4th EIC Asia Workshop @ Shanghai, China

RBRC exp. group meeting

July 9th, 2024

Yuji Goto (RIKEN)

4th EIC Asia Workshop

- Fudan Univ. Jiangwan Campus, Shanghai, China
 - 复旦大学江湾校区
- July 1st (Mon) 5th (Fri), 2024
- 55 participants on the participant list
 - From China, Korea, Japan, Taiwan, USA, Italy, Germany

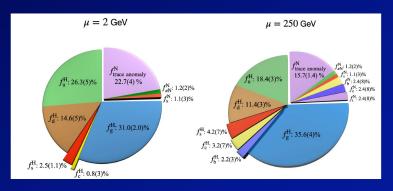
July 9, 2024 2

Talks

- EIC/ePIC status
 - EIC status (Aschenauer)
 - ePIC status (Reed) remotely
 - EIC physics (Surrow)
- Theory overview
 - Intrinsic charm (Nocera)
 - Flavor structure (Kim)
 - Hadrons, superconductors, cosmic (Liu)
 - Jets (Kang)
 - TMD (Watanabe)
 - Lattice TMD (Morris)
 - FF (Xing)
- Experimental overview
 - HI collision in China (Zhang)
 - EicC (Zhao)
 - Belle exotics (Li)
 - STCF (Yan)

Talks

- EIC Asia status
 - China (Wang)
 - Japan (Gunji)
 - Korea (Bok)
 - Taiwan (Yang)
- ePIC detectors
 - AC-LGAD (Yano)
 - MPGD (Yoon)
 - BIC (Bok)
 - FECal (Ma)
- Discussions
 - Roundtable (Xu & Gunji)
 - To be summarized by Gunji-san
 - Intent of interest (Yang & Ma)


Talks

- Other theory talks
 - Energy correlator, 3D nuclei, Lattice PDF, Meson FF, eHIJING, polarized FF, BSM at EIC, nuclei at EIC
- Other experimental talks
 - Pol. 3He, PID detector, X(3872), STAR results, UPC results, Proton radius

July 9, 2024 5

Liu's talk

Rest Energy Decomposition from Hamiltonian

$$\begin{split} f_f^H &= \langle H_q \rangle / M = \frac{3}{4} \langle x \rangle_f(\mu), \quad f_g^H = \langle H_g \rangle / M = \frac{3}{4} \langle x \rangle_g(\mu), \\ f_{\pi N}^N &= \frac{1}{4} \frac{\sigma_{\pi N}}{M}, \quad f_s^N = \frac{1}{4} \frac{\sigma_s}{M}, \quad f_{\text{trace anomaly}}^N = \frac{1}{4} \frac{\langle H_{\text{ta}} \rangle}{M} \end{split}$$

Y.B. Yang et al (χ QCD) [arXiv: 1511.15089]

Momentum fractions from CT18 (T.J. Hou et al, PRD, arXiv:1912.10053) at $\mu = 2$ GeV and 250 **&eV**.

Trace Anomaly and Gluon Condensate

- lacksquare Equation of state $E_0 = \epsilon \, V + \epsilon_K \, V^{-1/3}, \,\,$ (cf. MIT Bag Model)
 - where $\epsilon = rac{E_S}{V}, \quad \epsilon_K = E_T \, V^{1/3}$ are constants
- Picture: Nucleon is a bubble in the sea of gluon condensate, where

$$\epsilon = -\epsilon_{
m Vac}$$
 N.B. $\langle OG_2
angle_{
m correlated} = \langle OG_2
angle - \langle O
angle \langle G_2
angle$ $\epsilon_{vac} = rac{eta(g)}{2g}\langle 0|F^{lphaeta}F_{lphaeta}|0
angle < 0$ $V = rac{E_S}{|\epsilon_{
m corr}|}$

Trace anomaly gives a negative constant pressure confinement

Same as in $V(r) = |\epsilon_{vac}|\,A\,r = \sigma\,r$

Bali ('97), Baker ('18)

- Many facets of color confinement
 - Dual superconductor
 - Magnetic monopole
 - Center vortices

Superconductor Vortex

- F_S Cost of compensation energy
- F_B -- Magnetic field energy
- F_{SC} -- Supercurrent energy
- Total Electron mass $m_e \langle \bar{\psi}\psi \rangle \sim m_e \langle \psi^\dagger \psi \rangle$
- Negative constant pressure from F_S
- Confinement due to the superconducting condensate

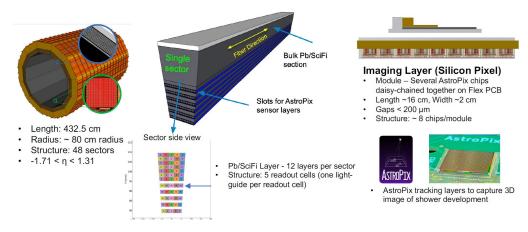
Hadron

- H_{ta} -- Trace anomaly
- H_g -- Glue field energy (E²+B²)
- H_q -- Quark energy
- H_σ -- Sigma terms
- Negative constant pressure from trace anomaly
- Confinement due to the glue condensate

Trace Anomaly and Cosmological Constant

- Note the energy density-pressure relation of both hadrons and superconductor vortices satisfy $P=-\epsilon\,(\omega=-1)$ -- a unique feature arising from a vacuum condensate with constant energy density, much like the Archimedes principle. $P=-dE/dV=-d(\epsilon V)/dV=-\epsilon$
- Rewrite Einstein's equation -- the cosmological constant is an extra term in the energy-momentum tensor $\omega = -1.00 + 0.04$

$$R_{\mu\nu} + rac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu} + \Lambda g_{\mu\nu}$$
 $T^{\mu\nu} = \overline{T}^{\mu\nu} + rac{1}{4} g^{\mu\nu} (T^{
ho}_{
ho})$


 This suggests that, by analogy, the cosmological constant is a quantum trace anomaly which arises from gravitational conformal symmetry breaking like in QCD.

$$\Lambda = rac{1}{4} \langle T^{\mu}_{\mu} \rangle_{U} / 8\pi G$$

Bok's talk

Barrel Imaging Calorimeter in Korea

Detector Structure: Imaging Layer

Imaging Layer: AstroPix

- Imaging layers based on AstroPix sensors
 - · Developed for AMEGO-X NASA mission
 - CMOS sensor based on ATLASpix3 (arXiv:2109.13409)
- Key features:
 - · Very low power dissipation
 - 500 μm pixel size
 - · Time resolution ~3.25 ns

AstroPix chip R&D:

- v1 (4.5×4.5 mm2, 200 μm pixel)
- Early prototype
- v2 (1×1 cm², 250 μm pixel)
- Tested with $\gamma,\,\beta$ sources, and 120 GeV proton beam
- v3 (2×2 cm², 500 μ m pixel, quad chip)
- Ongoing bench and beam test
- Main prototyping with this chip version
- v4 (1×1 cm², 500 μm pixel)
- better noise/threshold performance
- v5 (1.87x1.96 cm², 500 μm pixel)
- Final production version for BIC

Quad chip v3

arXiv:2208.04990 [astro-ph.IM]

Targeted AstroPix performance goals

Pixel size $500 \, \mu m \times 500 \, \mu m$ $< 1 \text{ mW/cm}^2$ Power usage 10% @ 60 keV (based on the noise floor of 5 keV) Energy resolution $\sim 700 \text{ keV}$ Dynamic range < 5% on the active area of Si Passive material Time resolution 25 ns Si Thickness

Total number of 2x2 cm² chips: 249,600 ~100 m²

Discussions

- ASIC support limitation
 - How to readout ZDC crystal?
 - AstroPIX detector
- Cooperation with China
 - Involving China colleagues in EIC-Asia group meeting & eic-asia-I ML
 - Detector cooperation incl. EicC
 - Crystal from China

July 9, 2024 8

Photos

