Reconciling constraints from the supernova remnant HESS J1731-347 with the parity doublet model

Bikai Gao, Yan Yan, Masayasu Harada

Dept. of Phys, Nagoya University

Outline

2. Construction of Unified Equation of State Parity doublet model NJL-type quark model

3. Results

Introduction

QCD phase diagram

High temperature region

Lattice QCD;

Large Hadron Collider;

superconductivity

Heavy ion collision

4

Difficulties in high dense matter

Lattice Monte-Carlo simulation Not possible(sign problem)

Cannot design laboratories, have to wait for signals (unlike heavy ion collision)

Fundamental questions in dense QCD

How does dense matter respond to compression, the EOS?

How hadronic matter dissolves into quark matter?

…..

Neutron Stars(NSs) as natural laboratory

Mass: $M \sim 1 - 2 M_{\odot}$ Radius: $R \sim 10 - 12$ Km

Nagoya, Aichi

Correlation between EoS and M-R

 $11 - 13km$

Strange CCO HESS J1731-347

Nature Astronomy volume **6**, 1444–1451 (2022)

HESS J1731-347

A Strange light central compact object supernova remnant

16

Outline

2. Construction of Unified Equation of State Parity doublet model NJL-type quark model

3. Results

Unified Equation of State

An effective hadron model (Parity doublet model) (n_B<=2n₀, blue curve)

 \rightarrow removes unphysical curves

Two baryons with positive and negative-parity are introduced. They have a **degenerate chiral invariant mass** when the chiral symmetry is restored.

Interpolated(red curve)

An effective quark model

 (Nambu–Jona-Lasinio(NJL)-type model) (nB>=5n0, green curve)

Contribution to mass from **spontaneously chiral symmetry breaking(SCSB)**

Parity Doublet Model

Parity Doublet Model

DeTar, Kunihiro, 1989; Jido, Oka, Hosaka, 2001 PDM: chiral symmetric nucleon-meson effective model

 $\mathscr{L}_{\text{PDM}} = \mathscr{L}_{\text{Nucleon}}(\psi_1, \psi_2, \dots) + \mathscr{L}_{\text{Meson}}(\sigma, \pi, \omega, \rho, \dots)$

vector mesons, with HLS

ordinal dirac mass term:

 $m\bar{\psi}\psi = m(\bar{\psi}^L\psi^R + \bar{\psi}^R\psi^L)$ \rightarrow $m(\bar{\psi}^L L^{\dagger} R \psi^R + \bar{\psi}^R R^{\dagger} L \psi^L)$ chiral variant

 $m_0(\bar{\psi}_1 \gamma_5 \psi_2 - \bar{\psi}_2 \gamma_5 \psi_1) = m_0(\bar{\psi}_1^L \psi_2^R + \bar{\psi}_1^R \psi_2^L + \text{h.c.})$ \rightarrow *m*₀($\bar{\psi}_1^L L^{\dagger} L \psi_2^R + \bar{\psi}_1^R R^{\dagger} R \psi_2^L + h.c.)$ chiral invariant

in PDM:

Parity Doublet Model: Physical inputs

mass formula of nucleons $N(939)$ and $N^*(1535)$ DeTar, Kunihiro, 1989; Jido, Oka, Hosaka, 2001

$$
M_{N\pm} = \sqrt{m_0^2 + g_+^2 \sigma^2} \mp g_- \sigma
$$

\n
$$
\sigma = E/A - m_N
$$

\n
$$
L_0
$$

\n
$$
\delta = 0
$$

\n
$$
n_B
$$

\n
$$
B
$$

\nvector
\n
$$
k_0
$$

\n
$$
k_0
$$

 $^2_+ \sigma^2 \mp g_- \sigma \longrightarrow^{\sigma \to 0} m_0$ $\sigma \rightarrow 0$

n0=0.16 fm-3 (**normal nuclear density**),

- K0=240 MeV (**incompressibility**)
- S0=31 MeV (**symmetry energy**),

B₀=16 MeV (bounding energy)

Parity Doublet Model

mass formula of nucleons $N(939)$ and $N^*(1535)$ DeTar, Kunihiro, 1989; Jido, Oka, Hosaka, 2001

$$
M_{N\pm} = \sqrt{m_0^2 + g_+^2 \sigma^2 \mp g_-^2}
$$

$^2_+ \sigma^2 \mp g_- \sigma \longrightarrow^{\sigma \to 0} m_0$ $\sigma \rightarrow 0$

NJL-type quark model

$$
\mathcal{L} = \mathcal{L}_{\text{NJL}} - H(q^T \Gamma_A q)(\bar{q} \Gamma^A \bar{q}^T) + g_V(\bar{q}\gamma^0)
$$

-
- U(1) axial anomaly $-K\text{det}(\bar{\psi}\psi)$

HK parameters: $G\Lambda^2 = 1.835$, $K\Lambda^5 = 9.29$ $\Lambda = 631.4 \text{MeV}$

• Original NJL-type model(Hatsuda and Kunihiro) includes four point interaction $-G(\psi\psi)^2$

(H,gV): not well-constrained before \rightarrow survey wide range for given nuclear EOS + NS constraints

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

NJL-type quark model

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

Schematic diagram showing the changes in pressure and chemical potential while changing *H* and *gV*

 \blacktriangle

 \blacktriangle

Interpolated EoS

interpolate w/ polynomial:
$$
P = \sum_{n=0}^{5} c_n \mu_B^n
$$

(six) Boundary Conditions => (six) coefficients *cn*

$$
\frac{\mathrm{d}^n P_{\mathrm{I}}}{\left(\mathrm{d}\mu_B\right)^n}\bigg|_{\mu_{BL}} = \frac{\mathrm{d}^n P_{\mathrm{H}}}{\left(\mathrm{d}\mu_B\right)^n}\bigg|_{\mu_{BL}},
$$
\n
$$
\frac{\mathrm{d}^n P_{\mathrm{I}}}{\left(\mathrm{d}\mu_B\right)^n}\bigg|_{\mu_{BL}} = \frac{\mathrm{d}^n P_{\mathrm{Q}}}{\left(\mathrm{d}\mu_B\right)^n}\bigg|_{\mu_{BL}}, \quad (n = 0, 1, 2),
$$

Outline

1. Introduction

2. Construction of Unified Equation of State Parity doublet model NJL-type quark model

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

(H,gV): not well-constrained before →

survey wide range for given nuclear EOS + NS constraints

Results

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

> $m_0 \longleftrightarrow (H,gV)$ Causality + Mmax constrain each other

Results

Results

The hadronic matter EoS is crucial to determine the radius of a NS.

We use the parity double model together with the NJL-type quark model to construct the unified EoS.

The outer core EoS (described by PDM) is crucial to determine the radius of a NS.

We successfully reconcile with the multi-messenger constraints at the same time and the best fitted value is

for $L = 40$ MeV