N-\u00f6 interaction from Lattice QCD

Takumi Doi (RIKEN iTHEMS)

E16 workshop @ Taiwan

Exploring origin of matter from the theory of quarks

→ femtoscopy (w/ ALICE Coll.)

Lattice QCD First-principle calculation of QCD

$$Z = \int dU dq d\bar{q} \ e^{-S_E}$$

- Regularized system (finite a and L)
- Gauge-invariance manifest
- Fully-Nonperturbative
- DoF ~ 10⁹⁻¹⁰ → Monte-Carlo w/ Euclid time ⁻
 - Numerical calc by supercomputers

Thermodynamic limit (L $\rightarrow \infty$) & continuum limit (a $\rightarrow 0$)

HAL QCD method

NBS wave func.

Lat Hadron Force

 $\psi_{\rm NBS}(\vec{r})$ = $A_k \sin(kr - l\pi/2 + \delta_l(k))/(kr)$ \simeq

E-indep (& non-local) Potential

Analog to ...

Lattice QCD

Phen. Potential

Scattering Exp.

virtual state

mid-range attraction

200

 T_{lab} [MeV]

60

40

20

n

-20 0

100

 ${}^{1}S_{0}$

short-range

300

400

repulsion

HAL QCD method

• Interacting kernel ("potential") from spatial & temporal correlation

- − Potential → Phase Shifts guaranteed by QFT
- Energy-indep potential
 - "Signal" from (elastic) excited states \rightarrow Ground state saturation NOT required
- <u>Coupled Channel formalism</u>

- S. Aoki et al. (HAL Coll.) Proc.Jpn.Acad.B87(2011)509
- Physics above inelastic threshold \rightarrow Essential for Hyperon-forces, Exotics
- Extension to N-body systems (N>=3)

S. Aoki et al. (HAL Coll.) PRD88(2013)014036 (non-rela approx.)

Aoki-Hatsuda-Ishii PTP123(2010)89

N.Ishii et al. (HAL Coll.) PLB712(2012)437

Hadrons to Atomic nuclei from Lattice QCD (HAL QCD Collaboration)

- S. Aoki, T. M. Doi, E. Itou (Kyoto U.)
- T. Aoyama (ISSP)
- T. Doi, T. Hatsuda, <u>Y. Lyu</u>, W. A. Yamada,
- L. Wang, L. Zhang (RIKEN)
- F. Etminan (U. of Birjand)
- Y. Ikeda, N. Ishii, P. Junnarkar, H. Nemura,
- K. Sasaki (Osaka U.)
- T. Inoue (Nihon U.)
- K. Murakami (TITech)
- K. Murase (Tokyo Metropolitan U.)
- T. Sugiura (Rissho U.)
- H. Tong (U. of Bonn)

「20XX年宇宙の旅」 from Quarks to Universe

Ŧ

I. Kanamori (RIKEN) K.-I. Ishikawa (Hiroshima U.) and many more

Challenge toward LQCD w/ physical mass

Challenge toward LQCD w/ physical mass

<u>Nø system</u>

Medium effects on hadron properties

←→ partial restoration of chiral symmetry

Hayano-Hatsuda, ReV. Mod. Phys. 82 (2010) 2949

Fukushima-Hatsuda, RPP74(2011)014001

$\boldsymbol{\varphi}\text{-meson}$ is one of the ideal probes

Brown-Rho, RRL66(1991)2720 Hatsuda-Lee, PRC46(1992)R34 Gubler-Weise, NPA954(2016)125)

How color-dipole interacts w/ other hadrons?

Weise, NPA553(1993)59

2-pion-exchange?

Dipole-Dipole int: H. Fujii and D. Kharzeev, PRD60(1999)114039 Dipole-Nucleon int: J. Castella and G. Krein, PRD98(2018)014029

🖢 system

N ϕ interaction (J=3/2,1/2)

anspin-ave [fm] (Re-part)

Theor. Koike+ -0.15(02)(QSR) Klingl+ (VMD) +0.01

Expt.

CLAS $\pm 0.063(10)$ ALICE -0.85(34)(14) (r_{eff}=7.85(1.54)(0.26) fm)

First-principles calculation is highly required!

a < 0 : attractive a > 0: repulsive

Y. Koike+, PTP98(1997)631

F. Klingl+, NPA624(1997)527

I.I. Strakovsky+, PRC101(2020)045201

ALICE Coll., PRL127(2021)172301

<u>Nø system</u>

[PDG]

$N\phi$ interaction from LQCD

ΛK, ΣK thresholds are openCoupled channel calc expensive

J=3/2 : ΛK , ΣK suppressed by D-wave J=1/2 : ΛK , ΣK S-wave mixing, no suppression

(3-body decay modes,φ−decay modes neglected)

(ωN , ρN also neglected by OZI)

\rightarrow We calculate N ϕ (J=3/2) w/ single-channel approximation

Y. Lyu et al., PRD106(2022)074507

Hadron	Lattice [MeV]	Expt. [MeV]
π	146.4(4)	138.0
Κ	524.7(2)	495.6
ϕ	1048.0(4)	1019.5
N	954.0(2.9)	938.9

s-sbar annihilation neglected

 $\phi \rightarrow$ K-Kbar forbidden at this mass

 $\phi \rightarrow 3\pi$ found to be negligible

<u>N ϕ system (⁴S_{3/2})</u>

Attractive potential at all distances

<u>N ϕ vs. N Ω potentials</u>

T. Iritani et al. (HAL Coll.), PLB792(2019)284

Similar long-range behavior observed

Effects of open channels?

Nø potentials in wider range of t

 ${}^{4}D_{3/2}$

What is the origin of long-range attraction?

Tail is consistent w/ two-pion exchange (TPE) !

c.f. Fujii-Kharzeev, PRD60(1999)114039 Castella-Krein, PRD98(2018)014029

N.B. TPE is found to be important for Tcc (D-D* int), too

Y. Lyu+, PRL131(2023)161901

Phase shifts of N
$$\phi$$
 (⁴S_{3/2})

c.f. ALICE Coll. $a_0^{(\text{spin-ave})} = -0.85(34)(14) \text{ fm}$ $r_{\text{eff}}^{(\text{spin-ave})} = 7.85(1.54)(0.26) \text{ fm}$ ¹⁷

Which is more important, long or short-range attraction?

More cut for long-range part

scattering length is dominated by TPE tail

we also test the cut of short-range part (r<0.1fm) → only ~2% effect
(→ This also indicates that discretization error is small)

18

New avenue for Hadron interactions by Combined analysis of LQCD & femtoscopy

N ϕ J=3/2 \leftarrow LQCD calc possible (Λ K, Σ K mixings suppressed by D-wave) N ϕ J=1/2 \leftarrow LQCD challenging (Λ K, Σ K mixings are S-wave) N ϕ spin average \leftarrow ALICE femtoscopy possible (but spin projection difficult)

E. Chizzali+, PLB848(2024)138358 19

<u>N ϕ system (²S_{1/2}) from LQCD + Exp</u>

Correlation function measured by ALICE

Fit the femtoscopy data w/ parameters in potential in J=1/2

<u>N ϕ system (²S_{1/2}) from LQCD + Exp</u>

Potential (w/ phase space factor of $4\pi r^2$)

<u>N ϕ system (²S_{1/2}) from LQCD + Exp</u>

Potential (w/ phase space factor of $4\pi r^2$)

Indication of N ϕ bound state in J=1/2

B.E. = 12.8-56.1 MeV

Re $f_0^{(1/2)} = -1.54^{+0.53}_{-0.53}(\text{stat.})^{+0.16}_{-0.09}(\text{syst.})$ fm, Im $f_0^{(1/2)} = 0.00^{+0.35}_{-0.00}(\text{stat.})^{+0.16}_{-0.00}(\text{syst.})$ fm, Re $d_0^{(1/2)} = +0.39^{+0.09}_{-0.09}(\text{stat.})^{+0.02}_{-0.03}(\text{syst.})$ fm, Im $d_0^{(1/2)} = 0.00^{+0.00}_{-0.04}(\text{stat.})^{+0.00}_{-0.02}(\text{syst.})$ fm.

Flavor-partner of N- ϕ : $N-c\bar{c}$ systems from LQCD

T. Sugiura et al., PoS LATTICE2018(2019)093

(See also Kawanai-Sasaki, PRD82(2010)091501)

• LQCD calc of N-J/Psi Interaction at $m\pi$ =410-700 MeV

From talk slide @ 2019/12

Attractive at all distance! (but no bound state)

Effect of spin-spin int (due to breaking of heavy-quark sym)

Next: Physical point simulation & study TPE Coupled channel analysis toward Pc states

T. Sugiura

<u>N-cc</u> potentials near phys point

Long-range potentials of $N-c\bar{c}$

The long-range potentials are consistent with the two-pion-exchange (TPE) ²⁵

$$k \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} k^2$$

channel	a_0 [fm]	r _{eff} [fm]
$NJ/\psi(^{4}S_{3/2})$	$0.30(2) \begin{pmatrix} +0 \\ -2 \end{pmatrix}$	$3.25(12) \begin{pmatrix} +6\\ -9 \end{pmatrix}$
$NJ/\psi(^{2}S_{1/2})$	$0.38(4) \begin{pmatrix} +0 \\ -3 \end{pmatrix}$	$2.66(21) \begin{pmatrix} +0 \\ -10 \end{pmatrix}$
$N\eta_c(^2S_{1/2})$	$0.21(2) \begin{pmatrix} +0 \\ -1 \end{pmatrix}$	$3.65(20) \begin{pmatrix} +0 \\ -6 \end{pmatrix}$

A direct phenomenological application

The J/ψ mass modification in nuclear medium is related to the spin-averaged scattering length of $N-J/\psi$ scattering A. Hayashigaki, Prog. Theor. Phys. 101 (1999)

$$\delta m_{J/\psi} \simeq -\frac{2\pi (m_N + m_{J/\psi})}{m_N m_{J/\psi}} a_{J/\psi}^{\text{spin-av}} \rho_{\text{nm}} = -19(3) \text{ MeV}$$

Challenge toward LQCD w/ physical mass

Challenge toward LQCD w/ physical mass

Fugaku (440PFlops)

LQCD simulations at the physical quark masses

T. Aoyama et al. (HAL Coll.), arXiv:2406.16665

Fugaku (440PFlops)

Calc of Hadron Interactions in progress!

<u>Summary</u>

- Renaissance in hadron physics
 - Experiments (J-PARC & HEF-ex, LHC, Belle II, BES III, DA Φ NE, ...)
 - Theory by LQCD calc of Hadron Interactions
- First-principles LQCD calc near the physical point
 - HAL QCD method
 - New avenue by combined analysis of LQCD & femtoscopy
 - N-phi (& various meson-meson, meson-baryon, baryon-baryon systems)
 - Importance of Two-pion-exchange (TPE)
 - Possible N-phi bound state in J=1/2 ?
- Prospects
 - Physical point calc by Fugaku supercomputer
 - How ubiquitous is TPE in other systems?
 - From strange to charm/bottom sectors
 - N-J/ Ψ , N- η_c interactions
 - Exotic hadrons