Reconciling constraints from the supernova remnant HESS J1731-347 with the parity doublet model

Bikai Gao, Yan Yan, Masayasu Harada

Dept. of Phys, Nagoya University

2. Construction of Unified Equation of State Parity doublet model NJL-type quark model

3. Results

Introduction

QCD phase diagram

High temperature region

Lattice QCD;

Large Hadron Collider;

Color superconductivity

Heavy ion collision

 $\sim 5-10 n_0 \mu_B$

Difficulties in high dense matter

Lattice Monte-Carlo simulation Not possible(sign problem)

Cannot design laboratories, have to wait for signals (unlike heavy ion collision)

Fundamental questions in dense QCD

How does dense matter respond to compression, the EOS?

How hadronic matter dissolves into quark matter?

Neutron Stars(NSs) as natural laboratory

Mass: $M \sim 1 - 2 M_{\odot}$ Radius: $R \sim 10 - 12$ Km

Nagoya, Aichi

Correlation between EoS and M-R

Neutron Star	Mass (M _O)	Radius (km)	Source
J0740+6620	2.14 ± 0.10	12.35 ± 0.75	NICER
J0030+0451	1.44 ± 0.15	12.45 ± 0.65	NICER
GW170817	1.33-1.60	11.9 ± 1.4	LIGO/Virgo

11 - 13km

Strange CCO HESS J1731-347

Nature Astronomy volume **6**, 1444–1451 (2022)

Neutron Star	Mass (M \odot)	Radius (km)	Sou
J0740 + 6620	2.14 ± 0.10	12.35 ± 0.75	NIC
J0030 + 0451	1.44 ± 0.15	12.45 ± 0.65	NIC
GW170817	1.33-1.60	11.9 ± 1.4	LIGO/
	1	I	· ·

HESS J1731-347

A Strange light central compact object supernova remnant

16

2. Construction of Unified Equation of State Parity doublet model NJL-type quark model

3. Results

Unified Equation of State

An effective hadron model (Parity doublet model) ($n_B <= 2n_0$, blue curve)

Two baryons with positive and negative-parity are introduced. They have a degenerate chiral invariant mass when the chiral symmetry is restored.

Interpolated(red curve)

An effective quark model

(Nambu–Jona-Lasinio(NJL)-type model) (n_B>=5n₀, green curve)

Parity Doublet Model

Contribution to mass from **spontaneously chiral symmetry breaking(SCSB)**

Parity Doublet Model

PDM: chiral symmetric nucleon-meson effective model

 $\mathscr{L}_{\text{PDM}} = \mathscr{L}_{\text{Nucleon}}(\psi_1, \psi_2, \dots) + \mathscr{L}_{\text{Meson}}(\sigma, \pi, \omega, \rho, \dots)$

ordinal dirac mass term:

 $m\bar{\psi}\psi = m(\bar{\psi}^L\psi^R + \bar{\psi}^R\psi^L)$ $\rightarrow m(\bar{\psi}^L L^{\dagger} R \psi^R + \bar{\psi}^R R^{\dagger} L \psi^L)$ chiral variant

in PDM:

 $m_0(\bar{\psi}_1\gamma_5\psi_2 - \bar{\psi}_2\gamma_5\psi_1) = m_0(\bar{\psi}_1^L\psi_2^R + \bar{\psi}_1^R\psi_2^L + h.c.)$ $\rightarrow m_0(\bar{\psi}_1^L L^{\dagger} L \psi_2^R + \bar{\psi}_1^R R^{\dagger} R \psi_2^L + h.c.)$ chiral invariant

DeTar, Kunihiro, 1989; Jido, Oka, Hosaka, 2001

vector mesons, with HLS

	$L \in SU(N_f)_L$	$R \in SU(N_f)_R$
	left-handed	right-handed
nucleon ψ_1	$\psi_1^L \rightarrow L \psi_1^L$	$\psi_1^R \rightarrow \mathbf{R} \psi_1^R$
nucleon ψ_2	$\psi_2^L \rightarrow \mathbf{R} \psi_2^L$	$\psi_2^R \rightarrow L \psi_2^R$

Parity Doublet Model: Physical inputs

mass formula of nucleons N(939) and N*(1535)

DeTar, Kunihiro, 1989; Jido, Oka, Hosaka, 2001

 $n_0=0.16$ fm⁻³ (**normal nuclear density**),

Parity Doublet Model

mass formula of nucleons N(939) and N*(1535)

$$M_{N\pm} = \sqrt{m_0^2 + g_+^2 \sigma^2} \mp g_- \sigma$$

DeTar, Kunihiro, 1989; Jido, Oka, Hosaka, 2001

$\sigma \rightarrow 0$ 5 m_0

NJL-type quark model

$$\mathcal{L} = \mathcal{L}_{\text{NJL}} - H(q^T \Gamma_A q)(\bar{q} \Gamma^A \bar{q}^T) + g$$

- U(1) axial anomaly $-K \det(\bar{\psi}\psi)$

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

(H,gV): not well-constrained before \rightarrow survey wide range for given nuclear EOS + NS constraints

- Original NJL-type model(Hatsuda and Kunihiro) includes four point interaction $+G(\psi\psi)^2$

HK parameters: $G\Lambda^2 = 1.835$, $K\Lambda^5 = 9.29$ $\Lambda = 631.4 \mathrm{MeV}$

NJL-type quark model

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

Schematic diagram showing the changes in pressure and chemical potential while changing H and gV

Interpolated EoS

$0 \leq n_B < 0.5 n_0$	$0.5n_0 \leqslant n_B \leqslant 2n_0$	$2n_0 < n_B < 5n_0$	$n_B \geqslant 5n_0$
Crust	PDM	Interpolation	NJL

.

.

interpolate w/ polynomial:
$$P = \sum_{n=0}^{5} c_n \mu_B^n$$

(six) Boundary Conditions => (six) coefficients c_n

$$\begin{aligned} \frac{\mathrm{d}^{n} P_{\mathrm{I}}}{\left(\mathrm{d}\mu_{B}\right)^{n}}\Big|_{\mu_{BL}} &= \left.\frac{\mathrm{d}^{n} P_{\mathrm{H}}}{\left(\mathrm{d}\mu_{B}\right)^{n}}\right|_{\mu_{BL}}, \\ \frac{\mathrm{d}^{n} P_{\mathrm{I}}}{\left(\mathrm{d}\mu_{B}\right)^{n}}\Big|_{\mu_{BU}} &= \left.\frac{\mathrm{d}^{n} P_{\mathrm{Q}}}{\left(\mathrm{d}\mu_{B}\right)^{n}}\right|_{\mu_{BU}}, \quad (n = 0, 1, 2), \end{aligned}$$

1. Introduction

2. Construction of Unified Equation of State Parity doublet model NJL-type quark model

Results

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

(H,gV): not well-constrained before \rightarrow

survey wide range for given nuclear EOS + NS constraints

Results

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

 $m_0 \leftrightarrow (H,gV)$ constrain each other

Causality + Mmax

Results

The hadronic matter EoS is crucial to determine the radius of a NS.

We use the parity double model together with the NJL-type quark model to construct the unified EoS.

The outer core EoS (described by PDM) is crucial to determine the radius of a NS.

We successfully reconcile with the multi-messenger constraints at the same time and the best fitted value is

for L =40 MeV