Mixture of Hadronic Molecules and Quarkonium Core

Kotaro Miyake¹ Collaborator: Yasuhiro Yamaguchi¹²

¹Department of Physics, Nagoya University ²KMI, Nagoya University

Contents

Introduction

3 X(3872)

Contents

Introduction

Core-molecular hybrid model

3 **X**(3872)

Hadron

- Composite particles of quarks and gluons.
- Strong interaction is important.
- QCD cannot be solved by perturbation theory except in the high energy region.
- Effective theory is important.

Hadron

- Composite particles of quarks and gluons.
- Strong interaction is important.
- QCD cannot be solved by perturbation theory except in the high energy region.
- Effective theory is important.

Hadron

- Composite particles of quarks and gluons.
- Strong interaction is important.
- QCD cannot be solved by perturbation theory except in the high energy region.
- Effective theory is important.

- Difficult to explain of $q\bar{q}$ or qqq.
- More complex structure than normal hadrons.

- Difficult to explain of $q\bar{q}$ or qqq.
- More complex structure than normal hadrons.
- Various states are considered, such as hadronic molecular states and compact states.

- Difficult to explain of $q\bar{q}$ or qqq.
- More complex structure than normal hadrons.
- Various states are considered, such as hadronic molecular states and compact states.

- Difficult to explain of $q\bar{q}$ or qqq.
- More complex structure than normal hadrons.
- Various states are considered, such as hadronic molecular states and compact states.

Kotaro Miyake (Nagoya Univ.)

Mixture of Hadronic Molecules and Quarkonium Core

- Difficult to explain of $q\bar{q}$ or qqq.
- More complex structure than normal hadrons.
- Various states are considered, such as hadronic molecular states and compact states.
- In recent years, new exotic hadrons have been reported almost every year.

Hadronic molecular state	Compact state
q q q	

One of the best known exotic hadrons. 4021 - 4014Reported by the Belle experiment in 2003, and later reported • in various experiments. (CDF(2004), D0(2004), BaBar(2005), LHCb(2012), CMS(2013), BESIII(2014), ATLAS,(2017)) 3953 • $J^{PC} = 1^{++}, \, c\bar{c}q\bar{q}(q = u, d)$? $\begin{array}{c} 3880 \\ 3872 \end{array} \xrightarrow{D^+ D^{*-}} \\ D^0 \bar{D}^{*0}, \ X(3872) \end{array}$

- One of the best known exotic hadrons.
- Reported by the Belle experiment in 2003, and later reported in various experiments.

(CDF(2004), D0(2004), BaBar(2005), LHCb(2012), CMS(2013), BESIII(2014), ATLAS,(2017))

•
$$J^{PC} = 1^{++}, \, c ar c q ar q (q = u, d)$$
?

• Hadronic molecular state? Compact state?

- One of the best known exotic hadrons.
- Reported by the Belle experiment in 2003, and later reported in various experiments.

(CDF(2004), D0(2004), BaBar(2005), LHCb(2012), CMS(2013), BESIII(2014), ATLAS,(2017))

•
$$J^{PC} = 1^{++}, \, c \bar{c} q \bar{q} (q = u, d)$$
?

- Hadronic molecular state? Compact state?
- Very close to the threshold of $D^0 \bar{D}^{*0}$. $m_{X(3872)} - m_{D^0 \bar{D}^{*0}} = -0.04 \text{ MeV}$ (Particle Data Group, PTEP **2022**(2022)083C01)

Is X(3872) a hadronic molecule?

 Also close to 3953 MeV, the quark model mass prediction of χ_{c1}(2P).

(S. Godfrey and N. Isgur, Phys. Rev. D 32(1985)189)

- $\chi_{c1}(2P)$ is $c\bar{c}$ meson, and it is also $J^{PC} = 1^{++}$.
- Some experimental data suggest a structure different from hadronic molecules.
- Can we explain X(3872) by hadronic molecules + $\chi_{c1}(2P)$?

Esposito et al, Phys. Rev. D **92**(2015)034028, Olsen et al, Rev. Mod. Phys. **90**(2018)015003

- Hidden-bottom tetraquark, the botmonium counterpart of X(3872).
- $b\bar{b}q\bar{q}$
- Undiscovered?

- Hidden-bottom tetraquark, the botmonium counterpart of X(3872).
- $b\bar{b}q\bar{q}$
- Undiscovered?
- The mass of the quark model of $\chi_{b1}(3P)$ is $10\,538\,{\rm MeV}.$

(S. Godfrey and K. Moats, Phys. Rev. D 92(2015)054034)

August 10, 2024

- Hidden-bottom tetraquark, the botmonium counterpart of X(3872).
- $b\bar{b}q\bar{q}$
- Undiscovered?

What is X_b ?

- The mass of the quark model of χ_{b1}(3P) is 10 538 MeV.
 (S. Godfrey and K. Moats, Phys. Rev. D 92(2015)054034)
- The experimental value of the mass of $\chi_{b1}(3P)$ is $10513 \,\mathrm{MeV}$.

(Particle Data Group, PTEP 2022(2022)083C01)

 Is it possible to regard χ_{b1}(3P) reported in the experiment as X_b?

Contents

2 Core-molecular hybrid model

X(3872)

Core-molecular hybrid model

 $\mathcal{H} =$

• Mixture state of quarkonium core ($\chi_{c1}(2P), \chi_{b1}(3P)$) and hadronic molecules $(D^{(*)}\bar{D}^{(*)}, B^{(*)}\bar{B}^{(*)})$.

$$\begin{aligned} \mathcal{H}\Psi &= E\Psi \tag{1} \\ \Psi &= \begin{pmatrix} c_1 \big| [D^0 \bar{D}^{*0}](S) \rangle \\ c_2 \big| [D^+ D^{*-}](S) \rangle \\ c_3 \big| [D^0 \bar{D}^{*0}](D) \rangle \\ c_4 \big| [D^+ D^{*-}](D) \rangle \\ c_5 \big| D^{*0} \bar{D}^{*0}(D) \rangle \\ c_6 \big| D^{*+} D^{*-}(D) \rangle \\ c_7 \big| \chi_{c1}(2P) \rangle \end{pmatrix} \end{aligned} \tag{2}$$

Interaction Lagrangian

$$\begin{array}{c} P^{(*)} \\ \hline P^{(*)} \\ \hline \mathcal{L}_{HHM}^{(Q)} = g \operatorname{Tr} \left[H_b^{(Q)} \gamma^{\mu} \gamma^5 A_{ba\mu} \bar{H}_a^{(Q)} \right] (4) \\ H_a^{(Q)} = \frac{1 + \psi}{2} (\gamma_{\mu} P_a^{*\mu} - \gamma^5 P_a) (5) \\ \bar{H}_a^{(Q)} = (\gamma_{\mu} P_a^{*\mu\dagger} + \gamma^5 P_a^{\dagger}) \frac{1 + \psi}{2} (6) \\ \langle 0|P|P \rangle = \sqrt{m_P} (7) \\ \langle 0|P^{*\mu}|P^{*} \rangle = \sqrt{m_{P^*}} \epsilon^{\mu} (8) \end{array}$$

$$\begin{array}{c} \bar{P}^{(*)} \\ \mathcal{L}_{HHM}^{(\bar{Q})} = g \operatorname{Tr} \left[\bar{H}_a^{(\bar{Q})} \gamma^{\mu} \gamma^5 A_{ab\mu} H_b^{(\bar{Q})} \right] (9) \\ H_a^{(\bar{Q})} = \left(\bar{P}_{a\mu}^* \gamma^{\mu} - \bar{P}_a \gamma^5 \right) \frac{1 - \psi}{2} (10) \\ \bar{H}_a^{(\bar{Q})} = \left(\bar{P}_{a\mu}^* \gamma^{\mu} + \bar{P}_a^{\dagger} \gamma^5 \right) (11) \\ \langle 0|\bar{P}|\bar{P} \rangle = \sqrt{m_P} (7) \\ \langle 0|\bar{P}^{*\mu}|\bar{P}^{*} \rangle = \sqrt{m_{\bar{P}^*}} \epsilon^{\mu} (13) \end{array}$$

$$\begin{array}{c} A_{\mu} = \frac{i}{2} (\xi^{\dagger} \partial_{\mu} \xi - \xi \partial_{\mu} \xi^{\dagger}) \simeq - \frac{\partial_{\mu} (\pi \cdot \tau)}{2f_{\pi}} (14) \end{array}$$

OPEP

Consider One-Pion-Exchange-Potential (OPEP) as an interaction of hadronic molecules (D^(*) D
^(*), B^(*) B^(*)).

$$V_{\rm OPEP} = \frac{1}{3} \left(\frac{g}{2f_{\pi}}\right)^2 \begin{pmatrix} C & 2C & -\sqrt{2}T & -2\sqrt{2}T & -\sqrt{6}T & -2\sqrt{6}T \\ 2C & C & -2\sqrt{2}T & -\sqrt{2}T & -2\sqrt{6}T & -\sqrt{6}T \\ -\sqrt{2}T & -2\sqrt{2}T & C+T & 2C+2T & -\sqrt{3}T & -2\sqrt{3}T \\ -2\sqrt{2}T & -\sqrt{2}T & 2C+2T & C+T & -2\sqrt{3}T & -\sqrt{3}T \\ -\sqrt{6}T & -2\sqrt{6}T & -\sqrt{3}T & -2\sqrt{3}T & C-T & 2C-2T \\ -2\sqrt{6}T & -\sqrt{6}T & -2\sqrt{3}T & -\sqrt{3}T & 2C-2T & C-T \end{pmatrix}$$
(15)

$$C(r) = \frac{m_{\pi}^2}{4\pi} \left(\frac{e^{-m_{\pi}r}}{r} - \frac{e^{-\Lambda r}}{r} - \frac{\Lambda^2 - m_{\pi}^2}{2\Lambda} e^{-\Lambda r} \right)$$
(16)

$$T(r) = \left(3 + 3m_{\pi}r + (m_{\pi}r)^{2}\right)\frac{e^{-m_{\pi}r}}{4\pi r^{3}} - \left(3 + 3\Lambda r + (\Lambda r)^{2}\right)\frac{e^{-\Lambda r}}{4\pi r^{3}} + \frac{m_{\pi}^{2} - \Lambda^{2}}{2}(1 + \Lambda r)\frac{e^{-\Lambda r}}{4\pi r}$$
(17)

Core-molecule mixing potential

• Quarkonium core $(\chi_{c1}(2P), \chi_{b1}(3P))$ and S-waves of hadronic molecules $(D^{(*)}\overline{D}^{(*)}(S), B^{(*)}\overline{B}^{(*)}(S))$ couple in core-molecule mixing potential.

(M. Takizawa and S. Takeuchi, PTEP 2013(2013)093D01)

$$\mathcal{H} = \begin{pmatrix} H_0 + V_{\text{OPEP}} & \mathcal{U}^{\dagger} \\ \mathcal{U} & m_{\chi_{c1}(2P)} - (m_{D^0} + m_{D^{*0}}) \end{pmatrix}$$
(18)
$$\mathcal{U} = \begin{pmatrix} U & U & 0 & 0 & 0 \end{pmatrix}$$
(19)
$$\langle \chi_{c1}(2P) | U | [D^0 \bar{D}^{*0}](S) \rangle = \int d^3x \, \langle \chi_{c1}(2P) | U | \boldsymbol{x} \rangle \langle \boldsymbol{x} | [D^0 \bar{D}^{*0}](S) \rangle$$
$$= \int d^3x \, g_{c\bar{c}} \sqrt{2} \pi \Lambda_q^{\frac{3}{2}} \frac{e^{-\Lambda_q r}}{r} Y_l^m(\theta, \phi) \langle \boldsymbol{x} | [D^0 \bar{D}^{*0}](S) \rangle$$
(20)

Contents

Introduction

2) Core-molecular hybrid model

X(3872) in the core-molecular hybrid model

• Think of it as a mixture $\chi_{c1}(2P)$, $D^0 \overline{D}^{*0}(S)$, $D^+ D^{*-}(S)$, $D^0 \overline{D}^{*0}(D)$, $D^+ D^{*-}(D)$, $D^{*0} \overline{D}^{*0}(D)$, and $D^{*+} D^{*-}(D)$.

	$g_{car{c}}$	Λ_q (MeV)	g	Λ (MeV)	BE (MeV) (input)
$D^{(*)}ar{D}^{(*)}$			0.55	1834	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04935	300	0.55	1130	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04686	500	0.55	1130	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04571	1000	0.55	1130	0.04

Kotaro Miyake (Nagoya Univ.)

Mixture of Hadronic Molecules and Quarkonium Core

X(3872) in the core-molecular hybrid model

- Think of it as a mixture $\chi_{c1}(2P)$, $D^0 \overline{D}^{*0}(S)$, $D^+ D^{*-}(S)$, $D^0 \overline{D}^{*0}(D)$, $D^+ D^{*-}(D)$, $D^{*0} \overline{D}^{*0}(D)$, and $D^{*+} D^{*-}(D)$.
- When hadronic molecules only, the OPEP cutoff Λ is determined to reproduce the binding energy (BE).

	$g_{car{c}}$	Λ_q (MeV)	g	$\Lambda ({ m MeV})$	BE (MeV) (input)
$D^{(*)}ar{D}^{(*)}$			0.55	1834	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04935	300	0.55	1130	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04686	500	0.55	1130	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04571	1000	0.55	1130	0.04

Kotaro Miyake (Nagoya Univ.)

Mixture of Hadronic Molecules and Quarkonium Core

X(3872) in the core-molecular hybrid model

- Think of it as a mixture $\chi_{c1}(2P)$, $D^0 \overline{D}^{*0}(S)$, $D^+ D^{*-}(S)$, $D^0 \overline{D}^{*0}(D)$, $D^+ D^{*-}(D)$, $D^{*0} \overline{D}^{*0}(D)$, and $D^{*+} D^{*-}(D)$.
- When hadronic molecules only, the OPEP cutoff Λ is determined to reproduce the binding energy (BE).
- When the quarkonium core is included, we estimate $\Lambda=1130\,\text{MeV}$ from hadron size. (S. Yasui and K. Sudoh, Phys. Rev. D 80(2009)034008)
- Determine the $g_{c\bar{c}}$ that reproduces BE at $\Lambda_q = 300 \text{ MeV}$, 500 MeV, and 1000 MeV.

	$g_{car{c}}$	Λ_q (MeV)	g	Λ (MeV)	BE (MeV) (input)
$D^{(*)}ar{D}^{(*)}$			0.55	1834	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04935	300	0.55	1130	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04686	500	0.55	1130	0.04
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	0.04571	1000	0.55	1130	0.04

Kotaro Miyake (Nagoya Univ.)

Mixture of Hadronic Molecules and Quarkonium Core

	Λ_q (MeV)	$\chi_{c1}(2P)$	$D^0\bar{D}^{*0}(S)$	$D^+D^{\ast-}(S)$	$D^0 \bar{D}^{*0}(D)$	$D^+D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^{*+}D^{*-}(D)$
$D^{(*)}ar{D}^{(*)}$			95.1 %	3.8%	0.2%	0.2%	0.3%	0.3%
$D^{(*)} ar{D}^{(*)} \& \chi_{c1}(2P)$	300	2.2%	95.0 %	2.8%	0.1%	0.1%	0.0%	0.1%
$D^{(*)} ar{D}^{(*)} \& \chi_{c1}(2P)$	500	3.5%	92.8%	3.4%	0.1%	0.1%	0.1%	0.1%
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	1000	6.4%	89.0 %	4.1%	0.1%	0.1%	0.1%	0.1%

• The mixing ratios of $D^0 \overline{D}^{*0}(S)$ are about 90 % and is a principal component.

	Λ_q (MeV)	$\chi_{c1}(2P)$	$D^0\bar{D}^{*0}(S)$	$D^+D^{\ast-}(S)$	$D^0 ar{D}^{*0}(D)$	$D^+D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^{*+}D^{*-}(D)$
$D^{(*)}ar{D}^{(*)}$			95.1%	3.8%	0.2%	0.2%	0.3%	0.3%
$D^{(*)} ar{D}^{(*)} \& \chi_{c1}(2P)$	300	2.2 %	95.0%	2.8%	0.1%	0.1%	0.0%	0.1%
$D^{(*)} ar{D}^{(*)} \& \chi_{c1}(2P)$	500	3.5 %	92.8%	3.4%	0.1%	0.1%	0.1%	0.1%
$D^{(*)} \bar{D}^{(*)} \& \chi_{c1}(2P)$	1000	6.4%	89.0%	4.1%	0.1%	0.1%	0.1%	0.1%

- The mixing ratios of $D^0 \overline{D}^{*0}(S)$ are about 90 % and is a principal component.
- The mixing ratios of the quarkonium core are a few %, small but not negligible.
- Because it has large attraction, and when it is included, X(3872) is bound even with reasonable Λ .

Expectation value of potential energy of X(3872) at $\Lambda_q = 500 \text{ MeV}.$

$D^0\bar{D}^{*0}(S)$	$D^+D^{*-}(S)$	$D^0\bar{D}^{*0}(D)$	$D^+D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^{*+}D^{*-}(D)$	$\chi_{c1}(2P)$	
0.053	0.056	-0.051	-0.115	-0.104	-0.236	-1.737	$D^0 ar{D}^{st 0}(S)$
0.056	0.016	-0.061	-0.034	-0.129	-0.073	-1.120	$D^+D^{*-}(S)$
-0.051	-0.061	0.003	0.007	-0.006	-0.013	0	$D^0 \bar{D}^{*0}(D)$
-0.115	-0.034	0.007	0.004	-0.013	-0.007	0	$D^+D^{*-}(D)$
-0.104	-0.129	-0.006	-0.013	-0.004	-0.008	0	$D^{*0}\bar{D}^{*0}(D)$
-0.236	-0.073	-0.013	-0.007	-0.008	-0.005	0	$D^{*+}D^{*-}(D)$
-1.737	-1.120	0	0	0	0	0	$\chi_{c1}(2P)$

Wave functions of X(3872)

- When the quarkonium core is included, the $D^*\bar{D}^*$ component is reduced.
- Isospin symmetry is broken.

Contents

Introduction

2) Core-molecular hybrid model

3 X(3872)

X_{b} in the core-molecular hybrid model

• Estimate OPEP cutoff $\Lambda = 1080$ MeV from hadron size

(S. Yasui and K. Sudoh, Phys. Rev. D 80(2009)034008)

• When hadronic molecules only, we find out if X_b is bound.

	$g_{bar{b}}$	Λ_q (MeV)	g	Λ (MeV)	
$B^{(*)}ar{B}^{(*)}$			0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04935	300	0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04686	500	0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04571	1000	0.55	1080	
Kotaro Mivake (Nagova Univ.)	Mixture of H	adronic Molecules and Qu	arkonium Core	August 10, 2024	19/24

Kotaro Miyake (Nagoya Univ.)

Mixture of Hadronic Molecules and Quarkonium Core

X_b in the core-molecular hybrid model

• Estimate OPEP cutoff $\Lambda = 1080\,\text{MeV}$ from hadron size.

(S. Yasui and K. Sudoh, Phys. Rev. D 80(2009)034008)

- When hadronic molecules only, we find out if X_b is bound.
- When the quarkonium core is included, for the calculation we use the mass of the quark model of $\chi_{b1}(3P)$.
- Compare the resulting mass of X_b with the experimental mass of $\chi_{b1}(3P)$.

	$g_{bar{b}}$	Λ_q (MeV)	g	Λ (MeV)	
$B^{(*)}ar{B}^{(*)}$			0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04935	300	0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04686	500	0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04571	1000	0.55	1080	

X_b in the core-molecular hybrid model

• Estimate OPEP cutoff $\Lambda = 1080\,\text{MeV}$ from hadron size.

(S. Yasui and K. Sudoh, Phys. Rev. D 80(2009)034008)

- When hadronic molecules only, we find out if X_b is bound.
- When the quarkonium core is included, for the calculation we use the mass of the quark model of $\chi_{b1}(3P)$.
- Compare the resulting mass of X_b with the experimental mass of $\chi_{b1}(3P)$.
- Use the same values as X(3872) for $g_{b\bar{b}}$ and Λ_q .

	$g_{bar{b}}$	Λ_q (MeV)	g	Λ (MeV)	
$B^{(*)}ar{B}^{(*)}$			0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04935	300	0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04686	500	0.55	1080	
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04571	1000	0.55	1080	

Kotaro Miyake (Nagoya Univ.)

Mixture of Hadronic Molecules and Quarkonium Core

X_{b} in the core-molecular hybrid model

• Estimate OPEP cutoff $\Lambda = 1080$ MeV from hadron size

(S. Yasui and K. Sudoh, Phys. Rev. D 80(2009)034008)

- When hadronic molecules only, we find out if X_b is bound.
- When the guarkonium core is included, for the calculation we use the mass of the quark model of $\chi_{h1}(3P)$.
- Compare the resulting mass of X_b with the experimental mass of $\chi_{b1}(3P)$.
- Use the same values as X(3872) for $g_{b\bar{b}}$ and Λ_{a} .

	$g_{bar{b}}$	Λ_q (MeV)	g	Λ (MeV)	$m_{X_b} ({\sf MeV}) \ ({f output})$
$B^{(*)}ar{B}^{(*)}$			0.55	1080	10598
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04935	300	0.55	1080	10511
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04686	500	0.55	1080	10496
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	0.04571	1000	0.55	1080	10469
Kotaro Mivake (Nagova Univ.)	Mixture of H	Hadronic Molecules and Qu	arkonium Core	August 10.	2024 19/24

Mass of X_b

• When hadronic molecules only, the mass of X_b is 6 MeV below the $B\bar{B}^*$ threshold.

Mass of X_b

- When hadronic molecules only, the mass of X_b is 6 MeV below the $B\bar{B}^*$ threshold.
- When the quarkonium core is included, then $10\,470-10\,510\,\text{MeV}$.
- The experimentally reported $\chi_{b1}(3P)$ may be X_b , but the Λ_q dependence is too large to tell from this analysis only.

Kotaro Miyake (Nagoya Univ.)

Mixing ratio of X_b

	Λ_q (MeV)	$\chi_{b1}(3P)$	$B^+B^{\ast -}(S)$	$B^0\bar{B}^{*0}(S)$	$B^{+}B^{*-}(D)$	$B^0\bar{B}^{*0}(D)$	$B^{*+}B^{*-}(D)$	$B^{*0}\bar{B}^{*0}(D)$
$B^{(*)}ar{B}^{(*)}$			42.9%	40.8%	3.4%	3.4%	4.7%	4.7%
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	300	78.4%	9.9%	9.9%	0.3%	0.3%	0.6%	0.6%
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	500	76.3%	11.0%	10.9%	0.3%	0.3%	0.6%	0.6%
$B^{(*)}\bar{B}^{(*)}\&\chi_{b1}(3P)$	1000	77.6%	10.6%	10.6%	0.2%	0.2%	0.4%	0.4%

- When hadronic molecules only, the mass of X_b is 6 MeV below the $B\bar{B}^*$ threshold.
- When the quarkonium core is included, then $10\,470-10\,510$ MeV.
- The experimentally reported $\chi_{b1}(3P)$ may be X_b , but the Λ_q dependence is too large to tell from this analysis only.

Wave functions of X_b

- The inclusion of the quarkonium core changes the shape of the wavefunction significantly because the quarkonium core is the principal component.
- Isospin symmetry is not broken.

Kotaro Miyake (Nagoya Univ.)

Summary

- X(3872)
 - When the quarkonium core is included, it is bound with a reasonable OPEP cutoff Λ .
 - The mixing ratio of $D^0 \overline{D}^{*0}(S)$ is about 90% and is a principal component.
 - The mixing ratio of the $\chi_{c1}(2P)$ is a few %, but it is not negligible, because it has large attraction.

Summary

- X(3872)
 - When the quarkonium core is included, it is bound with a reasonable OPEP cutoff $\Lambda.$
 - The mixing ratio of $D^0 \bar{D}^{*0}(S)$ is about 90~% and is a principal component.
 - The mixing ratio of the $\chi_{c1}(2P)$ is a few %, but it is not negligible, because it has large attraction.
- X_b
 - The structure is very different depending on whether it is coupled to the quarkonium core or not.
 - When hadronic molecules only, it is bound and its mass is $10\,598\,\mathrm{MeV}$.
 - When the quarkonium core is included, the mass of $10\,470-10\,510$ MeV, which is close to the experimental value $10\,513$ MeV for the mass of $\chi_{b1}(3P)$.
 - This analysis only does not tell us whether the experimentally reported $\chi_{b1}(3P)$ can be regarded as X_b , because the Λ_q dependence is too large.

- Use more realistic core-molecule mixing potentials such as ³*P*₀ pair creation model.
- Consider meson exchanges such as ρ and ω other than π .
- Consider the resonance state.
- Applying the core-molecule mixed model to exotic hadrons other than X(3872) and X_b .

Back Up

Interaction Lagrangian

$$\mathcal{L}_{\pi PP^*} = -\frac{g}{f_{\pi}} \left(P_b^{*\mu} P_a^{\dagger} + P_b P_a^{*\mu\dagger} \right) \partial_{\mu} (\boldsymbol{\pi} \cdot \boldsymbol{\tau})_{ba}$$
(21)

$$\mathcal{L}_{\pi P^*P^*} = i \frac{g}{f_{\pi}} \epsilon^{\mu\nu\rho\sigma} v_{\mu} P_{b\nu}^* P_{a\rho}^{*\dagger} \partial_{\sigma} (\boldsymbol{\pi} \cdot \boldsymbol{\tau})_{ba}$$
(22)

$$\mathcal{L}_{\pi\bar{P}\bar{P}^*} = \frac{g}{f_{\pi}} \left(\bar{P}_a^{*\dagger\mu} \bar{P}_b + \bar{P}_a^{\dagger} \bar{P}_b^{*\mu} \right) \partial_{\mu} (\boldsymbol{\pi} \cdot \boldsymbol{\tau})_{ab}$$
(23)

$$\mathcal{L}_{\pi\bar{P}^{*}\bar{P}^{*}} = -i\frac{g}{f_{\pi}}\epsilon^{\mu\nu\rho\sigma}v_{\mu}\bar{P}^{*\dagger}_{a\nu}\bar{P}^{*}_{b\rho}\partial_{\sigma}(\boldsymbol{\pi}\cdot\boldsymbol{\tau})_{ab}$$
(24)

	X(3872)	D^0	D^+	D^{*0}	D^{*+}	$\chi_{c1}(2P)$
Mass [MeV]	3871.65	1864.84	1869.66	2006.85	2010.26	3953
	B^+	B^0	B^*	+	B^{*0}	$\chi_{b1}(3P)$ (QM)
Mass [MeV]	5279.34	5279.66	5324	1.71 5	5324.71	10538

$D^{(*)} ar{D}^{(*)} \& \chi_{c1}(2P) \Lambda_q = 300 \, {\sf MeV}$

Kotaro Miyake (Nagoya Univ.)

Mixture of Hadronic Molecules and Quarkonium Core

$D^{(*)}ar{D}^{(*)}$

$D^{(*)} ar{D}^{(*)} \& \chi_{c1}(2P) \Lambda_q = 300 \, {\sf MeV}$

Kotaro Miyake (Nagoya Univ.)

Mixture of Hadronic Molecules and Quarkonium Core

Expectation value of kinetic energy when considering only hadronic molecules of X(3872)

	$D^{*+}D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^+D^{*-}(D)$	$D^0\bar{D}^{*0}(D)$	$D^+D^{*-}(S)$	$D^0 ar{D}^{st 0}(S)$
$D^0\bar{D}^{*0}(S)$						2.709
$D^+D^{*-}(S)$					1.797	
$D^0\bar{D}^{*0}(D)$				0.753		
$D^+D^{*-}(D)$			0.911			
$D^{*0}\bar{D}^{*0}(D)$		1.953				
$D^{*+}D^{*-}(D)$	2.343					

Expectation value of potential energy when considering only hadronic molecules of X(3872)

$D^0 ar{D}^{st 0}(S)$	$D^+D^{*-}(S)$	$D^0 ar{D}^{st 0}(D)$	$D^+D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^{*+}D^{*-}(D)$	
0.071	0.080	-0.264	-0.575	-0.647	-1.411	$D^0\bar{D}^{*0}(S)$
0.080	0.025	-0.352	-0.192	-0.880	-0.479	$D^+D^{*-}(S)$
-0.264	-0.352	0.031	0.069	-0.074	-0.162	$D^0 \bar{D}^{*0}(D)$
-0.575	-0.192	0.069	0.037	-0.162	-0.088	$D^{+}D^{*-}(D)$
-0.647	-0.880	-0.074	-0.162	-0.060	-0.131	$D^{*0}\bar{D}^{*0}(D)$
-1.411	-0.479	-0.162	-0.088	-0.131	-0.071	$D^{*+}D^{*-}(D)$

Expectation value of kinetic energy of X(3872) at $\Lambda_q = 300 \text{ MeV}$

Expectation value of potential energy of X(3872) at $\Lambda_q = 300 \text{ MeV}$

$D^0\bar{D}^{*0}(S)$	$D^+D^{*-}(S)$	$D^0\bar{D}^{*0}(D)$	$D^+D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^{*+}D^{*-}(D)$	$\chi_{c1}(2P)$	
0.041	0.038	-0.035	-0.081	-0.069	-0.160	-1.183	$D^0 ar{D}^{st 0}(S)$
0.038	0.010	-0.038	-0.022	-0.077	-0.045	-0.617	$D^+D^{*-}(S)$
-0.035	-0.038	0.002	0.005	-0.004	-0.008	0	$D^0 \bar{D}^{*0}(D)$
-0.081	-0.022	0.005	0.003	-0.008	-0.005	0	$D^+D^{*-}(D)$
-0.069	-0.077	-0.004	-0.008	-0.002	-0.005	0	$D^{*0}\bar{D}^{*0}(D)$
-0.160	-0.045	-0.008	-0.005	-0.005	-0.003	0	$D^{*+}D^{*-}(D)$
-1.183	-0.617	0	0	0	0	0	$\chi_{c1}(2P)$

Expectation value of kinetic energy of X(3872) at $\Lambda_q = 500 \text{ MeV}$

$D^0 ar{D}^{st 0}(S)$	$D^+D^{*-}(S)$	$D^0\bar{D}^{*0}(D)$	$D^+D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^{*+}D^{*-}(D)$	$\chi_{c1}(2P)$	
2.095							$D^0 ar{D}^{st 0}(S)$
	1.342						$D^+D^{*-}(S)$
		0.121					$D^0\bar{D}^{*0}(D)$
			0.158				$D^+D^{*-}(D)$
				0.263			$D^{*0}\bar{D}^{*0}(D)$
					0.341		$D^{*+}D^{*-}(D)$
						2.855	$\chi_{c1}(2P)$

Expectation value of kinetic energy of X(3872) at $\Lambda_q = 1000 \text{ MeV}$

	$\chi_{c1}(2P)$	$D^{*+}D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^+D^{*-}(D)$	$D^0\bar{D}^{*0}(D)$	$D^+D^{*-}(S)$	$D^0 ar{D}^{st 0}(S)$
$D^0 \bar{D}^{*0}(S)$							3.439
$D^+D^{*-}(S)$						2.616	
$D^0\bar{D}^{*0}(D)$					0.166		
$D^+D^{*-}(D)$				0.209			
$D^{*0}\bar{D}^{*0}(D)$			0.375				
$D^{*+}D^{*-}(D)$		0.468					
$\chi_{c1}(2P)$	5.231						

Expectation value of potential energy of X(3872) at $\Lambda_q = 1000 \text{ MeV}$

$D^0\bar{D}^{*0}(S)$	$D^+D^{*-}(S)$	$D^0\bar{D}^{*0}(D)$	$D^+D^{*-}(D)$	$D^{*0}\bar{D}^{*0}(D)$	$D^{*+}D^{*-}(D)$	$\chi_{c1}(2P)$	
0.067	0.078	-0.068	-0.149	-0.143	-0.318	-2.942	$D^0 \bar{D}^{*0}(S)$
0.078	0.025	-0.086	-0.048	-0.191	-0.106	-2.291	$D^+D^{*-}(S)$
-0.068	-0.086	0.004	0.009	-0.008	-0.017	0	$D^0 \bar{D}^{*0}(D)$
-0.149	-0.048	0.009	0.005	-0.017	-0.010	0	$D^+ D^{*-}(D)$
-0.143	-0.191	-0.008	-0.017	-0.005	-0.012	0	$D^{*0}\bar{D}^{*0}(D)$
-0.318	-0.106	-0.017	-0.010	-0.012	-0.006	0	$D^{*+}D^{*-}(D)$
-2.942	-2.291	0	0	0	0	0	$\chi_{c1}(2P)$

Expectation value of kinetic energy when considering only hadronic molecules of X_b

	$B^{*0}\bar{B}^{*0}(D)$	$B^{*+}B^{*-}(D)$	$B^0\bar{B}^{*0}(D)$	$B^+B^{*-}(D)$	$B^0\bar{B}^{*0}(S)$	$B^{+}B^{*-}(S)$
$B^+B^{*-}(S)$						5.569
$B^0\bar{B}^{*0}(S)$					5.540	
$B^+B^{*-}(D)$				3.098		
$B^0\bar{B}^{*0}(D)$			3.118			
$B^{*+}B^{*-}(D)$		7.994				
$B^{*0}\bar{B}^{*0}(D)$	8.062					

Expectation value of potential energy when considering only hadronic molecules of X_b

	$B^{*0}\bar{B}^{*0}(D)$	$B^{*+}B^{*-}(D)$	$B^0ar{B}^{st0}(D)$	$B^+B^{*-}(D)$	$B^0 ar{B}^{st 0}(S)$	$B^+B^{*-}(S)$
$B^+B^{*-}(S)$	-4.204	-2.093	-1.810	-0.904	0.437	0.223
$B^0\bar{B}^{*0}(S)$	-2.065	-4.112	-0.889	-1.775	0.215	0.437
$B^+B^{*-}(D)$	-0.820	-0.408	0.390	0.195	-1.775	-0.904
$B^0 \bar{B}^{*0}(D)$	-0.410	-0.817	0.195	0.390	-0.889	-1.810
$B^{*+}B^{*-}(D)$	-0.580	-0.289	-0.817	-0.408	-4.112	-2.093
$B^{*0}\bar{B}^{*0}(D)$	-0.291	-0.580	-0.410	-0.820	-2.065	-4.204

Expectation value of kinetic energy of X_b at $\Lambda_q = 300 \text{ MeV}$

	$\chi_{b1}(3P)$	$B^{*0}\bar{B}^{*0}(D)$	$B^{*+}B^{*-}(D)$	$B^0ar{B}^{st 0}(D)$	$B^{+}B^{*-}(D)$	$B^0ar{B}^{st 0}(S)$	$B^+B^{*-}(S)$
$B^+B^{*-}(S)$							3.882
$B^0\bar{B}^{*0}(S)$						3.898	
$B^+B^{*-}(D)$					0.597		
$B^0\bar{B}^{*0}(D)$				0.597			
$B^{*+}B^{*-}(D)$			1.762				
$B^{*0}\bar{B}^{*0}(D)$		1.764					
$\chi_{b1}(3P)$	-51.781						

Expectation value of potential energy of X_b at $\Lambda_q = 300 \text{ MeV}$

$B^+B^{*-}(S)$	$B^0 \bar{B}^{*0}(S)$	$B^+B^{*-}(D)$	$B^0\bar{B}^{*0}(D)$	$B^{*+}B^{*-}(D)$	$B^{*0}\bar{B}^{*0}(D)$	$\chi_{b1}(3P)$	
0.089	0.178	-0.239	-0.478	-0.644	-1.289	-10.782	$B^+B^{*-}(S)$
0.178	0.089	-0.477	-0.238	-1.286	-0.643	-10.756	$B^0\bar{B}^{*0}(S)$
-0.239	-0.477	0.031	0.061	-0.076	-0.153	0	$B^+B^{*-}(D)$
-0.478	-0.238	0.061	0.031	-0.153	-0.076	0	$B^0\bar{B}^{*0}(D)$
-0.644	-1.286	-0.076	-0.153	-0.063	-0.126	0	$B^{*+}B^{*-}(D)$
-1.289	-0.643	-0.153	-0.076	-0.126	-0.063	0	$B^{*0}\bar{B}^{*0}(D)$
-10.782	-10.756	0	0	0	0	0	$\chi_{b1}(3P)$

Expectation value of kinetic energy of X_b at $\Lambda_q = 500 \, \text{MeV}$

Expectation value of potential energy of X_b at $\Lambda_q = 500 \text{ MeV}.$

$B^+B^{*-}(S)$	$B^0\bar{B}^{*0}(S)$	$B^+B^{*-}(D)$	$B^0\bar{B}^{*0}(D)$	$B^{*+}B^{*-}(D)$	$B^{*0}\bar{B}^{*0}(D)$	$\chi_{b1}(3P)$	
0.118	0.235	-0.280	-0.560	-0.767	-1.535	-16.128	$B^+B^{*-}(S)$
0.235	0.117	-0.559	-0.279	-1.531	-0.766	-16.099	$B^0\bar{B}^{*0}(S)$
-0.280	-0.559	0.033	0.066	-0.083	-0.167	0	$B^+B^{*-}(D)$
-0.560	-0.279	0.066	0.033	-0.167	-0.083	0	$B^0\bar{B}^{*0}(D)$
-0.767	-1.531	-0.083	-0.167	-0.070	-0.140	0	$B^{*+}B^{*-}(D)$
-1.535	-0.766	-0.167	-0.083	-0.140	-0.070	0	$B^{*0}\bar{B}^{*0}(D)$
-16.128	-16.099	0	0	0	0	0	$\chi_{b1}(3P)$

Expectation value of kinetic energy of X_b at $\Lambda_q = 1000 \text{ MeV}$

$B^+B^{*-}(S)$	$B^0\bar{B}^{*0}(S)$	$B^+B^{*-}(D)$	$B^0 ar{B}^{st 0}(D)$	$B^{*+}B^{*-}(D)$	$B^{*0}\bar{B}^{*0}(D)$	$\chi_{b1}(3P)$	
14.862							$B^+B^{*-}(S)$
	14.869						$B^0\bar{B}^{*0}(S)$
		0.617					$B^+B^{*-}(D)$
			0.617				$B^0\bar{B}^{*0}(D)$
				1.820			$B^{*+}B^{*-}(D)$
					1.822		$B^{*0}\bar{B}^{*0}(D)$
						-51.260	$\chi_{b1}(3P)$

Expectation value of potential energy of X_b at $\Lambda_q = 1000 \text{ MeV}$

$B^+B^{*-}(S)$	$B^0\bar{B}^{*0}(S)$	$B^+B^{*-}(D)$	$B^0\bar{B}^{*0}(D)$	$B^{*+}B^{*-}(D)$	$B^{*0}\bar{B}^{*0}(D)$	$\chi_{b1}(3P)$	
0.140	0.280	-0.244	-0.487	-0.682	-1.365	-26.869	$B^+B^{*-}(S)$
0.280	0.140	-0.486	-0.243	-1.363	-0.682	-26.839	$B^0\bar{B}^{*0}(S)$
-0.244	-0.486	0.024	0.048	-0.062	-0.124	0	$B^{+}B^{*-}(D)$
-0.487	-0.243	0.048	0.024	-0.124	-0.062	0	$B^0\bar{B}^{*0}(D)$
-0.682	-1.363	-0.062	-0.124	-0.053	-0.106	0	$B^{*+}B^{*-}(D)$
-1.365	-0.682	-0.124	-0.062	-0.106	-0.053	0	$B^{*0}\bar{B}^{*0}(D)$
-26.869	-26.839	0	0	0	0	0	$\chi_{b1}(3P)$