The Radiative M1 Transition of Charmonia and Bottomonia in the Light-Front Quark Model

Muhammad Ridwan

Division of Theoretical Nuclear and Particle Physics, Universitas Indonesia

Advisors:

Terry Mart

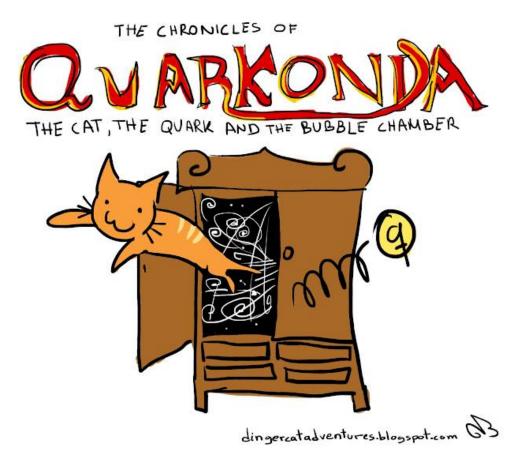
Ahmad Jafar Arifi (RIKEN)

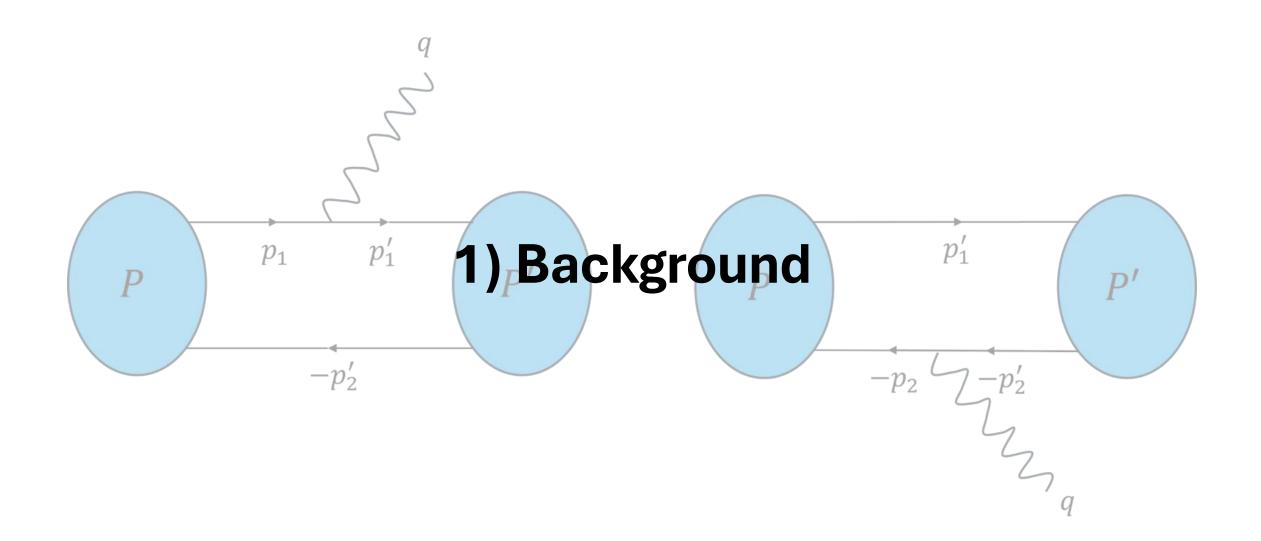
The International Workshop on Quarks Structure of Hadrons 2024, RIKEN Wako Campus

Saturday, 3rd August 2024

Outline

- 1) Background
- 2) Formalism
- 3) <u>Result</u>
- 4) Conclusion & Outlook

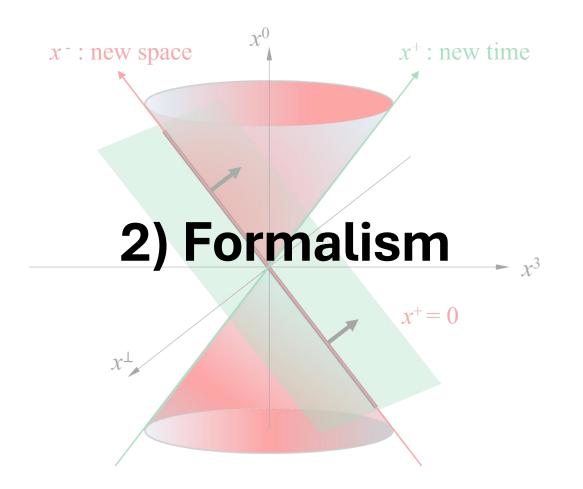




Backgrounds

- Heavy quarkonia is the simplest hadron to observe and study their properties \rightarrow e.g., charmonia ($c\bar{c}$) and bottomonia ($b\bar{b}$)
- A study about the radiative M1 transition^[1] with good (J⁺) and transverse (J
 _⊥) currents in BLFQ have been conducted
 → yielding different results in coupling constant on cc
 and bb
 ,
 → different k
 i distribution on these two currents
- In this work, Light-front quark model (LFQM) will be used to derive the radiative transition \rightarrow good (J^+) and transverse (\vec{J}_{\perp}) current

[1] Li et al., PRD 98 (2018), 034024



Light-Front Quark Model

- Light-Front Dynamics (LFD) and Constituent Quark Model (CQM) \rightarrow treat hadron as a bound state ($q\bar{q}, qqq$)
- The light-front wave function (LFWF)

$$\Psi_{nS}^{JJ_z}(x, \boldsymbol{k}_\perp, \lambda_i) = \Phi_{nS}(x, \boldsymbol{k}_\perp) \ \mathcal{R}_{\lambda_q \lambda_{\bar{q}}}^{JJ_z}(x, \boldsymbol{k}_\perp),$$

- \rightarrow Lorentz invariant variable $x_i = p_i^+/P^+; \mathbf{k}_\perp$
- → Radial WF: $\Phi_{nS}(x, \mathbf{k}_{\perp})$ (the trial wave function)

$$\Rightarrow \text{Spin-orbit WF:} \quad \mathcal{R}^{JJ_z}_{\lambda_q\lambda_{\bar{q}}} = \frac{1}{\sqrt{2}\tilde{M}_0} \bar{u}_{\lambda_q}(p_q) \Gamma_{\mathcal{P}(\mathcal{V})} v_{\lambda_{\bar{q}}}(p_{\bar{q}}),$$

$$\begin{array}{lll} & \Gamma_{\mathcal{P}} &=& \gamma_5, & \qquad \mbox{(pseudoscalar)} \\ & \Gamma_{\mathcal{V}} &=& - \not \in (J_z) + \frac{\epsilon \cdot (p_q - p_{\bar{q}})}{M_0 + m_q + m_{\bar{q}}}, & \qquad \mbox{(vector)} \end{array}$$

Radiative M1 Transition

• The transition form factor (TFF) $F_{\mathcal{VP}}(q^2)$ is defined by

$$\langle \mathcal{P}(P') | J^{\mu}_{em}(0) | \mathcal{V}(P,h) \rangle = ie \varepsilon^{\mu\nu\rho\sigma} \epsilon_{\nu} q_{\rho} P_{\sigma} F_{\mathcal{VP}}(Q^2),$$

the matrix element $\mathcal{J}_{h}^{\mu} = \langle \mathcal{P}(P') | \mathcal{J}_{em}^{\mu} | \mathcal{V}(P,h) \rangle$ the tensor term $ie\varepsilon^{\mu\nu\rho\sigma} \epsilon_{\nu} q_{\rho} P_{\sigma}$

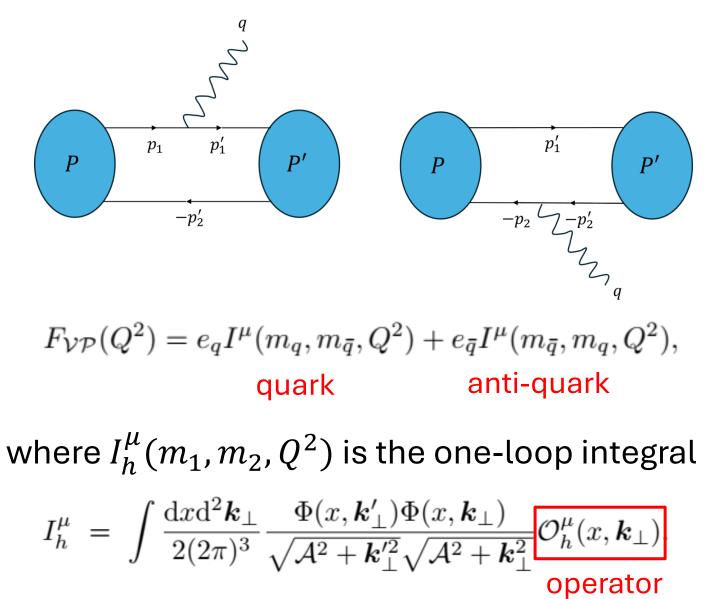
$$\begin{aligned} \mathcal{J}_{h}^{\mu} &= \sum_{\lambda,\bar{\lambda},j} \left\langle \Psi_{\lambda'\bar{\lambda}}^{00\dagger} \Big| \frac{\bar{u}_{\lambda'}(p_{1}')}{\sqrt{x'}} e_{Q}^{j} \gamma^{\mu} \frac{u_{\lambda}(p_{1})}{\sqrt{x}} \Big| \Psi_{\lambda\bar{\lambda}}^{1h} \right\rangle \\ &= \sum_{j} e_{Q}^{j} \int \frac{\mathrm{d}x \, \mathrm{d}^{2} \boldsymbol{k}_{\perp}}{2(2\pi)^{3}} \Phi(x, \boldsymbol{k}_{\perp}') \Phi(x, \boldsymbol{k}_{\perp}) \\ &\times \sum_{\lambda,\bar{\lambda}} \mathcal{R}_{\lambda'\bar{\lambda}}^{00\dagger}(x, \boldsymbol{k}_{\perp}') \frac{\bar{u}_{\lambda'}(p_{1}')}{\sqrt{x'}} \gamma^{\mu} \frac{u_{\lambda}(p_{1})}{\sqrt{x}} \mathcal{R}_{\lambda\bar{\lambda}}^{1h}(x, \boldsymbol{k}_{\perp}') \end{aligned}$$

 $\Delta L = 0, \Delta S = 1$, parity change

$$ie\varepsilon^{\mu\nu\rho\sigma}\epsilon_{\nu}q_{\rho}P_{\sigma}F_{\mathcal{VP}}(Q^2),$$

 $\rightarrow \text{Good} (\mu = +) \text{ and}$ transverse $(\mu = \bot)$ current are used to explore the TFF k_{\perp})

• The lowest Feynman diagram $\mathcal{V}(P) \rightarrow \mathcal{P}(P')\gamma$



• Coupling constant, $g_{\mathcal{VP}} = F_{\mathcal{VP}}(0)$

• Decay width

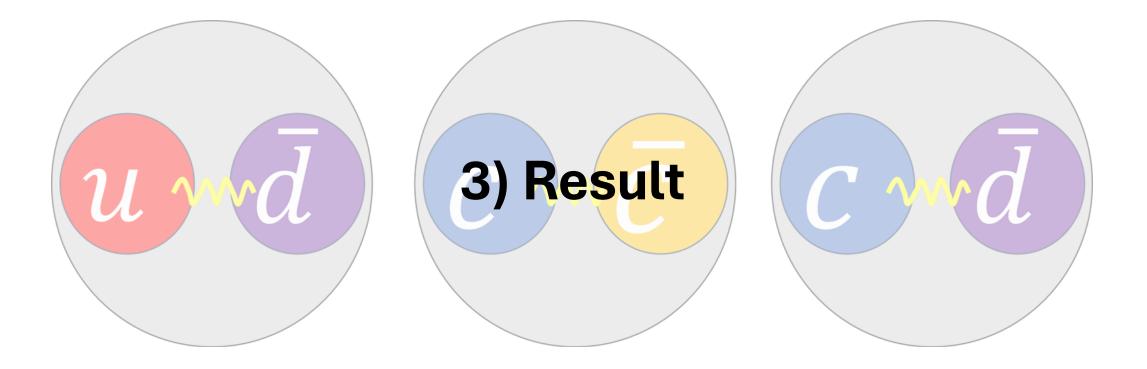
$$\Gamma(\mathcal{V} \to \mathcal{P}\gamma) = \frac{\alpha_{\rm em}}{(2J_{\mathcal{V}}+1)} g_{\mathcal{V}\mathcal{P}\gamma}^2 k_{\gamma}^3,$$

where

$$k_{\gamma} = \frac{(M_{\mathcal{V}}^2 - M_{\mathcal{P}}^2)}{2M_{\mathcal{V}}}$$

• Branching ratio

$$Br(\mathcal{V} \to \mathcal{P}\gamma) = \frac{\Gamma(\mathcal{V} \to \mathcal{P}\gamma)}{\Gamma_{Total}}$$



 \succ Trial wave function \rightarrow Gaussian (H.O Basis)

• Defining the mixing state (1S – 3S)

<u>Determining the parameter</u>

>Assuming some interactions

• Screened pot., Coulomb, Hyperfine

$$V_{\text{Conf.}}^{\text{Scr.}} = a + \frac{b(1 - e^{-\mu r})}{\mu} \qquad \qquad V_{\text{Coul.}} = -\frac{4\alpha_s}{3r}, \qquad \qquad V_{\text{Hyp.}} = \frac{2(\mathbf{S}_q \cdot \mathbf{S}_{\bar{q}})}{3m_q m_{\bar{q}}} \nabla^2 V_{\text{Coul.}}$$

1 -

Variational principle

 $\begin{pmatrix} \Phi_{1S} \\ \Phi_{2S} \\ \Phi_{2S} \\ \Phi_{2S} \end{pmatrix} = \begin{pmatrix} c_1^{1S} & c_2^{2S} & c_3^{2S} \\ c_1^{2S} & c_2^{2S} & c_3^{2S} \\ c_1^{3S} & c_2^{3S} & c_3^{3S} \end{pmatrix} \begin{pmatrix} \psi_{1S} \\ \phi_{2S}^{\text{HO}} \\ \phi_{3S}^{\text{HO}} \end{pmatrix}$

> Variational analysis \rightarrow mass spectra on 1S^[2]

• Treat pertubatively, i.e., neglecting Hyp. term

$$\frac{\partial M_{q\bar{q}}}{\partial \beta} = \frac{\partial \langle \Psi_{q\bar{q}} | (H_0 + V_{\text{conf}} + V_{\text{coul}}) | \Psi_{q\bar{q}} \rangle}{\partial \beta_{q\bar{q}}} = 0, \quad \Longrightarrow \quad \text{determine } a, \beta, \alpha, \text{etc.}$$

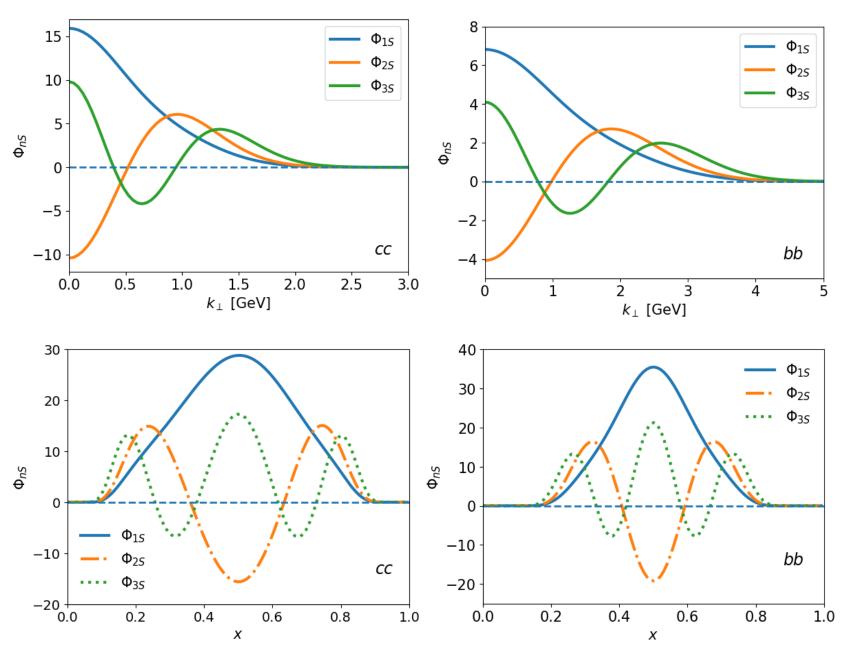
[2] Ridwan et al., ITM Web Conf. (2024), 01016

Parameter result \rightarrow Variational Principle

$$\frac{\partial M_{q\bar{q}}}{\partial \beta} = \frac{\partial \left\langle \Phi \right| \left[H_0 + V_{q\bar{q}}\right] \left|\Phi \right\rangle}{\partial \beta} = \frac{\partial H_0}{\partial \beta} + \frac{\partial V_{q\bar{q}}}{\partial \beta} = 0$$

$$\eta_c \text{ and } \Upsilon \text{ in 1S as inputs}$$

$$\frac{\theta_{12}}{\theta_{13}} = \theta_{23} \frac{m_c}{m_b} \frac{m_b}{a} \frac{a}{b}$$
Fixed parameters
$$\frac{\theta_{12}}{12.12} \frac{\theta_{13}}{8.44} \frac{\theta_{23}}{1.61} \frac{\theta_{23}}{4.97} - 0.41 \frac{\theta_{13}}{0.18}$$
Fixed parameters
$$\frac{\mu}{0.027} \frac{\alpha_s}{0.402} \frac{\beta_{c\bar{c}}}{0.5417} \frac{\beta_{c\bar{b}}}{0.7019} \frac{\beta_{b\bar{b}}}{1.0595}} > 6 \text{ parameters are obtained}$$



Wave function in the mixing state

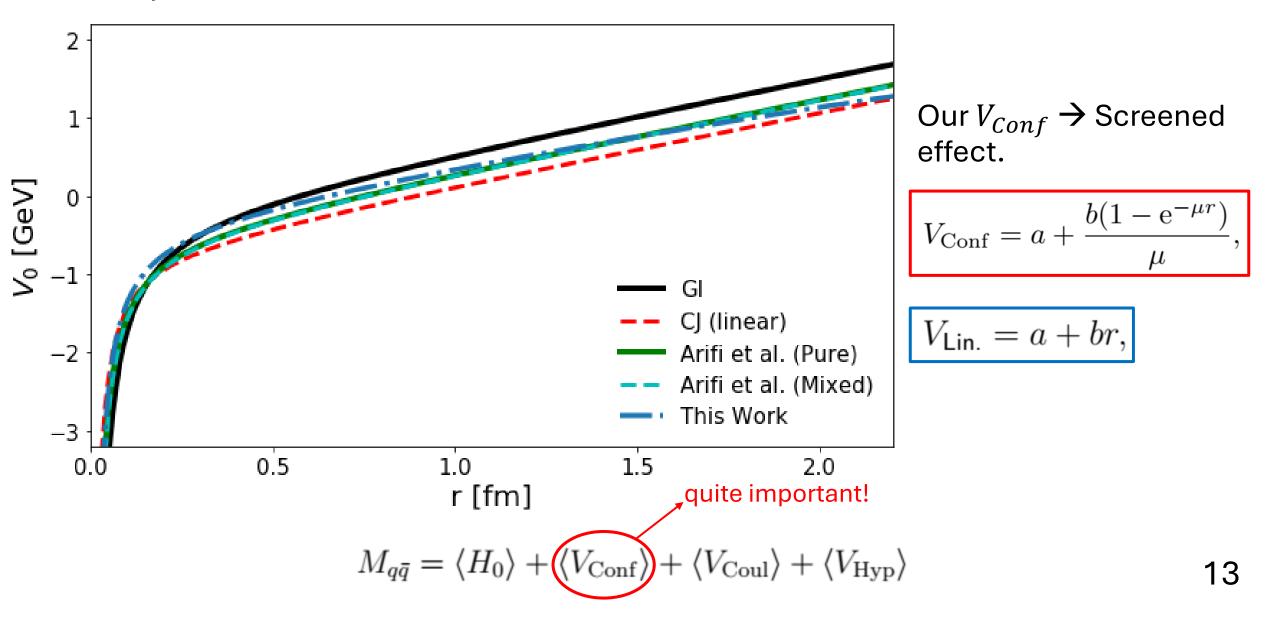
$$\begin{pmatrix} \Phi_{1S} \\ \Phi_{2S} \\ \Phi_{3S} \end{pmatrix} = \begin{pmatrix} c_1^{1S} & c_2^{1S} & c_3^{1S} \\ c_2^{2S} & c_2^{2S} & c_3^{2S} \\ c_1^{3S} & c_2^{3S} & c_3^{3S} \end{pmatrix} \begin{pmatrix} \phi_{1S}^{\text{HO}} \\ \phi_{2S}^{\text{HO}} \\ \phi_{3S}^{\text{HO}} \end{pmatrix}$$

$$\Phi_{nS}(x, \mathbf{k}_{\perp}) = \sqrt{2(2\pi)^3} \sqrt{\frac{\partial k_z}{\partial x}} \phi_{nS}(\mathbf{k}),$$

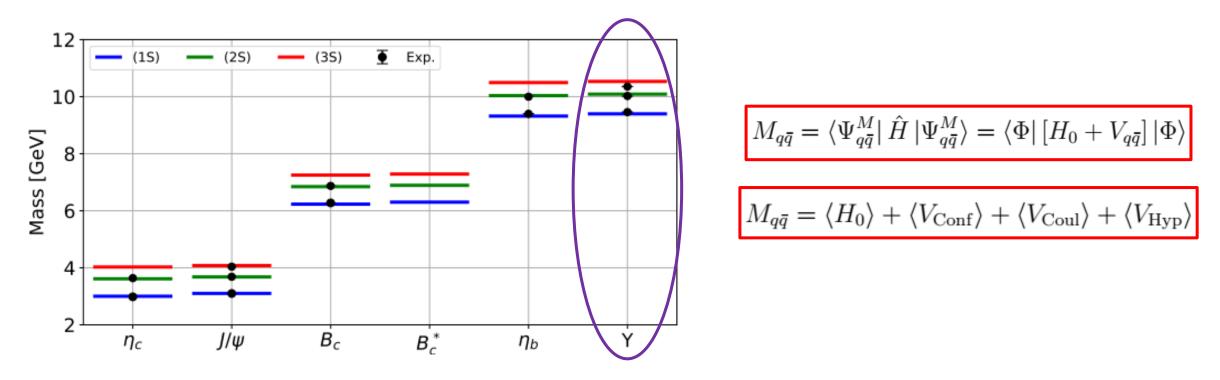
$$\frac{\partial k_z}{\partial x} = \frac{M_0}{4x(1-x)} \left[1 - \frac{(m_q^2 - m_{\bar{q}}^2)^2}{M_0^4} \right]$$

12

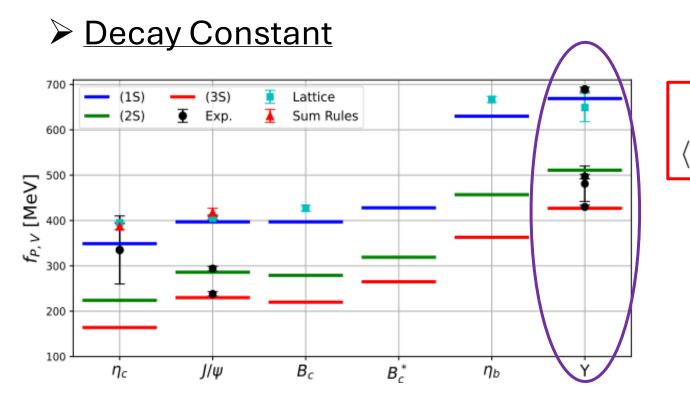
$$\succ V_{Conf}$$
 in every model



➢ Mass Spectra



 \rightarrow All heavy mesons are in good agreement with experimental data, except $\Upsilon(3S)$.



 $\begin{array}{lll} \langle 0 | \bar{q} \gamma^{\mu} \gamma_{5} q | P \rangle &=& i f_{P} P^{\mu} \\ \langle 0 | \bar{q} \gamma^{\mu} q | V(P, \lambda) \rangle &=& f_{V} M \epsilon^{\mu}(P, \lambda) \end{array} \begin{array}{l} \underline{\text{Pseudoscalar}} \\ \underline{\text{Vector}} \end{array}$

Explicit form

$$f_{P,V} = \sqrt{6} \int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{(2\pi)^3} \frac{\Phi(x, \mathbf{k}_\perp)}{\sqrt{\mathcal{A}^2 + \mathbf{k}_\perp^2}} \mathcal{O}_{P,V}$$

 \rightarrow Only Y's which have moderately difference value between ours and experimental data.

→ The hierarchy: $f_{1S} > f_{2S} > f_{3S}$

One-loop integral

$$I_{h}^{\mu} = \int \frac{\mathrm{d}x \mathrm{d}^{2} \boldsymbol{k}_{\perp}}{2(2\pi)^{3}} \frac{\Phi(x, \boldsymbol{k}_{\perp}') \Phi(x, \boldsymbol{k}_{\perp})}{\sqrt{\mathcal{A}^{2} + \boldsymbol{k}_{\perp}'^{2}} \sqrt{\mathcal{A}^{2} + \boldsymbol{k}_{\perp}^{2}}} \frac{\mathcal{O}_{h}^{\mu}(x, \boldsymbol{k}_{\perp})}{\mathrm{operator}}$$

μ	$\epsilon(h)$	\mathcal{O}
+	$\epsilon(0)$	\Rightarrow Only good current ($h = 0$) does not have operator since $\mathcal{G}_0^+ = 0$
	$\epsilon(\pm 1)$	$2(1-x)\left[\mathcal{A}+\frac{2}{\mathcal{D}_0}\left(\boldsymbol{k}_{\perp}^2-\frac{\left(\boldsymbol{k}_{\perp}\cdot\boldsymbol{q}_{\perp}\right)^2}{\boldsymbol{q}_{\perp}^2}\right)\right]$
\perp	$\epsilon(0)$	$\frac{1}{xM_0} \left\{ \mathcal{A} \left(\mathcal{A} + \frac{2\boldsymbol{k}_{\perp}^2}{\mathcal{D}_0} \right) + \frac{\mathcal{M}}{\mathcal{D}_0} \left[(1-2x)\boldsymbol{k}_{\perp}^2 + (1-x)\left((\boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp}) - \frac{2(\boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp})^2}{\boldsymbol{q}_{\perp}^2} \right) \right] \right\}$

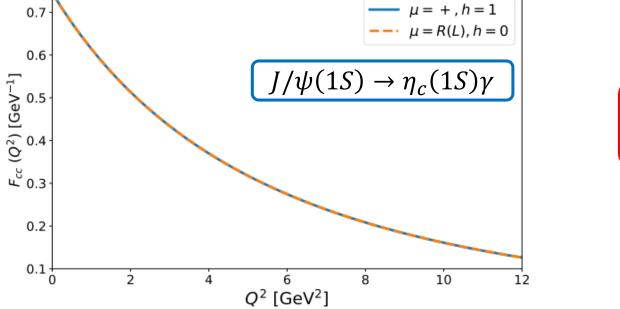
Simplifying tensor and matrix element term will establish the operator.

> We use these to find the properties and compare each other between current

≻Coupling constant ($g_{\mathcal{VP}}$): good vs transverse

Charmonia	$g_{\mathcal{VP}}$ (GeV^-1)
$J/\psi(1S) \rightarrow \eta_c(1S)\gamma$	0.74523 [$\mu = +, h = 1$]
$J/\psi(13) \rightarrow \eta_c(13)\gamma$	0.74523 [$\mu = R(L), h = 0$]
	0.71341 [$\mu = +, h = 1$]
$\psi(2S) \to \eta_c(2S)\gamma$	0.71341 [$\mu = R(L), h = 0$]
$\psi(2S) \rightarrow \psi(2S)\psi$	0.68771 [$\mu = +, h = 1$]
$\psi(3S) \to \eta_c(3S)\gamma$	0.68771 [$\mu = R(L), h = 0$]

Bottomonia	$g_{\mathcal{VP}}$ (GeV^-1)
$\mathcal{V}(1S) \rightarrow \mathcal{D}(1S) \mathcal{V}(1S)$	-0.12792 [μ = +, h = 1]
$\Upsilon(1S) \to \eta_b(1S)\gamma$	-0.12792 [$\mu = R(L), h = 0$]
$\mathcal{X}(2\mathbf{C}) \rightarrow \mathcal{B}(2\mathbf{C}) \mathbf{a}$	-0.12508 [μ = +, h = 1]
$\Upsilon(2S) \to \eta_b(2S)\gamma$	-0.12508 [$\mu = R(L), h = 0$]
$\mathcal{V}(2\mathcal{C}) \rightarrow \mathcal{D}(2\mathcal{C})_{\mathcal{U}}$	-0.12265 [μ = +, h = 1]
$\Upsilon(3S) \to \eta_b(3S)\gamma$	-0.12265 [$\mu = R(L), h = 0$]



$$\mu = +$$
 and $\mu = R(L)$ give
the same result!

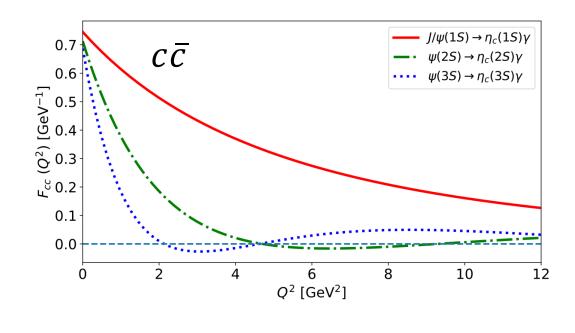
17

➤Coupling constant for: (in GeV^-1)

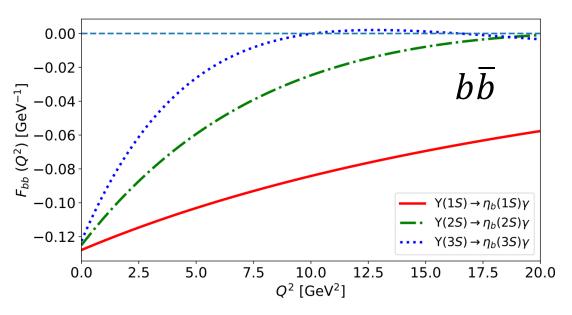
<u>Charmonia</u>					Bottomia				
Transition	Our	BLFQ[3] GI[4]			Transition	Our	BLFQ[3] GI[4]		
$J/\psi(1S) \to \eta_c(1S)\gamma$	0.745	0.873	0.69		$\Upsilon(1S) \to \eta_b(1S)\gamma$	-0.128	-0.141	-0.130	
$\psi(2S) \to \eta_c(2S)\gamma$	0.713	0.739	0.68		$\Upsilon(2S) \to \eta_b(2S)\gamma$	-0.125	-0.134	-0.120	
$\psi(2S) \to \eta_c(1S)\gamma$	-0.060	-0.144	-0.056		$\Upsilon(2S) \to \eta_b(1S)\gamma$	0.005	0.011	0.007	
$\psi(3S) \to \eta_c(3S)\gamma$	0.688				$\Upsilon(3S) \to \eta_b(3S)\gamma$	-0.123	-0.134	-0.120	
$\psi(3S) \to \eta_c(2S)\gamma$	-0.059				$\Upsilon(3S) \to \eta_b(2S)\gamma$	0.005	0.009	0.007	
$\psi(3S) \to \eta_c(1S)\gamma$	-0.011				$\Upsilon(3S) \to \eta_b(1S)\gamma$	0.001	0.005	0.004	
$\eta_c(2S) \to J/\psi(1S)\gamma$	-0.060				$\eta_b(2S) \to \Upsilon(1S)\gamma$	0.005	0.006		
$\eta_c(3S) \to \psi(2S)\gamma$	-0.059				$\eta_b(3S) \to \Upsilon(2S)\gamma$	0.005	0.004		
$\eta_c(3S) \to J/\psi(1S)\gamma$	-0.011				$\eta_b(3S) \to \Upsilon(1S)\gamma$	0.001	0.002		

 \rightarrow Minus sign indicates a destructive in the transition

[3] Li et al., PRD 98 (2024), 034024
[4] Godfrey & Isgur, PRD 32 (1985), 189



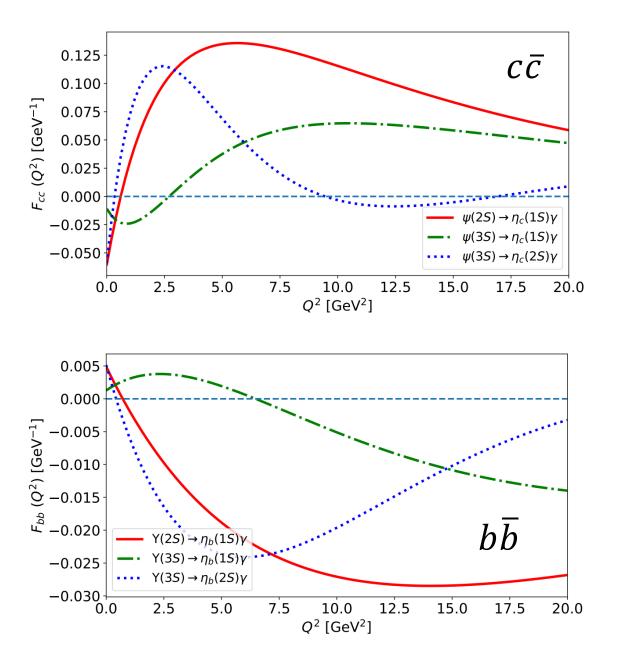
$$\begin{array}{c} \mathcal{V}(nS) \to \mathcal{P}(n'S)\gamma \\ (n=n') \end{array} \end{array}$$



The allowed transition due to the overlap of the initial and final wave function.

$$I_h^{\mu} = \int \frac{\mathrm{d}x \mathrm{d}^2 \boldsymbol{k}_{\perp}}{2(2\pi)^3} \frac{\Phi(x, \boldsymbol{k}_{\perp}') \Phi(x, \boldsymbol{k}_{\perp})}{\sqrt{\mathcal{A}^2 + \boldsymbol{k}_{\perp}'^2} \sqrt{\mathcal{A}^2 + \boldsymbol{k}_{\perp}^2}} \mathcal{O}_h^{\mu}(x, \boldsymbol{k}_{\perp}).$$

19



$$\begin{array}{c} \mathcal{V}(nS) \to \mathcal{P}(n'S)\gamma \\ (n \neq n') \end{array}$$

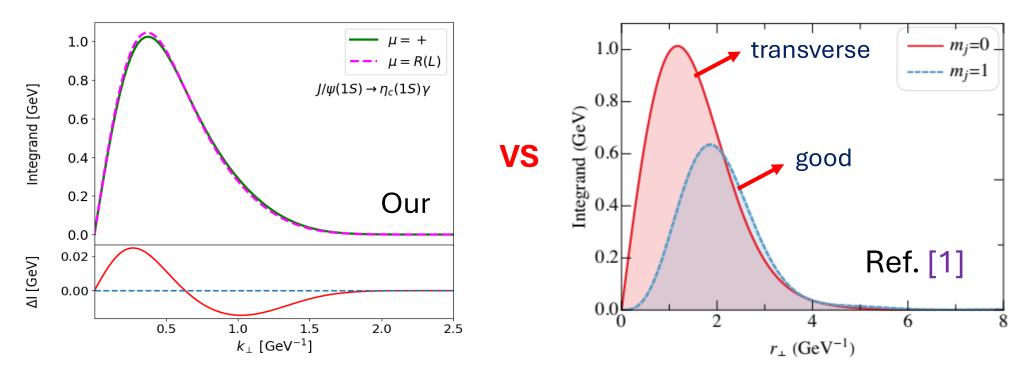
The hindered transition due to the orthogonality of the wave functions.

$$I_h^{\mu} = \int \frac{\mathrm{d}x \mathrm{d}^2 \boldsymbol{k}_{\perp}}{2(2\pi)^3} \frac{\Phi(x, \boldsymbol{k}_{\perp}') \Phi(x, \boldsymbol{k}_{\perp})}{\sqrt{\mathcal{A}^2 + \boldsymbol{k}_{\perp}'^2}} \mathcal{O}_h^{\mu}(x, \boldsymbol{k}_{\perp}).$$

To see the contribution of k_{\perp} in two frame, we plot the integrands (those inside {...}) vs k_{\perp}

$$I_{h}^{\mu} = \int_{0}^{\infty} k_{\perp} \left\{ \int_{0}^{2\pi} \theta \int_{0}^{1} x \frac{k_{\perp}}{2(2\pi)^{3}} \frac{\Phi(x, k'_{\perp}) \Phi(x, k_{\perp})}{\sqrt{\mathcal{A}^{2} + k'_{\perp}^{2}} \sqrt{\mathcal{A}^{2} + k'_{\perp}^{2}}} \underbrace{\mathcal{O}_{h}^{\mu}(x, k_{\perp})}_{\bullet} \right\} \xrightarrow{\bullet} \text{depends on } \mu \text{ and } h!$$

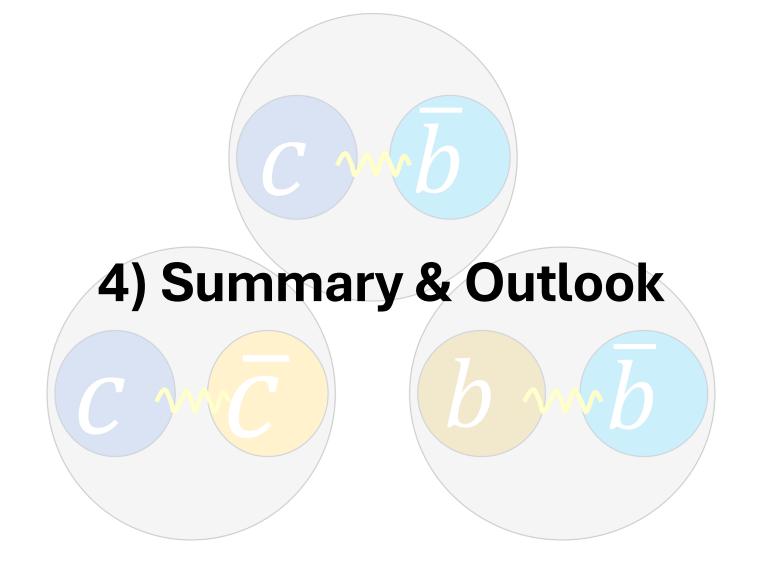
However....



[1] Li et al., PRD 98 (2018), 034024

$\succ \Gamma$ and Br in *cc* and *bb*

Transition	$\Gamma(Our)$	Expt. [16]	NRQM [20]	RQM [21]	Br(Our)	Expt. [16]	NRQM [20]	RQM [21]
$J/\psi \to \eta_c(1S)\gamma$	1.94	1.57	2.72	1.05	2.10×10^{-2}	$1.7(0.4) \times 10^{-2}$	2.94×10^{-2}	1.13×10^{-2}
$\psi(2S) \to \eta_c(2S)\gamma$	0.13	0.206	1.17	0.99	4.56×10^{-4}	$7(5) \times 10^{-4}$	3.98×10^{-3}	3.37×10^{-3}
$\psi(3S) \to \eta_c(3S)^{\dagger} \gamma$	1.53×10^{-3}		9.93		1.91×10^{-8}		1.24×10^{-4}	
$\psi(2S) \to \eta_c(1S)\gamma$	2.27	0.99	7.51	0.95	7.72×10^{-3}	$3.4(0.5) \times 10^{-3}$	2.55×10^{-2}	3.23×10^{-3}
$\psi(3S) \to \eta_c(2S)\gamma$	0.47				5.94×10^{-6}			
$\psi(3S) \to \eta_c(1S)\gamma$	0.22				2.75×10^{-6}			
$\eta_c(2S) \to J/\psi\gamma$	3.30				2.34×10^{-4}	$< 1.39 \times 10^{-2}$		
$\eta_c(3S)^\dagger \to \psi(2S)\gamma$	0.90							
$\eta_c(3S)^\dagger \to J/\psi\gamma$	0.47							
$\Upsilon(1S) \to \eta_b(1S)\gamma$	8.96×10^{-3}		$3.77\ \times 10^{-4}$	5.8×10^{-3}	1.66×10^{-4}		6.98×10^{-6}	1.07×10^{-4}
$\Upsilon(2S) \to \eta_b(2S)\gamma$	5.24×10^{-4}		5.62×10^{-3}	1.4×10^{-3}	1.64×10^{-5}		1.76×10^{-4}	4.38×10^{-5}
$\Upsilon(3S)^{\dagger} \to \eta_b(3S)^{\dagger}\gamma$	2.34×10^{-3}		2.85×10^{-3}	0.8×10^{-3}	1.15×10^{-4}		1.40×10^{-4}	3.94×10^{-5}
$\Upsilon(2S) \to \eta_b(1S)\gamma$	1.29×10^{-2}	1.76×10^{-2}	7.72×10^{-4}	6.4×10^{-3}	4.03×10^{-4}	$5.5^{+1.1}_{-0.9} \times 10^{-4}$	2.41×10^{-5}	2.00×10^{-4}
$\Upsilon(3S) \to \eta_b(2S)\gamma$	2.77×10^{-3}	$< 1.26 \times 10^{-2}$	3.62×10^{-4}	1.5×10^{-3}	1.36×10^{-4}	$< 6.7 \times 10^{-4}$		7.38×10^{-5}
$\Upsilon(3S) \to \eta_b(1S)\gamma$	3.02×10^{-3}	1.03×10^{-2}	7.70×10^{-4}	1.05×10^{-4}	1.48×10^{-4}	$5.1(0.7) \times 10^{-4}$	3.79×10^{-4}	5.17×10^{-5}
$\eta_b(2S) \to \Upsilon(1S)\gamma$	2.54×10^{-2}			1.18×10^{-4}	1.06×10^{-6}			1.18×10^{-8}
$\eta_b(3S)^\dagger \to \Upsilon(2S)\gamma$	1.91×10^{-2}			2.8×10^{-3}				
$\eta_b(3S)^\dagger \to \Upsilon(1S)\gamma$	1.14×10^{-2}			2.4×10^{-4}				

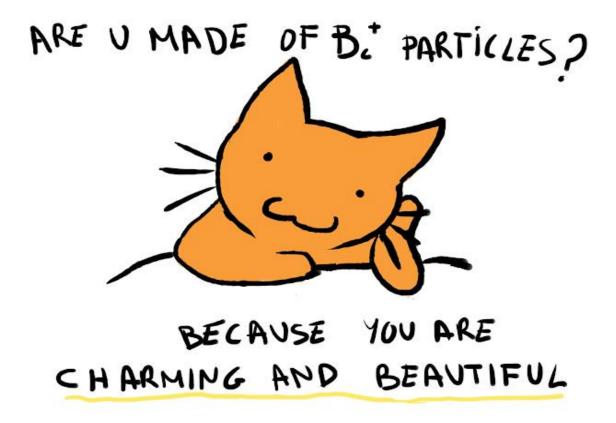


Summary and Outlook

- We have studied the radiative M1 transition for charmonia and bottomonia,
 - > We obtained the same coupling constant $g_{\mathcal{VP}}$ for the good and transverse current,
 - > We found that our results yield the same \vec{k}_{\perp} distributions for the good and transverse current
- We would consider the bad current ($\mu = -$) for the sake of completeness.

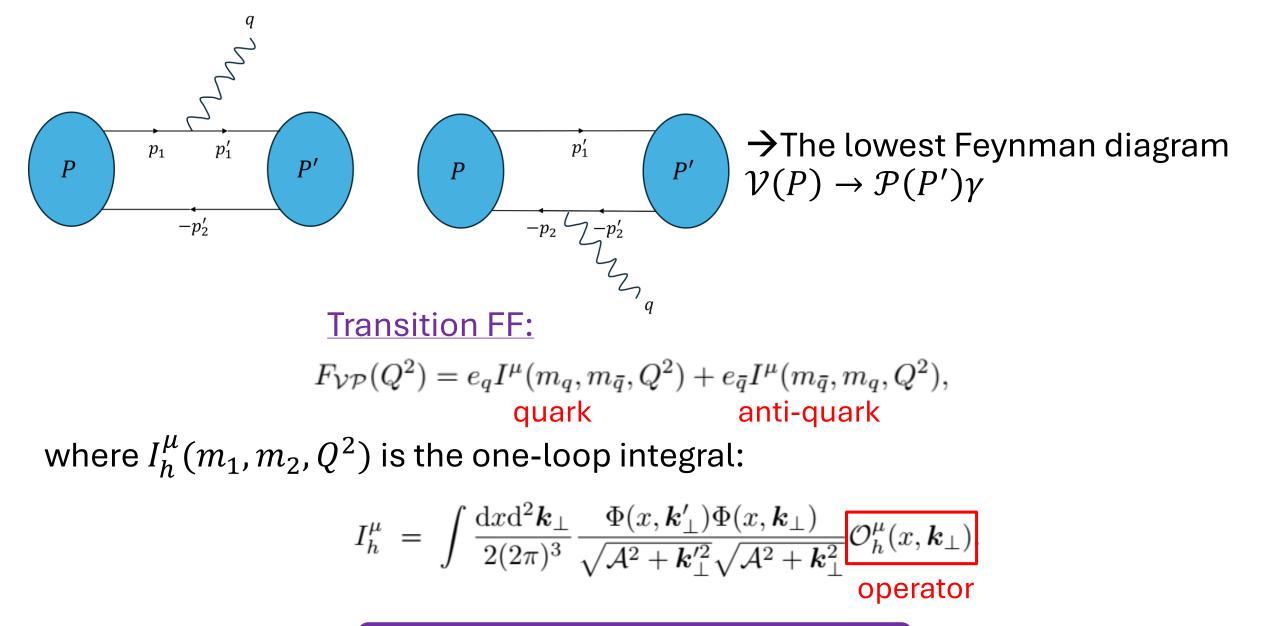
Thank You For Your Attention!

Thank You For Your Attention!



dingercatadventures. blogspot.com B

Backup Slide



Coupling constant: $g_{\mathcal{VP}} = F_{\mathcal{VP}}(0)$

$\succ \Gamma$ in *cb* mesons

Transition	$\Gamma(Our)$	NRQM1 [20]	RQM [19]
$B_c^*(1S)^\dagger \to B_c(1S)\gamma$	4.74×10^{-3}	4.04×10^{-2}	3.30×10^{-2}
$B_c^*(2S)^\dagger \to B_c(2S)\gamma$	1.77×10^{-3}	3.30×10^{-3}	1.70×10^{-2}
$B_c^*(3S)^\dagger \to B_c(3S)^\dagger \gamma$	8.09×10^{-3}		
$B_c^*(2S)^\dagger \to B_c(1S)\gamma$	0.58	0.56	0.43
$B_c^*(3S)^\dagger \to B_c(2S)\gamma$	0.17		
$B_c^*(3S)^\dagger \to B_c(1S)\gamma$	4.97×10^{-2}		
$B_c(2S) \to B_c^*(1S)^\dagger \gamma$	1.36	0.14	0.49
$B_c(3S)^{\dagger} \to B_c^*(2S)^{\dagger}\gamma$	0.33		
$B_c(3S)^{\dagger} \to B_c^*(1S)^{\dagger}\gamma$	0.12		

 \rightarrow We cannot compute Br in cb mesons due to the unavailable of total width in PDG

μ	$\epsilon(h)$	$\mathcal{G}^{\mu}_{h}(\boldsymbol{P}_{\!\perp} eq 0)$	$\mathcal{G}^{\mu}_{h}(\boldsymbol{P}_{\!\perp}=0)$
+	$\epsilon(0)$	0	0
	$\epsilon(+1)$	$\frac{eP^+q^R}{\sqrt{2}}$	$\frac{eP^+q^R}{\sqrt{2}}$
	$\epsilon(-1)$	$\frac{eP^+q^L}{\sqrt{2}}$	$\frac{eP^+q^L}{\sqrt{2}}$
R	$\epsilon(0)$	$-eMq^R$	$-eMq^R$
	$\epsilon(+1)$	$\frac{-eP^Rq^R}{\sqrt{2}}$	0
	$\epsilon(-1)$	$\frac{e\left(q^{-}P^{+}+P^{L}q^{R}\right)}{\sqrt{2}}$	$\frac{eq^-P^+}{\sqrt{2}}$
L	$\epsilon(0)$	eMq^L	eMq^L
	$\epsilon(+1)$	$\frac{e\left(q^{-}P^{+}+P^{R}q^{L}\right)}{\sqrt{2}}$	$\frac{eq^-P^+}{\sqrt{2}}$
	$\epsilon(-1)$	$\frac{-eP^Lq^L}{\sqrt{2}}$	0

the ter	\rightarrow	${\cal G}^{\mu}_h$ ie	$\varepsilon^{\mu\nu ho\sigma}$	$\epsilon_{\nu}q_{\mu}$	$_{\sigma}P_{\sigma}F_{\mathcal{VP}}(0)$	$Q^2),$		
Transv	Transverse $\rightarrow q^{R(L)} = q_x \pm i q_y$							
≻ We c	\blacktriangleright We consider $P_{\perp} = 0$ and $P_{\perp} \neq 0$ contribution.							
<u>Matrix</u>	$\frac{\text{Matrix elements in } \mathcal{J}_{h}^{\mu}}{\sum_{\lambda,\bar{\lambda}} \mathcal{R}_{\lambda'\bar{\lambda}}^{00\dagger}(x, \mathbf{k}_{\perp}')} \frac{\bar{u}_{\lambda'}(p_{1}')}{\sqrt{x'}} \gamma^{\mu} \frac{u_{\lambda}(p_{1})}{\sqrt{x}} \mathcal{R}_{\lambda\bar{\lambda}}^{1h}(x, \mathbf{k}_{\perp})$							
	Matrix element			-				
ī	$\bar{u}_{\lambda'}(p_1')\gamma^+ u_{\lambda}(p_1) 2$ $\bar{u}_{\lambda'}(p_1')\gamma^R u_{\lambda}(p_1)$ $\bar{u}_{\lambda'}(p_1')\gamma^L u_{\lambda}(p_1)$	$2\sqrt{p_1^+ p_1'^+}$	0	0	$2\sqrt{p_1^+ p_1'^+}$			
ī	$\bar{u}_{\lambda'}(p_1')\gamma^R u_\lambda(p_1)$	$2p_1^R$	0	0	$2p_{1}^{\prime R}$			
<i>i</i>	$\bar{u}_{\lambda'}(p_1')\gamma^L u_\lambda(p_1)$	$2p_{1}^{\prime L}$	0	0	$2p_1^L$			

Only different helicity which make matrix element zero.

To see the contribution of k_{\perp} in two frame, we plot the integrands (those inside {...}) vs k_{\perp} (continued)



Numerical Calculation

• Parameter result \rightarrow Variational Principle

$$\frac{\partial M_{q\bar{q}}}{\partial \beta} = \frac{\partial \langle \Phi | [H_0 + V_{q\bar{q}}] | \Phi \rangle}{\partial \beta} = \frac{\partial H_0}{\partial \beta} + \frac{\partial V_{q\bar{q}}}{\partial \beta} = 0$$
(3.18)
$$\eta_c \text{ and } \Upsilon \text{ in 1S as inputs}$$

	θ_{12}	$\theta_{13} = \theta_{23}$	m_c	m_b	a	b
1	12.12	8.44	1.61	4.97	-0.41	0.18
	μ	α_s	$\beta_{c\overline{c}}$	$\beta_{c\bar{b}}$	β_b	ō
	0.027	0.402	0.5417	0.701	9 1.05	595

Analytical Calculation

• Light-Front Wave Function

$$\begin{split} \phi_{1S}(x,\mathbf{k}_{\perp}) &= \sqrt{2(2\pi)^{3}} \sqrt{\frac{\partial k_{z}}{\partial x}} \frac{1}{\pi^{3/4} \beta^{3/2}} e^{-\mathbf{k}^{2}/2\beta^{2}} \\ \phi_{2S}(x,\mathbf{k}_{\perp}) &= \sqrt{2(2\pi)^{3}} \sqrt{\frac{\partial k_{z}}{\partial x}} \frac{1}{\sqrt{6\pi^{3/4} \beta^{7/2}}} (2\mathbf{k}^{2} - 3\beta^{2}) e^{-\mathbf{k}^{2}/2\beta^{2}} \\ \phi_{3S}(x,\mathbf{k}_{\perp}) &= \sqrt{2(2\pi)^{3}} \sqrt{\frac{\partial k_{z}}{\partial x}} \frac{1}{2\sqrt{30}\pi^{3/4} \beta^{11/2}} (15\beta^{4} - 20\beta^{2}\mathbf{k}^{2} + 4\mathbf{k}^{2}) \\ &\times e^{-\mathbf{k}^{2}/2\beta^{2}} \end{split}$$

(3.1)

where we define the mixing state

$$\begin{pmatrix} \Phi_{1S} \\ \Phi_{2S} \\ \Phi_{3S} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}s_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23}c_{13} \\ s_{12}c_{23} - c_{12}c_{23}s_{13} & -c_{12}s_{23} - s_{12}c_{23}s_{13} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} \phi_{1S} \\ \phi_{2S} \\ \phi_{3S} \end{pmatrix}$$

$$= \begin{pmatrix} c_{1}^{1S} & c_{2}^{1S} & c_{3}^{1S} \\ c_{1}^{2S} & c_{2}^{2S} & c_{3}^{2S} \\ c_{1}^{3S} & c_{2}^{2S} & c_{3}^{2S} \\ c_{1}^{3S} & c_{2}^{3S} & c_{3}^{3S} \end{pmatrix} \begin{pmatrix} \phi_{1S} \\ \phi_{2S} \\ \phi_{3S} \end{pmatrix}$$

$$c_{ij}(s_{ij}) = \cos \theta_{ij}(\sin \theta_{ij})$$

$$(3.2)$$

• The mixing mass formula

$$M_{q\bar{q}} = \langle \Psi_{q\bar{q}}^{M} | \hat{H} | \Psi_{q\bar{q}}^{M} \rangle = \langle \Phi | [H_{0} + V_{q\bar{q}}] | \Phi \rangle$$

$$M_{q\bar{q}} = \langle H_{0} \rangle + \langle V_{\text{Conf}} \rangle + \langle V_{\text{Coul}} \rangle + \langle V_{\text{Hyp}} \rangle$$
(3.3)

• Kinetic term

$$\langle H_0 \rangle = \frac{\beta}{120\sqrt{\pi}} \sum_{j=1,2} \left[(g_1 + g_2 z_i^2) z_i e^{z_i/2} K_1 \left[\frac{z_i}{2} \right] + g_3 z_i^2 (z_i - 3) e^{z_i/2} K_2 \left[\frac{z_i}{2} \right] + 15\sqrt{\pi} \left(g_4 U(-1/2, -2, z_i) + g_5 U(-1/2, -4, z_i) + g_6 U(-1/2, -5, z_i) \right) \right],$$

$$(3.4)$$

$$g_{1} = 120c_{1}^{2} - 120\sqrt{6}c_{1}c_{2} + 180c_{2}^{2} + 60\sqrt{30}c_{1}c_{3} - 180\sqrt{5}c_{2}c_{3} + 225c_{3}^{2},$$

$$g_{2} = 40c_{2}^{2} + 8\sqrt{30}c_{1}c_{3} - 104\sqrt{5}c_{2}c_{3} + 260c_{3}^{2},$$

$$g_{3} = -4(10c_{2}^{2} - 26\sqrt{5}c_{2}c_{3} + 2\sqrt{30}c_{1}c_{3} + 65c_{3}^{2}),$$

$$g_{4} = 4(-6c_{2}^{2} + 9\sqrt{5}c_{2}c_{3} - 15c_{3}^{2} + 2\sqrt{6}(c_{1}c_{2} - \sqrt{5}c_{1}c_{3})),$$

$$g_{5} = 28(\sqrt{5}c_{2}c_{3} - 5c_{3}^{2}),$$

$$g_{6} = 63c_{3}^{2},$$

• Confinement pot. \rightarrow exponential (screened) pot. : $V_{\text{Conf.}}^{\text{Scr.}} = a + \frac{b(1-e^{-\mu r})}{\mu}$

$$\langle V_{\rm Conf}^{\rm exp} \rangle = a + \frac{b}{\mu} + \frac{b}{3840\sqrt{\pi}\beta^{10}\mu} \bigg[2\beta\mu \big(d_1\beta^8 + d_2\beta^6\mu^2 + d_3\beta^4\mu^4 + d_4\beta^2\mu^6 + d_5\mu^8 \big) \\ -\sqrt{\pi}e^{\mu^2/4\beta^2} \big(f_1\beta^{10} + f_2\beta^8\mu^2 + f_3\beta^6\mu^4 + f_4\beta^4\mu^6 + f_5\beta^2\mu^8 + f_6\mu^{10} \big) \text{erfc} \bigg[\frac{\mu}{2\beta} \bigg] \bigg],$$

• Coulomb and Hyperfine pot.

$$\langle V_{\text{Coul}} \rangle = -\frac{\beta \alpha_s}{45\sqrt{\pi}} \left(120c_1^2 + 100c_2^2 + 89c_3^2 + 40\sqrt{6}c_1c_2 + 12\sqrt{30}c_1c_3 + 44\sqrt{5}c_2c_3 \right), \langle V_{\text{Hyp}} \rangle = \frac{\langle \mathbf{S}_q.\mathbf{S}_{\bar{q}} \rangle \beta^3 \alpha_s}{3m_1m_2\sqrt{\pi}} \left(\frac{32}{3}c_1^2 + 16c_2^2 + 20c_3^2 + 32\sqrt{\frac{2}{3}}c_1c_2 + 16\sqrt{\frac{10}{3}}c_1c_3 + 16\sqrt{5}c_2c_3 \right).$$

$$(3.6)$$

• Decay constant (DC) of pseudoscalar and vector meson are defined by

$$\langle 0|\bar{q}\gamma^{\mu}\gamma_{5}q|P\rangle = if_{P}P^{\mu}$$

$$\langle 0|\bar{q}\gamma^{\mu}q|V(P,\lambda)\rangle = f_{V}M\epsilon^{\mu}(P,\lambda)$$

$$\underline{\text{Pseudoscalar}}$$

$$(3.7)$$

• The explicit form:

$$f_{P,V} = \sqrt{6} \int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{(2\pi)^3} \frac{\Phi(x, \mathbf{k}_\perp)}{\sqrt{\mathcal{A}^2 + \mathbf{k}_\perp^2}} \mathcal{O}_{P,V}$$
(3.8)

$$\mathcal{O}_P = \mathcal{A} \qquad \qquad \mathcal{A} = (1-x)m_q + xm_{\bar{q}}$$
$$\mathcal{O}_V = \mathcal{A} + \frac{2\mathbf{k}_{\perp}^2}{D} \qquad \qquad D = M_0 + m_q + m_{\bar{q}}.$$

- To see the contribution of k_\perp in two frame, we plot the integrands (those inside {...}) vs k_\perp

Good current

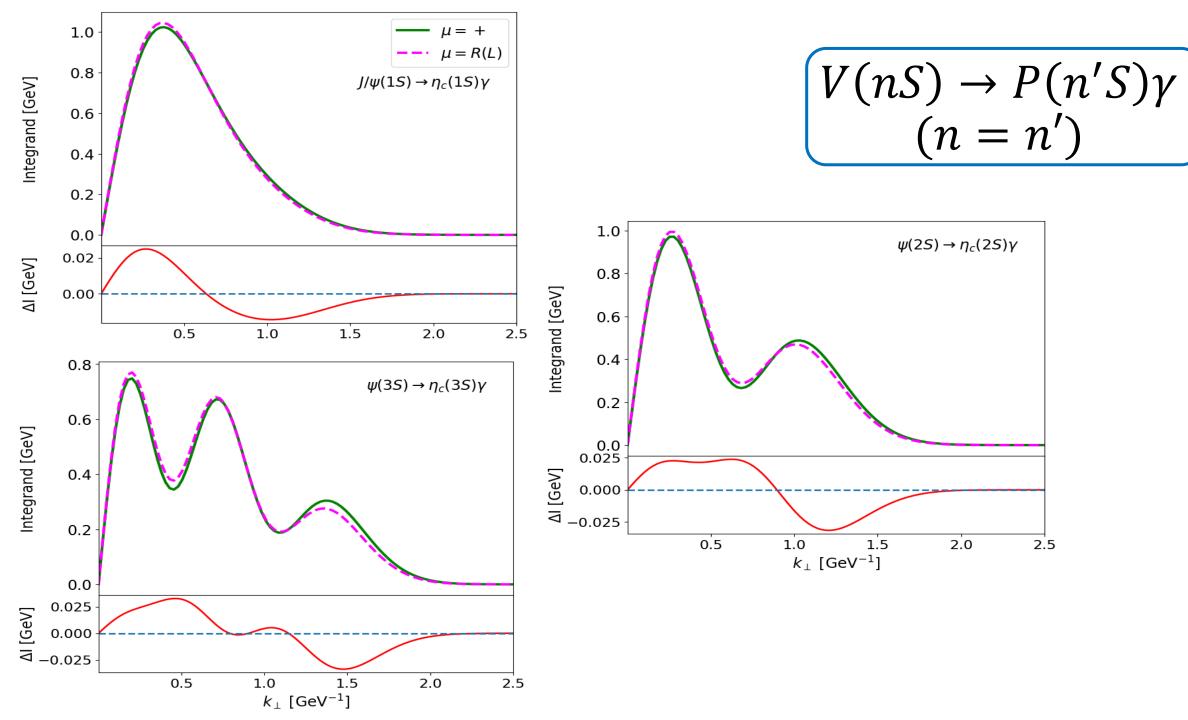
$$I_1^+ = \int dk_\perp \left\{ \int \frac{dxd\theta}{16\pi^3} \frac{\phi(x, \mathbf{k}_\perp')\phi(x, \mathbf{k}_\perp)}{x\tilde{M}_0\tilde{M}_0'} \left(\mathcal{A} + \frac{2}{D} \left[\mathbf{k}_\perp^2 - \frac{(\mathbf{k}_\perp \cdot \mathbf{q}_\perp)^2}{\mathbf{q}_\perp^2} \right] \right) \right\}$$

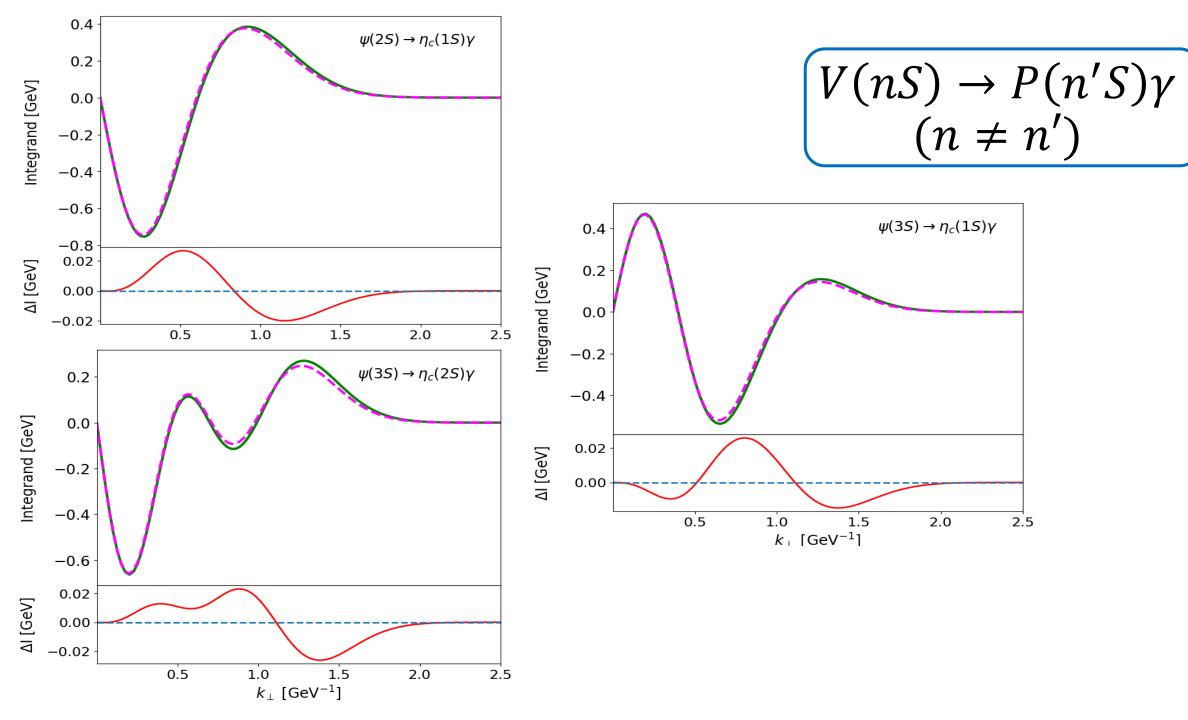
Transverse current

$$\begin{split} I_0^{RL} &= \int dk_\perp \left\{ \int \frac{dxd\theta}{16\pi^3} \frac{\phi(x, \mathbf{k}_\perp')\phi(x, \mathbf{k}_\perp)}{x_1 x (1-x) \tilde{M}_0 \tilde{M}_0' M_0} \left[\mathcal{A} \left(\mathcal{A} + \frac{2\mathbf{k}_\perp^2}{D} \right) \right. \right. \\ &+ \frac{\mathcal{M}}{D} \left((1-2x) \mathbf{k}_\perp^2 + (1-x) \left\{ (\mathbf{k}_\perp \cdot \mathbf{q}_\perp) - \frac{2(\mathbf{k}_\perp \cdot \mathbf{q}_\perp)^2}{\mathbf{q}_\perp^2} \right\} \right) \right] \right\} \end{split}$$

(4.1)

(4.2)





• The transition form factor $F_{VP}(q^2)$ can be defined as:

$$\begin{split} \langle P(P') | J^{\mu}_{em} | V(P,h) \rangle &= i e \epsilon^{\mu \nu \rho \sigma} \epsilon_{\nu}(P,h) q_{\rho} P_{\sigma} F_{VP}(q^2), \end{split} \tag{3.9} \\ \\ \textbf{LHS} \qquad \textbf{RHS} \end{split}$$

1. The left-hand side (LHS):

$$\langle J_{h}^{\mu} \rangle = e \sum_{j} Q_{j} \int_{0}^{1} \frac{dx}{16\pi^{3}} \int d^{2}\mathbf{k}_{\perp} \phi(x, \mathbf{k}_{\perp}') \phi(x, \mathbf{k}_{\perp}) \sum_{\lambda' \lambda \bar{\lambda}} \mathcal{R}_{\lambda' \bar{\lambda}}^{00\dagger}(x, \mathbf{k}_{\perp}') \frac{\bar{u}_{\lambda'}(p_{1}')}{\sqrt{x_{1}'}} \gamma^{\mu} \frac{u_{\lambda}(p_{1})}{\sqrt{x_{1}}} \mathcal{R}_{\lambda \bar{\lambda}}^{1h}(x, \mathbf{k}_{\perp})$$

$$= e \sum_{j} Q_{j} \int_{0}^{1} \frac{dx}{16\pi^{3}} \int d^{2}\mathbf{k}_{\perp} \phi(x, \mathbf{k}_{\perp}') \phi(x, \mathbf{k}_{\perp}) \frac{S}{x}$$

$$(3.10)$$

2. The right-hand side (RHS), we define \mathcal{G}_h^{μ} :

≻Good current (μ = +)

$$\mathcal{G}_{+1}^{+} = F_{VP}(Q^2) \frac{eP^+ q^R}{\sqrt{2}}.$$

$$\mathcal{G}_{-1}^{+} = F_{VP}(Q^2) \frac{eP^+ q^L}{\sqrt{2}}.$$

$$h = +1$$

$$h = -1$$

Fransverse current ($\mu = R(L)$)

$$\begin{array}{lll} \mathcal{G}_{0}^{L} = & eFM_{0}q^{L} \\ \mathcal{G}_{0}^{R} = & -eFM_{0}q^{R} \\ \end{array} & \begin{array}{lll} \mathcal{G}_{+1}^{R} = \frac{-eF}{\sqrt{2}}P^{R}q^{R} \\ \mathcal{G}_{+1}^{L} = \frac{eF}{\sqrt{2}}\left(q^{-}P^{+} + P^{R}q^{L}\right) \\ \mathcal{G}_{+1}^{L} = \frac{-eF}{\sqrt{2}}P^{L}q^{L} \\ \mathcal{G}_{-1}^{L} = \frac{-eF}{\sqrt{2}}P^{L}q^{L} \\ \end{array} \\ h = 0 \\ \begin{array}{lll} h = +1 \\ h = -1 \end{array} & \begin{array}{lll} h = -1 \end{array} \end{array}$$

- The one-loop integral :
- 1. Good current $\langle I_1^+ \rangle = FP^+q_\perp^2/2$

$$I^{+}(m_{1}, m_{2}, q^{2}) = \int_{0}^{1} \frac{dx}{8\pi^{3}} \int d^{2}\mathbf{k}_{\perp} \frac{\phi(x, \mathbf{k}_{\perp}')\phi(x, \mathbf{k}_{\perp})}{x_{1}\tilde{M}_{0}\tilde{M}_{0}'} \times \left\{ \mathcal{A} + \frac{2}{D_{0}} \left[\mathbf{k}_{\perp}^{2} - \frac{(\mathbf{k}_{\perp} \cdot \mathbf{q}_{\perp})^{2}}{\mathbf{q}_{\perp}^{2}} \right] \right\}$$
(3)

2. Transverse current
$$\langle I_0^{RL} \rangle = F M_0 q_{\perp}^2$$

$$\begin{split} I_0^{RL}(m_1, m_2, q^2) &= \int \frac{dx d^2 \mathbf{k}_\perp}{16\pi^3} \frac{\phi(x, \mathbf{k}'_\perp) \phi(x, \mathbf{k}_\perp)}{x_1 x (1-x) \tilde{M}_0 \tilde{M}'_0 M_0} \left[\mathcal{A} \left(\mathcal{A} + \frac{2 \mathbf{k}_\perp^2}{D} \right) \right. \\ &+ \frac{\mathcal{M}}{D} \left((1-2x) \mathbf{k}_\perp^2 + (1-x) \left\{ (\mathbf{k}_\perp \cdot \mathbf{q}_\perp) - \frac{2(\mathbf{k}_\perp \cdot \mathbf{q}_\perp)^2}{\mathbf{q}_\perp^2} \right\} \right) \right] \end{split}$$

3.11)

(3.12)

3. Transverse current $\langle I_{1(-1)}^{RL} \rangle = F P_{\perp}^2 q_{\perp}^2 / \sqrt{2}$

$$I_{1(-1)}^{RL}(m_{1},m_{2},q^{2}) = \int \frac{dxd^{2}\mathbf{k}_{\perp}}{8\pi^{3}} \frac{\phi(x,\mathbf{k}_{\perp}')\phi(x,\mathbf{k}_{\perp})}{x^{2}(1-x)\tilde{M}_{0}\tilde{M}_{0}'} \left[\frac{(\mathbf{P}_{\perp}\cdot\mathbf{k}_{\perp})}{\mathbf{q}_{\perp}^{2}} \left\{ (1-x)\mathcal{A} - \frac{\mathcal{A}\mathcal{M}_{2}}{D} - x\frac{\mathbf{k}_{\perp}^{2}}{D} \right\} + \frac{(1-x)}{2\mathbf{P}_{\perp}^{2}D} \left\{ \frac{4\mathbf{k}_{\perp}^{2}}{\mathbf{q}_{\perp}^{2}}(\mathbf{q}_{\perp}\cdot\mathbf{k}_{\perp})(\mathbf{q}_{\perp}\cdot\mathbf{P}_{\perp}) + 4(\mathbf{k}_{\perp}\cdot\mathbf{P}_{\perp})(\mathbf{k}_{\perp}\cdot\mathbf{q}_{\perp}) - \frac{8}{\mathbf{q}_{\perp}^{2}}(\mathbf{k}_{\perp}\cdot\mathbf{q}_{\perp})^{2}(\mathbf{k}_{\perp}\cdot\mathbf{P}_{\perp}) + \mathbf{k}_{\perp}^{2}(3(\mathbf{k}_{\perp}\cdot\mathbf{P}_{\perp}) - (\mathbf{P}_{\perp}\cdot\mathbf{q}_{\perp}))\} - \frac{(1-x)x}{D} \left\{ \frac{2(\mathbf{k}_{\perp}\cdot\mathbf{q}_{\perp})^{2}}{\mathbf{q}_{\perp}^{2}} - \mathbf{k}_{\perp}^{2} \right\} + (1-x)x\left(\mathcal{A} + \frac{\mathbf{k}_{\perp}^{2}}{D}\right) \right]$$

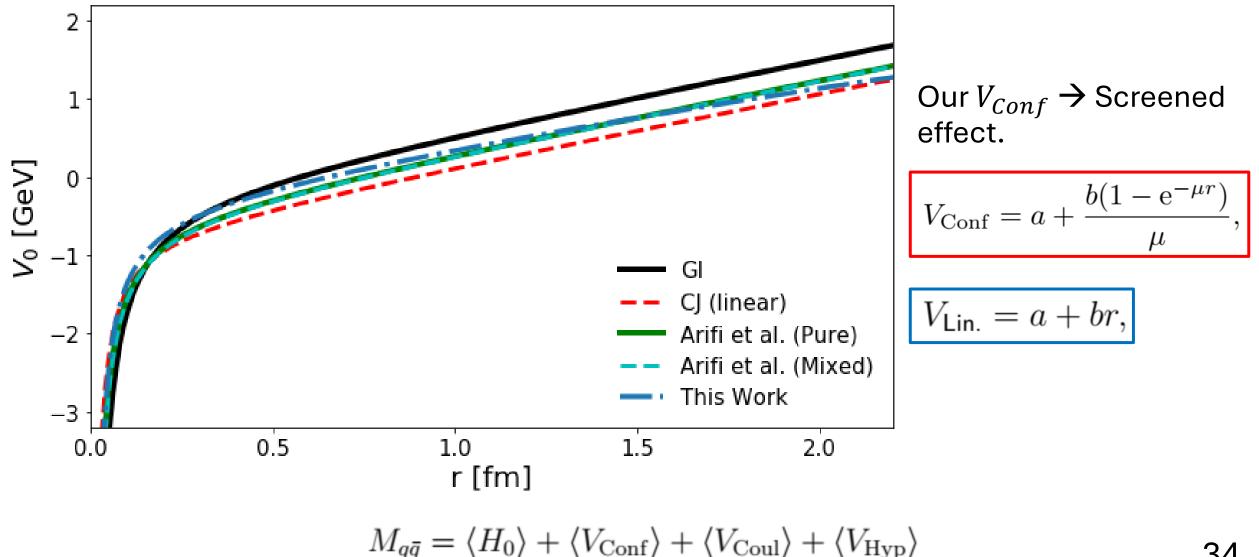
$$(3.13)$$

Surprisingly for the transverse current $(I_{1(-1)}^{RL})$, if we assume $P_{\perp} = 0$, the one loop integral will be the same as good current (I_{1}^{+}) ,

$$I_{1(-1)}^{RL}(m_{1},m_{2},q^{2}) = \int \frac{dxd^{2}\mathbf{k}_{\perp}}{8\pi^{3}} \frac{\phi(x,\mathbf{k}_{\perp}')\phi(x,\mathbf{k}_{\perp})}{x^{2}(1-x)\tilde{M}_{0}\tilde{M}_{0}'} \left[\frac{(1-x)x}{D} \left\{ \mathbf{k}_{\perp}^{2} - \frac{2(\mathbf{k}_{\perp}\cdot\mathbf{q}_{\perp})^{2}}{\mathbf{q}_{\perp}^{2}} \right\} + (1-x)x \left(\mathcal{A} + \frac{\mathbf{k}_{\perp}^{2}}{D} \right) \right] \\ = \int \frac{dxd^{2}\mathbf{k}_{\perp}}{8\pi^{3}} \frac{\phi(x,\mathbf{k}_{\perp}')\phi(x,\mathbf{k}_{\perp})}{x^{2}(1-x)\tilde{M}_{0}\tilde{M}_{0}'} (1-x)x \left[\frac{\mathbf{k}_{\perp}^{2}}{D} - \frac{2(\mathbf{k}_{\perp}\cdot\mathbf{q}_{\perp})^{2}}{\mathbf{q}_{\perp}^{2}D} + \mathcal{A} + \frac{\mathbf{k}_{\perp}^{2}}{D} \right] \\ = \int \frac{dxd^{2}\mathbf{k}_{\perp}}{8\pi^{3}} \frac{\phi(x,\mathbf{k}_{\perp}')\phi(x,\mathbf{k}_{\perp})}{x\tilde{M}_{0}\tilde{M}_{0}'} \left[\mathcal{A} + \frac{2}{D} \left(\mathbf{k}_{\perp}^{2} - \frac{(\mathbf{k}_{\perp}\cdot\mathbf{q}_{\perp})^{2}}{\mathbf{q}_{\perp}^{2}} \right) \right]$$
(3.14)

A. Result & Discussion 1) Mass Spectra

• *V_{Conf}* in every model



•	Mass Spectra	Result for c	$c\overline{c}$ and $b\overline{b}$ ((in MeV)
---	--------------	--------------	---------------------------------------	----------

·			X	1		M and M
States	$M_{\rm Theo.}$	Exp.	GI	RQM	NRQM	$M_{theo.}$ and $M_{exp.}$
$\eta_c(1S)$	3002.3	2983.9 ± 0.4	2970	2979	2989	→ 0,62 %
$\eta_c(2S)$	3614.5	3637.5 ± 1.1	3620	3588	3602	───→ 0,63 %
$\eta_c(3S)$	4028.1		4060	3991	4058	
$J/\psi(1S)$	3102.4	3098.9 ± 0.01	3100	3096	3094	→ 0,11%
$\psi(2S)$	3679.8	$3686.1{\pm}~0.06$	3680	3686	3681	───→ 0,17%
$\psi(3S)$	4079.1	4039 ± 1	4100	4088	4129	───→ 0, 99%
$\eta_b(1S)$	9319.2	9398.7 ± 2	9400	9400	9428	───→ 0,8 5%
$\eta_b(2S)$	10038	9999 \pm 4	9980	9993	9955	→ 0,39%
$\eta_b(3S)$	10495		10340	10328	10338	
$\Upsilon(1S)$	9397.8	9460.3 ± 0.3	9460	9460	9463	0,66%
$\Upsilon(2S)$	10089	10023.3 ± 0.3	10000	10023	9979	→ 0,66%
$\Upsilon(3S)$	10535	10355.2 ± 0.5	10350	10355	10359	1.7%

GI: (Godfrey & Isgur, 1985), RQM: (Ebert et al., 2003), NRQM: (Soni et al., 2018)

Discrepancy between

• Mass Spectra Result for $c\overline{b}$ (in MeV)

Discrepancy between $M_{theo.}$ and $M_{exp.}$

States	$M_{\text{Theo.}}$	Exp. ²¹	GI ²²	RQM ²³	NRQCD ²⁴		in theo. and mexp.
$B_c(1S)$	6231.6	6274.5 ± 0.32	6270	6270	6272		→ 0,68%
$B_c(2S)$	6846.4	6871.2 ± 1	6850	6835	6864		→ 0,36%
$B_c(3S)$	7251.2			7193	7306		
$B_c^*(1S)$	6302.1		6340	6332	6321	-	
$B_c^*(2S)$	6892.4		6890	6881	6900		
$B_c^*(3S)$	7287.2			7235	7338	_	

Discrepancy:

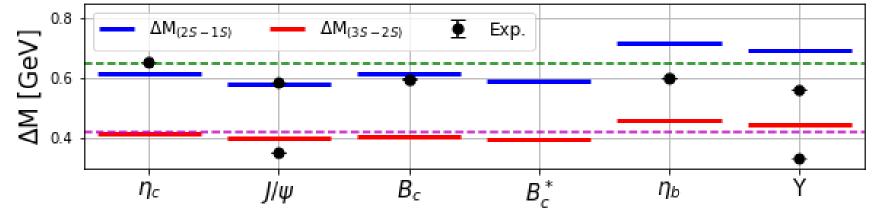
 $\left|\frac{M_{theo.} - M_{exp.}}{M_{exp.}}\right| \times 100\%$

GI: (Godfrey & Isgur, 1985), RQM: (Ebert et al., 2003), NRQM: (Soni et al., 2018)

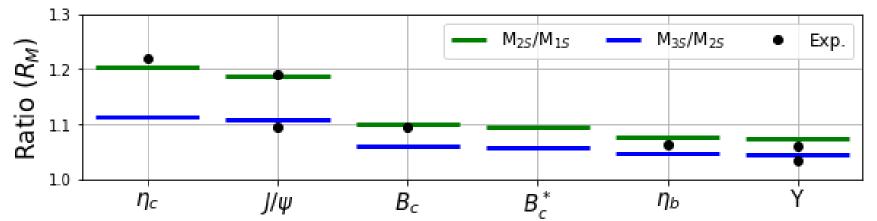
• Mass Spectra in Graph



All heavy mesons are in good agreement with experimental data, except Y(3S). • Mass Gap & Ratio



- $> \Delta M_{2S-1S} > \Delta M_{3S-2S}$ and $\Delta M_P > \Delta M_V.$
- > There are significant difference on $b\overline{b}$'s.



*M*_{2S}/*M*_{1S} > *M*_{3S}/*M*_{2S}
 P Overall are comparable with experimental data.

4. Result & Discussion 2) Decay Constant

• Decay Constant (in MeV)

	$\eta_c(1S)$	$J/\psi(1S)$	$B_c(1S)$	$B_c^*(1S)$	$\eta_b(1S)$	$\Upsilon(1S)$	
$f_{\rm Theo.}$	349.1	396.7	397.1	427.9	629.6	669.4	
Exp.	335(75)	407(5)				689(5)	
Lattice ²⁴⁻²⁷	395(2.4)	405(6)	427(6)(2)		667(6)(2)	649(31)	
RQM ²⁸			410(20)				
Sum Rules ²⁹	387(7)	418(9)					$f_P^{\text{Exp}} = \sqrt{\frac{3M_P\Gamma_{\gamma\gamma}}{4\pi\alpha^2 - e^2}}$
BS^{30}	292(25)	459(28)				496(20)	$f_P = \sqrt{\frac{4\pi \alpha_{\rm QED}^2 e_Q^2}{4\pi \alpha_{\rm QED}^2 e_Q^2}}$
BS2 ³¹	385		519(1)		709		
CCQM ³²				536(58)			$f_V^{\rm Exp} = \sqrt{\frac{3M_V \Gamma_{e^-e^+}}{4\pi\alpha_{\rm QED}^2 e_Q^2}}$
RQM2 ³³	313	411			594	718	↓ InαQED [©] Q
RQM3 ³⁴	402	393			599	665	
NRQM ³⁵	350	326			646	647	
LFQM (CJ) ³⁶	326	360	349	369	507	529	
LFQM (CJ2) ³⁷	353	361	389	391	605	611	

Discrepancy between $f_{theo.}$ and $f_{exp.}$

: $\eta_c(1S) \rightarrow 4.2\%$ $J/\psi(1S) \rightarrow 2.5\%$ $\Upsilon(1S) \rightarrow 2.9\%$

• Decay Constant (in MeV)

RQM2³³

RQM3³⁴

NRQM³⁵

127

193

249

206

258

230

	$\eta_c(2S)$	$\psi(2S)$	$B_c(2S)$	$B_c^*(2S)$	$\eta_b(2S)$	$\Upsilon(2S)$
$f_{\text{Theo.}}$	224	285.6	278.9	319	456.9	510.9
Exp.		294(5)				497(5)
Lattice						481(39)
LFD ³⁸		288(6)				
BLFQ ³⁹	299(68)	312(73)			524(58)	518(48)
RQM2 ³³	173	261			363	459
RQM3 ³⁴	240	293			411	475
NRQM ³⁵	278	257			519	519
	$\eta_c(3S)$	$\psi(3S)$	$B_c(3S)$	$B_c^*(3S)$	$\eta_b(3S)$	$\Upsilon(3S)$
$f_{\rm Theo.}$	163.9	230.2	219.5	265.1	363.2	427.3
Exp.		238(5)				430(4)

. . .

. . .

. . .

. . .

. . .

. . .

298

354

475

385

418

475

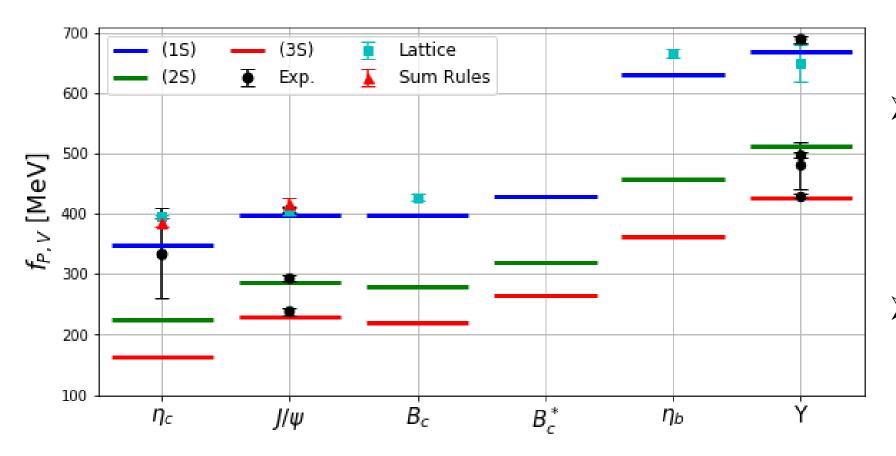
Discrepancy:

$$\left|\frac{f_{theo.} - f_{exp.}}{f_{exp.}}\right| \times 100\%$$

 $\psi(2S) \rightarrow 2.9\%$ $\Upsilon(2S) \rightarrow 2.8\%$ $\psi(3S) \rightarrow 3.3\%$

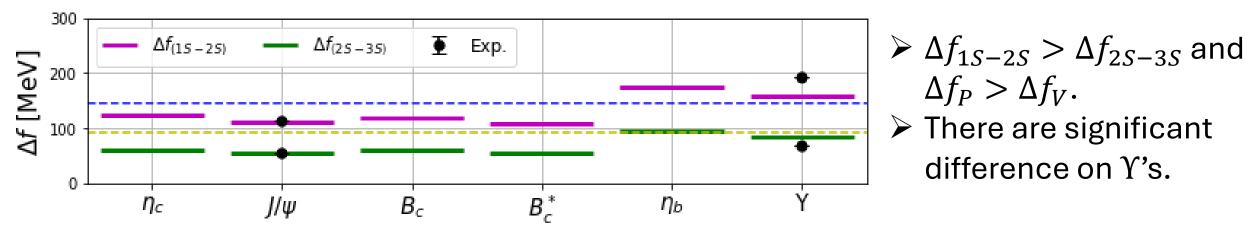
 $\Upsilon(3S) \rightarrow 0.63\%$

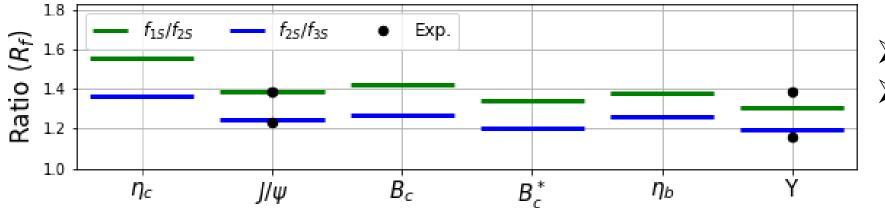
• Decay Constant in Graph



Only Y's which have moderately difference value between ours and experimental data.
 $f_{1S} > f_{2S} > f_{3S}$

• DC Gap & Ratio





> (f/f')_P > (f/f')_V.
 > There are significant difference on Y's.

4. Result & Discussion 3) Radiative Decay

• Partial decay width (Γ) [KeV] for $c\bar{c}$

Transition	Result	Exp.	$NRQM^{41}$	RQM ⁴²
$J/\psi(1S) \to \eta_c(1S) + \gamma$	1.94	1.57	2.72	1.05
$\psi(2S) \to \eta_c(2S) + \gamma$	0.134	0.206	1.17	0.99
$\psi(2S) \to \eta_c(1S) + \gamma$	2.27	0.99	7.51	0.95
$\psi(3S) \to \eta_c(3S)^\dagger + \gamma$	1.53×10^{-3}		9.93	
$\psi(3S) \to \eta_c(2S) + \gamma$	0.475			
$\psi(3S) \to \eta_c(1S) + \gamma$	0.22			
$\eta_c(2S) \to J/\psi(1S) + \gamma$	3.3			
$\eta_c(3S)^\dagger \to \psi(2S) + \gamma$	0.904			
$\eta_c(3S)^\dagger \to J/\psi(1S) + \gamma$	0.475			

Few experimental data obtained from PDG.

> NRQM and RQM are used for comparison.

RQM: (Ebert et al., 2003), NRQM: (Soni et al., 2018)

• Partial decay width (Γ) [KeV] for $b\overline{b}$

Transition	Result	Exp.	NRQM	RQM
$\Upsilon(1S) \to \eta_b(1S) + \gamma$	8.96 ×10 ⁻³		3.77×10^{-4}	5.8 $\times 10^{-3}$
$\Upsilon(2S) \to \eta_b(2S) + \gamma$	5.24 $\times 10^{-4}$		5.62 $\times 10^{-3}$	1.4×10^{-3}
$\Upsilon(2S) \to \eta_b(1S) + \gamma$	1.29×10^{-2}	1.76×10^{-2}	7.72×10^{-4}	6.4×10^{-3}
$\Upsilon(3S)^{\dagger} \to \eta_b(3S)^{\dagger} + \gamma$	2.34×10^{-3}		2.85×10^{-3}	0.8×10^{-3}
$\Upsilon(3S) \to \eta_b(2S) + \gamma$	2.77×10^{-3}	$<$ 1.26 $\times 10^{-2}$	3.62×10^{-4}	1.5×10^{-3}
$\Upsilon(3S) \to \eta_b(1S) + \gamma$	3.02×10^{-3}	1.03×10^{-2}	7.7×10^{-4}	1.05×10^{-4}
$\eta_b(2S) \to \Upsilon(1S) + \gamma$	2.54×10^{-2}			1.18×10^{-4}
$\eta_b(3S)^\dagger \to \Upsilon(2S) + \gamma$	1.91×10^{-2}			2.8×10^{-3}
$\eta_b(3S)^\dagger \to \Upsilon(1S) + \gamma$	1.14×10^{-2}			2.4×10^{-4}

RQM: (Ebert et al., 2003), NRQM: (Soni et al., 2018)

• Partial decay width (Γ) [KeV] for $c\overline{b}$

Transition	Result	NRQM1	NRQM2	RQM
$B_c^*(1S)^\dagger \to B_c(1S) + \gamma$	4.74×10^{-3}	4.04×10^{-4}	5.31×10^{-4}	3.3×10^{-4}
$B_c^*(2S)^\dagger \to B_c(2S) + \gamma$	1.77×10^{-3}	3.3×10^{-3}	2.11×10^{-4}	1.7×10^{-4}
$B_c^*(2S)^\dagger \to B_c(1S) + \gamma$	0.575	0.56	4.82×10^{-5}	4.28×10^{-1}
$B_c^*(3S)^\dagger \to B_c(3S)^\dagger + \gamma$	8.09 ×10 ⁻³			
$B_c^*(3S)^\dagger \to B_c(2S) + \gamma$	0.171			
$B_c^*(3S)^\dagger \to B_c(1S) + \gamma$	4.97×10^{-2}			
$B_c(2S) \to B_c^*(1S)^\dagger + \gamma$	1.36	0.14	5.68 $\times 10^{-5}$	4.88 $\times 10^{-1}$
$B_c(3S)^{\dagger} \to B_c^*(2S)^{\dagger} + \gamma$	0.332			
$B_c(3S)^{\dagger} \to B_c^*(1S)^{\dagger} + \gamma$	0.124			

RQM: (Ebert et al., 2003), NRQM1: (Gao et al., 2024), NRQM2: (Soni et al., 2018)

• Branching ratio (Br) for $c\bar{c}$

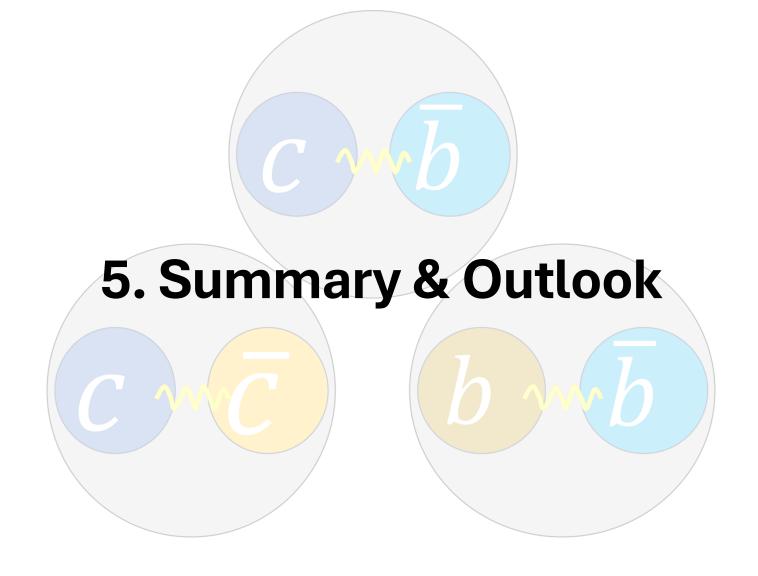
Transition	Result	Exp.	NRQM	RQM
$J/\psi(1S) \to \eta_c(1S) + \gamma$	2.1×10^{-2}	$(1.7 \pm 0.4) \times 10^{-2}$	2.94×10^{-2}	1.13×10^{-2}
$\psi(2S) \to \eta_c(2S) + \gamma$	4.56×10^{-4}	$(7 \pm 5) \times 10^{-4}$	3.98×10^{-3}	3.37×10^{-3}
$\psi(2S) \to \eta_c(1S) + \gamma$	7.72×10^{-3}	$(3.4 \pm 0.5) \times 10^{-3}$	2.55×10^{-2}	3.23×10^{-3}
$\psi(3S) \to \eta_c(3S)^\dagger + \gamma$	1.91×10^{-8}		1.24×10^{-4}	
$\psi(3S) \to \eta_c(2S) + \gamma$	5.94 $\times 10^{-6}$			
$\psi(3S) \to \eta_c(1S) + \gamma$	2.75×10^{-6}			
$\eta_c(2S) \to J/\psi(1S) + \gamma$	2.34×10^{-4}	1.39×10^{-2}		

- Few experimental data obtained from PDG.
- > Our result and exp. are quite comparable.

• Branching ratio (Br) for $b\overline{b}$

Transition	Result	Exp.	NRQM	RQM
$\Upsilon(1S) \to \eta_b(1S) + \gamma$	1.66×10^{-4}		6.98×10^{-6}	1.07×10^{-4}
$\Upsilon(2S) \to \eta_b(2S) + \gamma$	1.64×10^{-5}		1.76×10^{-4}	4.38×10^{-5}
$\Upsilon(2S) \to \eta_b(1S) + \gamma$	4.03×10^{-4}	$5.5^{+1.1}_{-0.9} \times 10^{-4}$	2.41×10^{-5}	2×10^{-4}
$\Upsilon(3S)^{\dagger} \to \eta_b(3S)^{\dagger} + \gamma$	1.15×10^{-4}		1.4×10^{-4}	3.94×10^{-5}
$\Upsilon(3S) \to \eta_b(2S) + \gamma$	4.54×10^{-4}	$<$ 6.7 $\times 10^{-4}$	1.78×10^{-4}	7.38×10^{-5}
$\Upsilon(3S) \to \eta_b(1S) + \gamma$	2.42×10^{-2}	$(5.1 \pm 0.7) \times 10^{-4}$	3.79×10^{-4}	5.17×10^{-5}
$\eta_b(2S) \to \Upsilon(1S) + \gamma$	1.06×10^{-6}			1.18×10^{-8}
$\eta_b(3S)^\dagger \to \Upsilon(2S) + \gamma$				1.17×10^{-7}
$\eta_b(3S)^\dagger \to \Upsilon(1S) + \gamma$				1×10^{-8}

 \succ No Γ_{tot} for $\eta_c(3S)$ and $c\overline{b}$ mesons.



<u>Summary</u>

- We have studied and obtained mass spectra, decay constant, and radiative decay of $c\bar{c}$, $b\bar{b}$, and $c\bar{b}$ mesons in the LFQM.
- Mass spectra: with using screened effect, our calculation is overall in agreement with experimental result where $\Delta M_{2S-1S} > \Delta M_{3S-2S}$ and $\Delta M_P > \Delta M_V$.
- Decay constant: We have obtained the hierarchy $f_{1S} > f_{2S} > f_{3S}$.
- Radiative Decay: We have obtained g_{VP} for good and transverse current with the same value before we proceed to seek Γ and Br.

<u>Outlook</u>

- In the future, we would consider GEM (Gaussian Expansion Method) ansatz to be used as the realistic wave function.
- We would also consider to obtain the one-loop integral for bad current I^- for the sake of completeness.

$$\begin{split} \phi_{1S}^{\text{HO}}(\boldsymbol{k}) &= \frac{\sqrt{2(2\pi)^3}}{\pi^{3/4}\beta^{3/2}} e^{-k^2/2\beta^2}, \\ \phi_{2S}^{\text{HO}}(\boldsymbol{k}) &= \frac{\sqrt{2(2\pi)^3}(2k^2 - 3\beta^2)}{\sqrt{6}\pi^{3/4}\beta^{7/2}} e^{-k^2/2\beta^2}, \\ \phi_{3S}^{\text{HO}}(\boldsymbol{k}) &= \frac{\sqrt{2(2\pi)^3}(15\beta^4 - 20\beta^2k^2 + 4k^4)}{2\sqrt{30}\pi^{3/4}\beta^{11/2}} e^{-k^2/2\beta^2}, \end{split}$$

For comparison to Li's work for Integrand vs k_{\perp} (PR D 98, 2018):

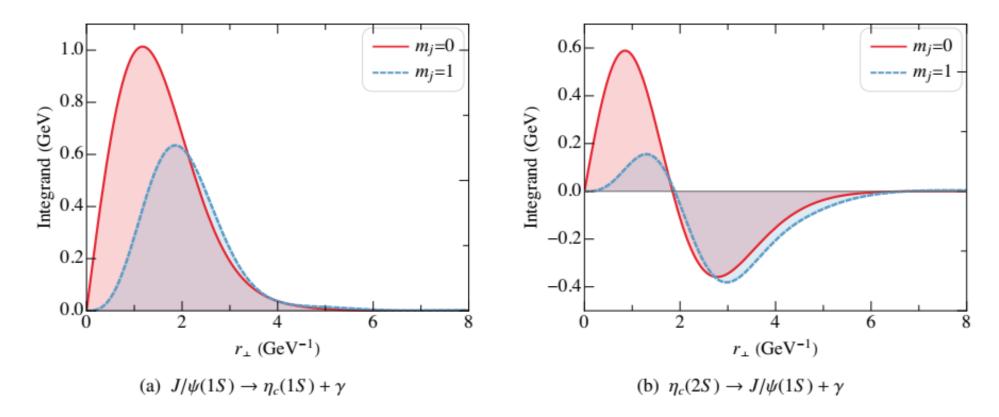


FIG. 3. Integrands of $\hat{V}(0)$ according to Eqs. (15) $(m_j = 0)$ and (16) $(m_j = 1)$. As a representative of the allowed $(nS \rightarrow nS + \gamma)$ transitions, the integrand in (a) has the same sign in the entire r_{\perp} region. On the other hand, (b) involves a transition with radial excitation, which is sensitive to small changes in the cancellations between positive and negative contributions.

<u>cb mesons</u>

Transition	Result	BLFQ	GI
$B_c^*(1S)^\dagger \to B_c(1S) + \gamma$	0.299		
$B_c^*(2S)^\dagger \to B_c(2S) + \gamma$	0.281		
$B_c^*(2S)^\dagger \to B_c(1S) + \gamma$	-0.0339		
$B_c^*(3S)^\dagger \to B_c(3S)^\dagger + \gamma$	0.268		
$B_c^*(3S)^\dagger \to B_c(2S) + \gamma$	-0.0326		
$B_c^*(3S)^\dagger \to B_c(1S) + \gamma$	-0.00494		
$B_c(2S) \to B_c^*(1S)^\dagger + \gamma$	-0.00339		
$B_c(3S)^{\dagger} \to B_c^*(2S)^{\dagger} + \gamma$	-0.0326		
$B_c(3S)^{\dagger} \to B_c^*(1S)^{\dagger} + \gamma$	-0.00494		