguished at energies near threshold.

V18 (Argonne V18)
NV (Norfolk-Verginia)
CDBonn



cc mesons
(including non-qq states)

◻ There are many cc mesons above J/ψ meson.
◻ Their contributions may not negligible compared to
   those of light mesons.
◻ Which mechanism is more dominant?

cc mesons

light mesons

[S.H.Kim, in progress]

2. Meson Exchange Model [γ p → J/ψ p] Sangho Kim (SSU)

light mesons                    cc mesons

31



[S.H.Kim, in progress]

2. Meson Exchange Model [γ p → J/ψ p] Sangho Kim (SSU)

light mesons                    cc mesons

◽ σ (PS mesons) > σ (S mesons)
   [by one ~ two orders of magnitudes]

◽ Each Contribution

◽ Total cross section with light mesons included

32



Pomeron                               Scalar meson

◽ The dominant mechanism can be verified by the future EIC and JLab data
   for the spin polarization observables, e.g., beam asymmetry.

◽ In vector-meson (φ) electroproduction, γ* p → φ p, we know that
   S-meson plays an important role at low W and low Q2 for σL.

◽ The role of χc0(3415,0+) can be found from the future EIC and JLab data
   for γ* p → J/ψ p reaction at low W and low Q2.

2. Meson Exchange Model [γ p → J/ψ p]

[S.H.Kim, in progress]

σ (PS mesons)                σ (S mesons)
                   ← dominant →

γ* p → φ p [S.H.Kim, PRC.101.065201 (2020)]
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3. Box Diagram Model [γ p → J/ψ p]
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◻ Two pronounced cusp structures are located at the D𝛬c and D*𝛬c thresholds.
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3. Box Diagram Model [γ p → J/ψ p]

◻ The presence of such cusps can be a clear indication of the importance of the charm loops.

◻ We are trying to calculate this region by using the 3-dimensional reduction
   of the Bethe-Salpeter equation for both principal and singular parts.

[Du, EPJC.80.1053 (2020)]

◻ We calculate
   D𝛬c  : 3 terms
   D*𝛬c : 5 terms
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◇ For γ p → φ p,
    we studied relative contributions between the Pomeson and various meson exchanges.
    > The light-meson (π, η, a0, f0,...) contribution is crucial to describe the data at low energies.

    The final φN interactions are described by the gluon-exchange, direct φN couplings, and the box
    diagrams arising from the couplings with πN, ρN, KΛ, and KΣ channels. > suppressed by 102 – 103.

◇ For γ 4He → φ 4He,
    a distorted-wave impulse approximation is employed within the multiple scattering formulation.
    > The FSI effects are suppressed compared to the Born term by 101 – 103.
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    The final φN interactions are described by the gluon-exchange, direct φN couplings, and the box
    diagrams arising from the couplings with πN, ρN, KΛ, and KΣ channels. > suppressed by 102 – 103.

◇ For γ 4He → φ 4He,
    a distorted-wave impulse approximation is employed within the multiple scattering formulation.
    > The FSI effects are suppressed compared to the Born term by 101 – 103.

◇ We suggested three models for γ p → J/ψ p :
     dynamical model, meson-exchange model, Box-diagram model

◇ Based on the two dynamical models, we investigated γ A → J/ψ A (A = d, 4He, 12C, 16O, 40Ca) reaction.

◇ For both φ p and J/ψ p photoproduction, the meson-baryon loops seem to be
    the dominant processes rather than the pentaquark (Ps, Pc) contributions in the s channel.
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◇ We will improve our model to relate the phenomenological c quark-nucleon potential to gluon
    GPD in nucleon, such that the gluon distributions in nuclei can be predicted for EIC experiments.

◇ Approved 12 GeV era experiments to date at Jafferson Labarotory:
    [E12-09-003] Nucleon Resonances Studies with CLAS
    [E12-11-005] Meson spectroscopy with low Q2 electron scattering in CLAS12
    [E12-12-006] Near Threshold Electroproduction of J/ψ at 11 GeV
    [E12-12-007] Exclusive Phi Meson Electroproduction with CLAS12
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Thank you very much for your attention
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