Photoproduction of φ and J/ψ meson off nucleon and nuclei

Sang-Ho Kim (金相鎬)

Soongsil University, Seoul, Republic of Korea Origin of Matter and Evolution of Galaxies (OMEG) Institute

In collaboration with T.-S.H.Lee (ANL)

International Workshop on Quark Structure of Hadrons 2024 09 - 10 Aug, 2024, Riken, Japan

Contents

1. $\gamma p \rightarrow \phi p$, $\gamma {}^{4}\text{He} \rightarrow \phi {}^{4}\text{He}$

2. $\gamma p \rightarrow J/\psi p$, $\gamma A \rightarrow J/\psi A$ (A = d, ⁴He, ¹²C, ¹⁶O, ⁴⁰Ca)

□ Introduction

Formalism

Results

□ Summary & Future work

Contents based on

a [S.H.Kim, T.-S.H.Lee, S.i.Nam, Y.Oh, PRC.104.045202 (2021)]

b [S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

Contents

- 1. $\gamma p \rightarrow \phi p$, $\gamma {}^{4}\text{He} \rightarrow \phi {}^{4}\text{He}$
- 2. $\gamma p \rightarrow J/\psi p$, $\gamma A \rightarrow J/\psi A$ (A = d, ⁴He, ¹²C, ¹⁶O, ⁴⁰Ca)
- □ Based on our dynamical reaction model (a), we will apply for the model (b) to make predictions for J/ ψ photproduction for future experiments at EIC and JLab.
- □ We will improve the model (b) to relate the phenomenological c quark-nucleon potential to gluon GPD in nucleon, such that the gluon distributions in nuclei can be predicted for EIC experiments.

Contents based on

a [S.H.Kim, T.-S.H.Lee, S.i.Nam, Y.Oh, PRC.104.045202 (2021)]

b [S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

Introduction [Exclusive photoproduction of vector mesons]

Photoproduction of light vector mesons offers an ideal opportunity for studying gluonic interactions at high energies.

□ Pomeron exchange is responsible for describing slow rising total cross section.

□ The production mechanism at low energies should be investigated with the recent experimental data.

04

1. $\gamma p \rightarrow \phi p$, $\gamma^4 He \rightarrow \phi^4 He$

1. Introduction [y p $\rightarrow \phi$ p]

[Laget,PLB.489.313(2000)]

1. Introduction [y p $\rightarrow \phi$ p]

1. Introduction [y p $\rightarrow \phi$ p]

□ high energy:

The two-gluon exchange is

simplified by the Donnachie-Landshoff (DL)

model which suggests that

the Pomeron couples to the nucleon like

a C = +1 isoscalar photon and its coupling is described in terms of $F_N(t)$.

[Pomeron Physics and QCD (Cambridge University, 2002)]

□ low energy:

We need to clarify the reaction mechanism.

[Exp: Dey, CLAS, PRC.89. 055208 (2014) Seraydaryan, CLAS, PRC.89.055206 (2014) Mizutani, LEPS, PRC.96.062201 (2017)] □ We focus on $\gamma p \rightarrow \phi p$. □ high energy

 $\Box \sigma [\gamma p \rightarrow \varphi p] \approx \sigma [\gamma p \rightarrow \omega p]$ $\Box F_{N}: isoscalar EM form factor$ of the nucleon

$$F_N(t) = \frac{4M_N^2 - a_N^2 t}{(4M_N^2 - t)(1 - t/t_0)^2}$$
$$\alpha_P(t) = 1.08 + 0.25t$$

low energy

 $\Box \sigma[\gamma p \rightarrow \phi p] \ll \sigma[\gamma p \rightarrow (\rho, \omega)p]$ due to the OZI rule

Born term

Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$

□ Ward-Takahashi identity

 $\mathcal{M}(k) = \epsilon_{\mu}(k)\mathcal{M}^{\mu}(k)$

if we replace ϵ_{μ} with k_{μ} :

$$k_{\mu}\mathcal{M}^{\mu}(k) = 0$$

Born term

Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$

Effective Lagrangians □ EM vertex $\mathcal{L}_{\gamma\phi f_1} = g_{\gamma\phi f_1} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial^{\lambda} \partial_{\lambda} \phi_{\alpha} f_{1\beta}$ $\mathcal{L}_{\gamma\Phi\phi} = \frac{eg_{\gamma\Phi\phi}}{M_{\phi}} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu}A_{\nu}\partial_{\alpha}\phi_{\beta}\Phi$ $\mathcal{L}_{\gamma S\phi} = \frac{eg_{\gamma S\phi}}{M_{\phi}} F^{\mu\nu} \phi_{\mu\nu} S$ □ strong vertex $\mathcal{L}_{f_1NN} = -g_{f_1NN}\bar{N} \bigg[\gamma_{\mu} - i \frac{\kappa_{f_1NN}}{2M_N} \gamma_{\nu} \gamma_{\mu} \partial^{\nu} \bigg] f_1^{\mu} \gamma_5 N$ $\mathcal{L}_{\Phi NN} = -ig_{\Phi NN}\bar{N}\Phi\gamma_5N$ $\mathcal{L}_{SNN} = -g_{SNN}\bar{N}SN$ п г V.

$$\mathcal{L}_{\gamma NN} = -e\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N A^{\mu}$$
$$\mathcal{L}_{\phi NN} = -g_{\phi NN} \bar{N} \left[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N \phi^{\mu}$$
$$07$$

Born term

 γp

 \rightarrow

 ϕp

 $\phi(k_2)$

∦Pomeron

 $p(p_2)$

ny,

p

 $p(p_1)$

Trunny

 $\gamma(k_1)$ $\psi(\cdot,\cdot)$

 p, p^*

final state interaction (FSI)

Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{FSI}(E)]$

+

My yoooboo

 $f_1(1285),$

 π, η, a_0, f_0

p

p

p

p

Mary Cool

 p, p^*

www.

p

 γp

 \rightarrow

 ϕp

 \mathcal{D}

FSI

\Box decay mode of φ -meson

Γ_1	$K^{+}K^{-}$	$(49.2 \pm 0.5)\%$
Γ_2	$K^0_L \ K^0_S$	$(34.0 \pm 0.4)\%$
Γ_3	$\rho\pi\!+\pi^+\pi^-\pi^0$	$(15.24 \pm 0.33)\%$
Γ_4	$ ho\pi$	
Γ_5	$\pi^+\pi^-\pi^0$	
Γ_6	$\eta\gamma$	$(1.303 \pm 0.025)\%$
Γ_7	$\pi^0\gamma$	$(1.32\pm 0.06) imes 10^{-3}$
Γ_8	$\ell^+\ell^-$	
Γ_9	e^+e^-	$(2.974 \pm 0.034) imes 10^{-4}$
Γ_{10}	$\mu^+\mu^-$	$(2.86\pm0.19) imes10^{-4}$
Γ_{11}	$\eta e^+ e^-$	$(1.08\pm 0.04) imes 10^{-4}$
Γ_{12}	$\pi^+\pi^-$	$(7.3 \pm 1.3) imes 10^{-5}$
Γ_{13}	$\omega \pi^0$	$(4.7\pm 0.5) imes 10^{-5}$
Γ_{14}	$\omega\gamma$	< 5%
Γ_{15}	$ ho\gamma$	$< 1.2 imes 10^{-5}$

Sangho Kim (SSU)

Sangho Kim (SSU)

N

N

(c)

(f)

N

 $t_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$

Sangho Kim (SSU)

$$v_{\phi N,\phi N}^{\text{Gluon}} + v_{\phi N,\phi N}^{\text{Direct}} + \sum_{MB} v_{\phi N,MB} G_{MB}(E) v_{MB,\phi N}$$

(a) (b,c) (d,e,f) MB = (KA, K\Sigma, \pi N, \rho N)

□ To leading order, we obtain these FSI diagrams.

Sangho Kim (SSU)

final state interaction (FSI)

$$I_{\phi N,\phi N}(E) = I_{\phi N,\phi N}(E) + I_{\phi N,\phi N}(E) + I_{\phi N,\gamma N}(E)$$

$$I_{\phi N,\phi N}(E) = B_{\phi N,\gamma N} + I_{\phi N,\gamma N}^{FSI}(E) + I_{\phi N,\gamma N}^{N}(E)$$

$$I_{\phi N,\phi N}(E) = B_{\phi N,\gamma N} + I_{\phi N,\gamma N}^{FSI}(E) + I_{\phi N,\gamma N}^{N}(E)$$

$$I_{\phi N,\phi N}(E) = B_{\phi N,\gamma N} + I_{\phi N,\gamma N}^{FSI}(E) + I_{\phi N,\gamma N}^{N}(E)$$

$$I_{\phi N,\phi N}(E) = I_{\phi N,\phi N}(E) + I_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}(E)t_{\phi N,\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}(E)t_{\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}(E)t_{\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}(E)t_{\phi N}(E)t_{\phi N}(E)$$

$$I_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}(E)t_{\phi N$$

Sangho Kim (SSU)

final state interaction (FSI)

 \square The J/ $\psi\text{-}N$ potential from the LQCD data

~ Yukawa form ($v_0 = 0.1, \alpha = 0.3 \text{ GeV}$)

[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-lpha r}}{r}$$

□ which is assumed in our work, φ-N potential The best fit was obtained by ($v_0 = 0.2$, α = 0.5 GeV).

final state interaction (FSI)

 \Box The J/ ψ -N potential from the LQCD data

~ Yukawa form ($v_0 = 0.1, \alpha = 0.3 \text{ GeV}$)

[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-lpha r}}{r}$$

□ which is assumed in our work, φ-N potential The best fit was obtained by ($v_0 = 0.2$, α = 0.5 GeV).

□ The potential is obtained by taking the nonrelativistic limit of the scalar-meson exchange amplitude calculated from the Lagrangian:

$$\mathscr{L}_{\sigma} = V_0(\bar{\psi}_N\psi_N\Phi_{\sigma} + \phi^{\mu}\phi_{\mu}\Phi_{\sigma})$$

 Φ_{σ} is a scalar field with mass α (V₀ = -8v₀ π M $_{\phi}$).

$$\square \mathcal{V}_{gluon}(k\lambda_{\phi}, pm_s; k'\lambda'_{\phi}, p'm'_s) = \frac{V_0}{(p-p')^2 - \alpha^2} \left[\bar{u}_N(p, m_s) u_N(p', m'_s) \right] [\epsilon^*_{\mu}(k, \lambda_{\phi}) \epsilon^{\mu}(k', \lambda'_{\phi})]$$

final state interaction (FSI)

 \Box The J/ ψ -N potential from the LQCD data

~ Yukawa form ($v_0 = 0.1, \alpha = 0.3 \text{ GeV}$)

[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-lpha r}}{r}$$

□ which is assumed in our work, φ-N potential The best fit was obtained by ($v_0 = 0.2$, α = 0.5 GeV).

\Box The ϕ -N potential from the LQCD [Lyu, PRD.106.074507 (2022)]

Attractive N-φ Interaction and Two-Pion Tail from Lattice QCD near Physical Point Yan Lyu,^{1,2,*} Takumi Doi,^{2,†} Tetsuo Hatsuda,^{2,‡} Yoichi Ikeda,^{3,§} Jie Meng,^{1,4,¶} Kenji Sasaki,^{3,**} and Takuya Sugiura^{2,††}

 \Box The simple fitting functions such as

"the Yukawa form" and "the van der Waals form ~ $1/r^k$ with k=6(7)" cannot reproduce the lattice data.

> We need to update our results based on the LQCD data.

FIG. 1. (Color online). The $N-\phi$ potential V(r) in the ${}^{4}S_{3/2}$ channel as a function of separation r at Euclidean time t/a = 12 (red squares), 13 (green circles) and 14 (blue triangles).

3. Numerical Results [$\gamma p \rightarrow \phi p$]

Sangho Kim (SSU)

Born term

total cross section $[\gamma p \rightarrow \phi p]$

3. Numerical Results [y p $\rightarrow \phi$ p]

Born term

total cross section $[\gamma p \rightarrow \phi p]$

Our Pomeron model describes
 the high energy regions quite well.

3. Numerical Results [y p $\rightarrow \phi$ p]

Sangho Kim (SSU)

with FSI

Our Pomeron model describes
 the high energy regions quite well.

□ The contributions of the FSI terms are almost very small.

3. Numerical Results [$\gamma p \rightarrow \phi p$]

differential cross sections $[\gamma p \rightarrow \phi p]$

Born term

Pomeron

Born

total

3. Numerical Results [$\gamma p \rightarrow \phi p$]

differential cross sections $[\gamma p \rightarrow \phi p]$

□ The strong peak at $\sqrt{s} \approx 2.2 \text{ GeV}$ persists only in $\cos\theta = 0.925 \&$ vanishes around $\cos\theta = 0.8$.

□ The backward peaks at $\sqrt{s} \approx 2.1 \& 2.3 \text{ GeV}$ are due to two N*'s although the magnitudes are far more suppressed.

[Exp: Dey (CLAS), PRC.89. 055208 (2014)]

3. Numerical Results [y p $\rightarrow \phi$ p]

Sangho Kim (SSU)

[Ryu, PTEP.2014.023D03 (2014)]

$$\mathcal{M}_{\gamma N \to \phi N}(p, p'; s) = \mathcal{M}_{\gamma N \to \phi N}^{\text{Born}}(p, p'; s) + \sum_{i} \int d^{3}q \frac{E_{M_{i}} + E_{B_{i}}}{(2\pi)^{3} 2E_{M_{i}} E_{B_{i}}} \mathcal{M}_{\gamma N \to M_{i} B_{i}}(p, q; s)$$

$$\frac{1}{s^{2} - (E_{M_{i}} + E_{B_{i}})^{2} + i\varepsilon} \mathcal{M}_{M_{i} B_{i} \to \phi N}(q, p'; s), \qquad (1)$$

 They considered only the imaginary part of the propagator. The real part should be considered.

4. $[\gamma \ {}^{4}\text{He} \rightarrow \phi \ {}^{4}\text{He}]$

□ We employ a distorted-wave impulse approximation.

 \Box Including the FSI term, we can write DCS for spin J=0 nuclei:

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})|\mathbf{k}| + E_V(\mathbf{k})(|\mathbf{k}| - |\mathbf{q}|\cos\theta_{\text{Lab}})|} |AF_T(t)\overline{t}(\mathbf{k}, \mathbf{q}) + T^{\text{FSI}}(\mathbf{k}, \mathbf{q}, E)|^2$$

$$\gamma \,{}^4\text{He} \rightarrow \phi \,{}^4\text{He} \qquad \gamma \, \mathbf{p} \rightarrow \phi \, \mathbf{p}$$

 $F_c(q^2) = F_N(q^2)F_T(q^2 = t)$

Fc (FN) : nuclear (nucleon) charge FF

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$
$$T^{\text{IMP}} = \sum_{i=1,A} \left[B_{\phi N_i, \gamma N_i} + T^{N^*}_{\phi N_i, \gamma N_i} \right]$$

4. $[\gamma \ {}^{4}\text{He} \rightarrow \phi \ {}^{4}\text{He}]$

□ We employ a distorted-wave impulse approximation.

 \Box Including the FSI term, we can write DCS for spin J=0 nuclei:

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})|\mathbf{k}| + E_V(\mathbf{k})(|\mathbf{k}| - |\mathbf{q}|\cos\theta_{\text{Lab}})|} |AF_T(t)\overline{t}(\mathbf{k}, \mathbf{q}) + T^{\text{FSI}}(\mathbf{k}, \mathbf{q}, E)|^2$$

$$\gamma \,^4\text{He} \rightarrow \phi \,^4\text{He} \qquad \gamma \, \mathbf{p} \rightarrow \phi \, \mathbf{p}$$

$$T^{FSI}(\mathbf{k},\mathbf{q},E) = \int d\mathbf{k}' \overline{T_{\phi A,\phi A}(\mathbf{k},\mathbf{k}',E)} \frac{AF(t')\overline{t}(\mathbf{k}',\mathbf{q})}{E - E_V(\mathbf{k}') - E_A(\mathbf{q}-\mathbf{k}') + i\epsilon}$$

 $F_c(q^2) = F_N(q^2)F_T(q^2 = t)$

Fc(FN): nuclear (nucleon) charge FF

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$
$$T^{\text{IMP}} = \sum_{i=1,A} \left[B_{\phi N_i, \gamma N_i} + T^{N^*}_{\phi N_i, \gamma N_i} \right]$$

 \Box T^{IMP}: the term that φ meson is produced from a single nucleon in the nucleus \Box T^{FSI}: the effect due to the scattering of the outgoing φ with the recoiled nucleus

$$T_{\phi A,\phi A}(\boldsymbol{\kappa},\boldsymbol{\kappa}',E) = U_{\phi A,\phi A}(\boldsymbol{\kappa},\boldsymbol{\kappa}',E) + \int d\boldsymbol{\kappa}'' U_{\phi A,\phi A}(\boldsymbol{\kappa},\boldsymbol{\kappa}'',E) \frac{1}{E - E_V(\boldsymbol{\kappa}'') - E_A(\boldsymbol{\kappa}'') + i\epsilon} T_{\phi A,\phi A}(\boldsymbol{\kappa}'',\boldsymbol{\kappa}',E) \quad (\text{in c.m.})$$

 \Box Within multiple-scattering theory, ϕA potential is expressed in terms of ϕN scattering amplitude.

$$U_{\phi A,\phi A}(E) = \sum_{i=1,A} t_{\phi N_i,\phi N_i}(\omega)$$

$4. \left[\gamma \ {}^{\scriptscriptstyle 4}\text{He} \rightarrow \phi \ {}^{\scriptscriptstyle 4}\text{He}\right]$

 $F_c(q^2) = F_N(q^2)F_T(q^2 = t)$

 $F_{c}(F_{N})$: nuclear (nucleon) charge FF

□ We employ a distorted-wave impulse approximation.

 \Box Including the FSI term, we can write DCS for spin J=0 nuclei:

 $=\frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q}-\mathbf{k})}{|E_A(\mathbf{q}-\mathbf{k})|\mathbf{k}| + E_V(\mathbf{k})(|\mathbf{k}| - |\mathbf{q}|\cos\theta_{\text{Lab}})|} |AF_T(t)\bar{t}(\mathbf{k},\mathbf{q}) + T^{\text{FSI}}(\mathbf{k},\mathbf{q},E)|^2$ $d\sigma$ $T(E) = T^{\text{IMP}}(E)$ $d\Omega_{
m Lab}$ $T^{\text{IMP}} =$ $\left[B_{\phi N_i,\gamma N_i}+T^{N^*}_{\phi N_i,\gamma N_i}\right]$ $\gamma {}^{4}\text{He} \rightarrow \phi {}^{4}\text{He}$ $\gamma p \rightarrow \phi p$ Pomeron $\gamma^4 \text{He} \rightarrow \phi^4 \text{He}$ Q [μb] $\gamma p \to \phi p$ 10 100 $E_{\gamma}[GeV]$

 \Box The total cross section for φ^4 He production is about 4 times larger than φN production.

4. $[\gamma \ {}^{4}\text{He} \rightarrow \phi \ {}^{4}\text{He}]$

□ We employ a distorted-wave impulse approximation.

 \Box Including the FSI term, we can write DCS for spin J=0 nuclei:

$$F_c(q^2) = F_N(q^2)F_T(q^2 = t)$$

Fc (FN) : nuclear (nucleon) charge FF

 \Box The FSI contributions are relatively suppressed by factors of $10^1 - 10^3$.

4. $[\gamma {}^{4}\text{He} \rightarrow \phi {}^{4}\text{He}]$

 $\begin{array}{c} \gamma p \rightarrow \phi p \\ 4.0 \\ \hline 0 \hline$

is not due to the N* contribution.
may arise from another mechanism.

[Exp: Hiraiwa (LEPS), PRC.035208.5 (2017)]

□ The peak position is similar to each other. Any relation between them?

2. $\gamma p \rightarrow J/\psi p$, $\gamma^{4}He \rightarrow J/\psi^{4}He$ $\gamma d \rightarrow J/\psi d$

[S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

- □ They obtain the phenomenological J/ ψ potentials, $V^{J/\psi N \rightarrow J/\psi N}$, with no VMD assumption by taking the $c\bar{c}$ structure of J/ ψ into account to define the model Hamiltonian: $H = H_0 + \Gamma_{\gamma,c\bar{c}} + v_{c\bar{c}} + v_{c\bar{c}}$
- □ It is assumed that the interactions between the $c\bar{c}$ quarks in J/ ψ and the nucleon can be defined by a phenomenological quark-N potential v_{cN} .
- $\Box \text{ The } \gamma \text{ N} \rightarrow J/\psi \text{ N amplitude, } B^{\gamma \text{ N} \rightarrow J/\psi \text{ N}}, \text{ and } J/\psi \text{ N} \rightarrow J/\psi \text{ N potential, } V^{J/\psi \text{ N} \rightarrow J/\psi \text{ N}}, \text{ are defined by the } c\bar{c}\text{-loop mechanisms.}$

Sangho Kim (SSU)

[S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

- □ They obtain the phenomenological J/ ψ potentials, V^{J/ ψ N → J/ ψ N, with no VMD assumption by taking the $c\bar{c}$ structure of J/ ψ into account to define the model Hamiltonian: H = H₀ + $\Gamma_{\gamma,c\bar{c}}$ + $v_{c\bar{c}}$ + $v_{c\bar{N}}$}
- □ It is assumed that the interactions between the $c\bar{c}$ quarks in J/ ψ and the nucleon can be defined by a phenomenological quark-N potential v_{cN} .
- $\Box \text{ The } \gamma \text{ N} \rightarrow J/\psi \text{ N amplitude, } B^{\gamma \text{ N} \rightarrow J/\psi \text{ N}}, \text{ and } J/\psi \text{ N} \rightarrow J/\psi \text{ N potential, } V^{J/\psi \text{ N} \rightarrow J/\psi \text{ N}}, \text{ are defined by the } c\bar{c}\text{-loop mechanisms.}$

 $\Box T^{J/\psi N \to J/\psi N} \text{ scattering amplitude is calculated from } V^{J/\psi N \to J/\psi N} \text{ potential,}$ by solving the Lippman-Schwinger equation : $T^{J/\psi N \to J/\psi N} = V^{J/\psi N \to J/\psi N} + V^{J/\psi N \to J/\psi N} G^{J/\psi N \to J/\psi N} T^{J/\psi N \to J/\psi N}$

Sangho Kim (SSU)

[S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

□ It is assumed that the VN potential can be constructed by the Folding model using the quark-N interaction v_{cN} and the wave function $\phi_{J/\psi}$:

$$V_{VN,VN} = \langle \phi_V, N | \sum_{c} v_{cN} | \phi_V, N \rangle$$

 \Box The wave function and v_{cN} potential are also used to construct the amplitude:

$$B_{VN,\gamma N}(W) = \langle \phi_V, N | \left[\sum_{c} v_{cN} \frac{|c\bar{c}\rangle \langle c\bar{c}|}{E_{c\bar{c}} - H_0} \Gamma_{\gamma,c\bar{c}} \right] |\gamma, N \rangle$$

> $T_D^{\gamma N \to J/\psi N}$ is completely determined by $v_{cN}(r)$.

Sangho Kim (SSU)

[S.Sakinah, T.-S.H.Lee, H.M.Choi, PRC.109.065204 (2024)]

□ It is assumed that the VN potential can be constructed by the Folding model using the quark-N interaction v_{cN} and the wave function $\phi_{J/\psi}$:

$$V_{VN,VN} = \langle \phi_V, N | \sum_{cN} v_{cN} | \phi_V, N \rangle$$

 \Box The wave function and v_{cN} potential are also used to construct the amplitude:

$$\mathcal{B}_{VN,\gamma N}(W) = \langle \phi_V, N | \left[\sum_{c} v_{cN} \frac{|c\bar{c}\rangle \langle c\bar{c}|}{E_{c\bar{c}} - H_0} \Gamma_{\gamma,c\bar{c}} \right] |\gamma, N \rangle$$

> $T_{D^{\gamma N \to J/\psi N}}$ is completely determined by $v_{cN}(r)$.

□ To establish correspondence with the LQCD calculations, $v_{cN}(r)$ is chosen such that the predicted $V_{J/\psi N}(r)$ at large distances exhibits the Yukawa potential form :

$$v_{cN}(r) = \alpha \left(\frac{-\mu r}{r} - c_s \frac{e^{-\mu_1 r}}{r} \right)$$

□ 1Y model : α = -0.067, μ = 0.3 GeV, c_s = 0 2Y model : α = -0.145, μ = 0.3 GeV, c_s = 1, μ_1 =5 μ

[[]Kawanai, PRD.82.091501(R) (2011)]

DL Pomeron exchange alone is not sufficient for describing the diff. cross section data.
 Together with the determined v_{cN}(r) and wave function φ_{J/ψ} generated from CQM, B model, the diff. cross section data could be well reproduced at low energies.

Sangho Kim (SSU)

2Y model

Sangho Kim (SSU)

□ The large difference is observed at -t > 2 [GeV²] between the two models. □ It originates from the very different short range behaviors of the potential $v_{cN}(r)$.

1. Dynamical Model [y p \rightarrow J/ ψ p]

□ The cross sections in the very near threshold region are largely determined by the FSI term.

 \square These demonstrate that J/ψ-N interactions can be extracted rather clearly from the J/ψ photoproduction data within this model.

□ More precise data from JLab in the very threshold region and in the large scattering angles are called for.

□ The parametrization of quark-nucleon potential $v_{cN}(r)$ is guided by the Yukawa form extracted from LQCD calculation and must be improved by using more advanced LQCD calculations of J/ ψ N scattering, in particular the short-range part of the potential.

□ Talk by S. Sakinah tomorrow in detail

1. Dynamical Model [γ ⁴He \rightarrow J/ ψ ⁴He]

Sangho Kim (SSU)

Use employ a distorted-wave impulse approximation.

 \Box Including the FSI term, we can write DCS for spin J=0 nuclei:

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})|\mathbf{k}| + E_V(\mathbf{k})(|\mathbf{k}| - |\mathbf{q}|\cos\theta_{\text{Lab}})|} |AF_T(t)\overline{t}(\mathbf{k},\mathbf{q}) + T^{\text{FSI}}(\mathbf{k},\mathbf{q},E)|^2$$

 $\gamma {}^{4}\text{He} \rightarrow \phi {}^{4}\text{He}$

 $\gamma \ p \to \phi \ p$

 $F_c(q^2) = F_N(q^2)F_T(q^2 = t)$

Fc (FN) : nuclear (nucleon) charge FF

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$
$$T^{\text{IMP}} = \sum_{i=1,A} \left[B_{\phi N_i, \gamma N_i} + T^{N^*}_{\phi N_i, \gamma N_i} \right]$$

1. Dynamical Model [γ ⁴He \rightarrow J/ ψ ⁴He]

Sangho Kim (SSU)

Use employ a distorted-wave impulse approximation.

 \Box Including the FSI term, we can write DCS for spin J=0 nuclei:

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})|\mathbf{k}| + E_V(\mathbf{k})(|\mathbf{k}| - |\mathbf{q}|\cos\theta_{\text{Lab}})|} |AF_T(t)\overline{t}(\mathbf{k},\mathbf{q}) + T^{\text{FSI}}(\mathbf{k},\mathbf{q},E)|^2$$

 $\gamma {}^{4}\text{He} \rightarrow \phi {}^{4}\text{He}$

 $\gamma \ p \to \phi \ p$

 $F_c(q^2) = F_N(q^2)F_T(q^2 = t)$

Fc (FN) : nuclear (nucleon) charge FF

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$
$$T^{\text{IMP}} = \sum_{i=1,A} \left[B_{\phi N_i, \gamma N_i} + T^{N^*}_{\phi N_i, \gamma N_i} \right]$$

$$T^{\text{FSI}}(E) = T_{\phi A, \phi A}(E) \frac{1}{E - H_0} T^{\text{IMP}}$$

 $\gamma {}^{4}\text{He} \rightarrow J/\psi {}^{4}\text{He}: \qquad T_{\text{total}} = T_{\text{D}} + T_{\text{Pom}}$ $= (B + T_{\text{fsi}}) + T_{\text{Pom}}$ $T_{\text{resc}} = T_{\text{resc}} + T_{\text{Pom}}$

$$\mathbf{T}_{\rm fsi} = \mathbf{T} \, \frac{1}{W - H_0 + i\epsilon} \mathbf{B}$$

 \Box The data from EIC and JLab is called for to shed light on the mechanism of J/ ψ ⁴He photoproduction. ₂₆

- 1. Dynamical Model [γ ⁴He \rightarrow J/ ψ ⁴He]
- □ The dip structures shown at $-t \approx 2$ [GeV²] are due to the structure of the ⁴He form factor $F_T(t)$.
- \Box The FSI contributions are relatively suppressed by factors of about 10².
- □ The ⁴He form factor for V18 (Argonne V18) and NV (Norfolk-Verginia) model exhibits rather different shapes at large angles.

Sangho Kim (SSU)

- 1. Dynamical Model [γ ⁴He \rightarrow J/ ψ ⁴He]
- □ The dip structures shown at $-t \approx 2$ [GeV²] are due to the structure of the ⁴He form factor $F_T(t)$.
- \Box The FSI contributions are relatively suppressed by factors of about 10².
- □ The ⁴He form factor for V18 (Argonne V18) and NV (Norfolk-Verginia) model exhibits rather different shapes at large angles.

 \Box With only the total cross section, it is difficult to distinguish the ⁴He form factor used in calculation.

Sangho Kim (SSU)

28

- 1. Dynamical Model [$\gamma d \rightarrow J/\psi d$]
- □ For spin J = 1 deuteron, there are two form factors $F_0(k)$ and $F_2(k)$ due to the *s* and *d* wave parts of the deuteron wavefunction, respectively.
- \Box F₂(k) is due to the crucial tensor force of the NN potential and can be probed by J/ ψ exclusive production process clearly.

□ The very near threshold covers only large -t regions where the cross sections are mainly due to $F_2(k)$ and thus is very effective in testing the *d*-wave state of deuteron wavefunction.

 \Box At high energies, small -t regions are also covered such that the dip structure is shown.

29

Sangho Kim (SSU)

□ How do the cross sections depend on the NN model used in generating deuteron wavefunctions?

 \Box They can be distinguished at energies near threshold.

2. Meson Exchange Model [y p \rightarrow J/ ψ p]

[S.H.Kim, in progress]

light mesons

Mesons	Mass (J^P)	$\operatorname{Br}_{J/\psi \to M\gamma}$	$g_{J/\psi \to M\gamma}$	g_{MNN}
π	$134~(0^{-})$	$(3.56 \pm 0.17) \cdot 10^{-5}$	0.002	13.0
η	$548 (0^{-})$	$(1.108 \pm 0.027) \cdot 10^{-3}$	0.011	6.34
η'	$958~(0^{-})$	$(5.25 \pm 0.07) \cdot 10^{-3}$	0.026	6.87
f_1	$1285~(1^+)$	$(6.1 \pm 0.8) \cdot 10^{-4}$	0.0007	2.5 ± 0.5
$\eta_c(1S)$	$2984~(0^{-})$	$(1.7 \pm 0.4) \cdot 10^{-2}$	2.14	0.0289

$c\bar{c}$ mesons

Mesons	Mass (J^P)	Γ_M [MeV]	$\operatorname{Br}_{M \to J/\psi\gamma} [\%]$	$g_{M \to J/\psi\gamma}$	$\mathrm{Br}_{M \to p \bar{p}}$	$g_{M \to p \bar{p}}$
$\chi_{c0}(1P)$	$3415~(0^+)$	10.8	1.40 ± 0.05	1.47	$(2.21 \pm 0.08) \cdot 10^{-4}$	0.0046
$\chi_{c1}(1P)$	$3511 (1^+)$	0.84	34.3 ± 1.0	0.10	$(7.60 \pm 0.34) \cdot 10^{-5}$	0.00084
$\eta_c(2S)$	$3638~(0^{-})$	11.3	< 1.4	< 1.51	seen	_
$\chi_{c1}(3872)$	$3872 (1^+)$	< 1.2	> 0.7	> 0.008	not seen	_

□ There are many cc mesons above J/ψ meson.
 □ Their contributions may not negligible compared to those of light mesons.

□ Which mechanism is more dominant?

$c\bar{c}$ mesons (including non-qq states)

•	$\eta_c(1S)$	$0^+(0^{-+})$
•	$J/\psi(1S)$	$0^{-}(1^{})$
•	$\chi_{c0}(1P)$	$0^+(0^{++})$
•	$\chi_{c1}(1P)$	$0^+(1^{++})$
•	$h_c(1P)$	$0^{-}(1^{+-})$
•	$\chi_{c2}(1P)$	$0^+(2^{++})$
•	$\eta_c(2S)$	$0^+(0^{-+})$
•	$\psi(2S)$	$0^{-}(1^{})$
•	$\psi(3770)$	$0^{-}(1^{})$
•	$\psi_2(3823)$ was $\psi_{(3823)}, X_{(3823)}$	$0^{-}(2^{})$
•	$\psi_3(3842)$	$0^{-}(3^{})$

2. Meson Exchange Model [y p \rightarrow J/ ψ p]

 $\Box \sigma (PS mesons) > \sigma (S mesons)$ [by one ~ two orders of magnitudes]

□ Total cross section with light mesons included

The dominant mechanism can be verified by the future EIC and JLab data for the spin polarization observables, e.g., beam asymmetry.

□ In vector-meson (ϕ) electroproduction, $\gamma^* p \rightarrow \phi p$, we know that S-meson plays an important role at low W and low Q² for σ_L .

$$\frac{d\sigma}{d\Phi} = \frac{1}{2\pi} \Big(\sigma + \varepsilon \sigma_{\rm TT} \cos 2\Phi + \sqrt{2\varepsilon (1+\varepsilon)} \sigma_{\rm LT} \cos \Phi \Big) \quad \sigma = \sigma_{\rm T} + \varepsilon \sigma_{\rm LT}$$

 \Box Two pronounced cusp structures are located at the $\overline{D}A_c$ and \overline{D}^*A_c thresholds.

$$\mathcal{L}_{\Lambda_c DN} = -g_{D^*N\Lambda_c}\bar{\Lambda}_c\gamma_\mu ND^{*\mu} - ig_{DN\Lambda_c}\bar{\Lambda}_c\gamma_5 ND -g_{D^*N\Lambda_c}\bar{N}\gamma_\mu\Lambda_c D^{*\mu\dagger} - ig_{DN\Lambda_c}\bar{N}\gamma_5\Lambda_c D^{\dagger},$$

$$\begin{aligned} \mathcal{L}_{\psi} &= -g_{\psi DD^{*}}\psi_{\mu}\epsilon_{\mu\nu\alpha\beta} \big(\partial_{\nu}D_{\alpha}^{*}\partial_{\beta}D^{\dagger} - \partial_{\nu}D\partial_{\beta}D_{\alpha}^{*\dagger}\big),\\ &+ ig_{\psi D^{*}D^{*}}\psi^{\mu} \big(D^{*\nu}\partial_{\nu}D_{\mu}^{*\dagger} - \partial_{\nu}D_{\mu}^{*}D^{*\nu\dagger} \\ &- D^{*\nu}\overset{\leftrightarrow}{\partial}_{\mu}D_{\nu}^{*\dagger}\big) - ig_{\psi DD}D^{\dagger}\overset{\leftrightarrow}{\partial}_{\mu}D\psi^{\mu} \\ &+ g_{\psi\Lambda_{c}\Lambda_{c}}\bar{\Lambda}_{c}\gamma_{\mu}\psi^{\mu}\Lambda_{c},\\ \mathcal{L}_{\gamma} &= -g_{\gamma DD^{*}}F_{\mu\nu}\epsilon^{\mu\nu\alpha\beta} (D_{\alpha}^{*}\overset{\leftrightarrow}{\partial}_{\beta}D^{\dagger} - D\overset{\leftrightarrow}{\partial}_{\beta}D_{\alpha}^{*\dagger}) \\ &- ig_{\gamma D^{*}D^{*}}F^{\mu\nu}D_{\mu}^{*\dagger}D_{\nu}^{*} - e\bar{\Lambda}_{c}\gamma_{\mu}A^{\mu}\Lambda,\end{aligned}$$

Coupling	$g_{\gamma DD^*}$	$g_{\gamma D^*D^*}$	g_{DNA_c}	$g_{D^*NA_c}$	$g_{\psi \Lambda_c \Lambda_c}$	$g_{\psi DD}$
Value	$0.134 { m ~GeV^{-1}}$	0.641	-4.3	-13.2	-1.4	7.44
Source	Experimental data [46]		SU(4) [47,4	VMD [47,48]		

 \Box The presence of such cusps can be a clear indication of the importance of the charm loops.

□ We are trying to calculate this region by using the 3-dimensional reduction of the Bethe-Salpeter equation for both principal and singular parts.

$$\begin{aligned} T_{MB}(p,p') &= \sum_{i} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} \frac{m_{B_{i}}}{E_{B_{i}}} T_{\gamma p \to M_{i}B_{i}}(p,q) \frac{1}{s - (E_{M_{i}} + E_{B_{i}})^{2} + i\epsilon} T_{M_{i}B_{i} \to J/\psi p}(q,p') \\ &= -i \sum_{i} \frac{q_{\text{c.m.}}}{16\pi^{2}} \frac{m_{B_{i}}}{\sqrt{s}} \int d\Omega \left[T_{\gamma p \to M_{i}B_{i}}(p,q) T_{M_{i}B_{i} \to J/\psi p}(q,p') \right] + \mathcal{P} \end{aligned}$$

Summary & Future Work

\bigcirc For $\gamma p \rightarrow \varphi p$,

we studied relative contributions between the Pomeson and various meson exchanges. > The light-meson (π , η , a_0 , f_0 ,...) contribution is crucial to describe the data at low energies.

The final φN interactions are described by the gluon-exchange, direct φN couplings, and the box diagrams arising from the couplings with πN , ρN , $K\Lambda$, and $K\Sigma$ channels. > suppressed by $10^2 - 10^3$.

\bigcirc For $\gamma \,{}^4\text{He} \rightarrow \phi \,{}^4\text{He}$,

a distorted-wave impulse approximation is employed within the multiple scattering formulation.

> The FSI effects are suppressed compared to the Born term by $10^1 - 10^3$.

Summary & Future Work

\bigcirc For $\gamma p \rightarrow \varphi p$,

we studied relative contributions between the Pomeson and various meson exchanges.

> The light-meson (π , η , a_0 , f_0 ,...) contribution is crucial to describe the data at low energies.

The final ϕN interactions are described by the gluon-exchange, direct ϕN couplings, and the box diagrams arising from the couplings with πN , ρN , $K\Lambda$, and $K\Sigma$ channels. > suppressed by $10^2 - 10^3$.

\bigcirc For $\gamma \,{}^4\text{He} \rightarrow \phi \,{}^4\text{He}$,

a distorted-wave impulse approximation is employed within the multiple scattering formulation. > The FSI effects are suppressed compared to the Born term by $10^1 - 10^3$.

↔ We suggested three models for γ p → J/ψ p : dynamical model, meson-exchange model, Box-diagram model

 \bigcirc Based on the two dynamical models, we investigated $\gamma A \rightarrow J/\psi A$ (A = d, ⁴He, ¹²C, ¹⁶O, ⁴⁰Ca) reaction.

 \bigcirc For both ϕ p and J/ ψ p photoproduction, the meson-baryon loops seem to be the dominant processes rather than the pentaquark (P_s, P_c) contributions in the *s* channel.

◇ We will improve our model to relate the phenomenological c quark-nucleon potential to gluon
 GPD in nucleon, such that the gluon distributions in nuclei can be predicted for EIC experiments.

 ◇ Approved 12 GeV era experiments to date at Jafferson Labarotory: [E12-09-003] Nucleon Resonances Studies with CLAS
 [E12-11-005] Meson spectroscopy with low Q² electron scattering in CLAS12
 [E12-12-006] Near Threshold Electroproduction of J/ψ at 11 GeV
 [E12-12-007] Exclusive Phi Meson Electroproduction with CLAS12 ◇ We will improve our model to relate the phenomenological c quark-nucleon potential to gluon
 GPD in nucleon, such that the gluon distributions in nuclei can be predicted for EIC experiments.

 ◇ Approved 12 GeV era experiments to date at Jafferson Labarotory: [E12-09-003] Nucleon Resonances Studies with CLAS
 [E12-11-005] Meson spectroscopy with low Q² electron scattering in CLAS12
 [E12-12-006] Near Threshold Electroproduction of J/ψ at 11 GeV
 [E12-12-007] Exclusive Phi Meson Electroproduction with CLAS12

Thank you very much for your attention