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Physics motivation

KEK-PS E325 experiment

PHSD transport approach

- Features related my work

- Elementary output of PHSD
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physics motivation



Origin of hadron mass 4
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Determined by Measurement of hadron spectrum
optical potential of 7-atom at nuclear density is needed.




Vector meson In nuclel 5

Vector mesons decay into lepton pairr.
-> Avoid strong final state interaction with nucleus
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KEK-PS E325 experiment



KEK-PS E325 experiment 7

12GeVp+ (C,Cu) > (o0, w, ) + X - Flight length of ¢ : ~50 fm (B8 r ~1)
(o, W, @) > ete - Radius of nucleus : <10 fm
Data were taken in 2001-2002

Highest probability of decay in nuclei
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KEK-PS E325 experiment

Significant Spectral modification was observed
In samples with the highest probability of decay in nuclei.

Highest probability of decaying into nuclei
small nucleus radius large
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Previous analysis 9
Parameterize spectral modification with - and _

The flight length of ¢ is longer than the radius of nuclei.
-> ¢ decays at various densities, from nuclear density to vacuum (not only O or po).

Woods-Saxon distribution
/V@

Density £1.2f
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- Simulate densities at ¢ meson decays
- Fit experimental data with simulated spectrum
for various ki and ka.



Previous analysis

Production point of ¢ g
. E o =
- Follows Woods-Saxon distribution S
Momentum of ¢
- Measured experimentally
- Well reproduced by JAM Y
JAM: hadronic cascade model :
Density distribution after pA reaction
- Follows Woods-Saxon distribution
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In what density does ¢ decay?

Space time evolution of nucleon distribution after the pA reaction may exist.

-> The density that ¢ feel at decay is non-trivial.

radius [fm]
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PHSD transport approach
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New approach using PHSD

Parton-Hadron-String Dynamics (PHSD) transport approach
- A microscopic covariant dynamical approach
for strongly interacting systems in and out-of equilibrium

- Simulate the time evolution of ¢, nucleons and other hadrons
during the pA reaction.

- Treat nuclei as nucleons interacting with ¢ and other hadrons
<-> previous analysis: just an external field

- Consider spectral modification in time evolution.

-> More accurate information on
- the production point of ¢
- the density distribution after pA reaction
can be obtained.
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Analysis method

- Make spectra that can be compared with experimental data.
- Make data of ¢ by PHSD (various mass shift and broadening parameters)
- Add internal radiative correction (IRC) by PHOTOS
- Decay Isotropically
- Simulate tracks of ete- by Geant4 Detail:
- Add detector resolution and efficiency -> Nakai-san'’s talk
- Fit tracks from detector responses
- Reconstruct spectrum
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Time integration method 15

In PHSD, to increase statistics efficiently, time integration method is used.

Simple method

generate decay
) ¢ * 1 event/phi
(m, p)
Time integration method
generate
At At At
(b /\/\ N N _
o . N events/phi
A A A A (3% Correlation exists)
P(ee decay) Plee decay) P(ee decay) P(ee decay)
(mo, po) (m1, p1) (MN-1, pN-1)  (MN, PN)

- Decay into ete- "virtually” at each time step
- Treated with weights for the probability of ete- decay

I' A I' A Myole
eve- decay probability in PHSD = 1 - exp(-— e S L

y hy e p )




Time evolution with spectral modification

- For each of the 51 density (0, 0.06 oo, -+, 3p0),
cumulative distribution functions (CDF) of relativistic Breit-Wigner are calculated
and the values are stored for each mass of 0.4 MeV/c?.

16

2 1 CDF of some densities| — ===
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- ¢ moves and interacts every time step.

v:
Mold
v
Mhnew

- If the density difference from the last mass change is >0.06 oo,
mass is re-calculated so that the cumulative probability
matches the one of previous mass in the previous CDF.
Energy is conserved and momentum is re-calculated.

1.6 1.8
mass [GeV/c?]



Elementary output of PHSD
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@ production: creation process

12 GeV p + Cu
- string: ~90 %
- KK: ~5 %
- tB: ~5%

Creation process h c id
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|Creation rlab| h_cr
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KK -> @ process occurs at

- Late timing

- Far from center of nucleus
- Low density



production point of @

Creation r, hcr
ab Entries 67150
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» Production point distribution of ¢ largely follows Woods-Saxon distribution.

Parameters for Cu
* Muto’s paper: R=4.1, T =0.5, Npo=0.2016
sl from Nucl. Phys. B21 (1970) 135b-157
S DO S ‘:,' ...... - PHSD: R = 4.25675, T = 0.5977, Npo ~0.166
SN JUN TR S 3 oy (Npo is a fit parameter i in this ﬂgure)
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- The parameters of WS are different between Muto’s analysis and PHSD.
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Time evolution of nucleons 21

Spacial distribution of baryon density (coordinate: lab system, density: CM system)
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After the collision, some nucleons are stripped along the beam axis
and then the nucleus is spread out in all directions?



Time evolution of nucleons

z,,, distribution of p (xIab and Yo ~0)
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- Fitted with a Gaussian.
- Horizontally shifted so that the center is O. =
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- The central density gradually decreases and the distribution broadens.
- The initial state differs significantly from the WS in the Muto’s paper.
<- Mainly due to the difference of WS parameters

- Time evolution of nucleus cannot be ignored.



Application of PHSD to KEK-PS E325
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Internal radiative correction (IRC)

- The following physical processes distort invariant mass spectrum of e+e-.
- Using PHOTOS, we evaluate the effects on the ¢ decays in the PHSD output.
- PHOTOS: Monte-Carlo for QED radiative correction

e

Internal bremsstrahlung

e
vV e
vV
e e

vertex correction vacuum polarization
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Internal radiative correction (IRC)
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These effects resemble reduced mass scenario.
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Experimental effects 26

- Energy loss of ete-
- External radiative correction
- Bethe-Bloch
-> Decrease measured ¢ mass.
- Position resolution of detectors
-> Wider width of measured ¢ mass
Using Geant4 to incorporate these effects.
Geant4: Monte-Carlo simulation of the passage of particles through matter
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Momentum distribution
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The momentum distribution of the current analysis (PHSD + PHOTOS + Geant4)
almost reproduces that of the experiment.



Current status 28

Methods for comparing PHSD with experiment is established.
All that remains is to increase the statistics of simulation.

- |Cu, Br <1.25] z : z : é :
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120 Black: Experiment

Green: Simulated ¢ spectrum
| (PHSD + PHOTOS + Geant4)
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Red: Fit function (green + blue)
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Estimation of statistical requirement

- Based data (m, weight): PHSD + experimental effect
- Mass and weight are taken from the based data
randomly and independently each other and make spectrum.
- Fit experimental data by the spectrum every 10,000 events and plot x?2
- Repeat the above operation 5 times and compare each x?2

Ignore PHSD error |

o 45

42.5]

Number of events

lifference |

N

~ Maximum difference of x2

between 25 data set |

L I I | | 1

80 100
Number of Events

If we need x2 fluctuation < O.1 for one target and B r,
>10M events are needed (w/o correlation between steps).
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Statistics of simulation 30

- Considering the detector acceptances of the E325 experiment
for the momentum distribution obtained from PHSD,
the statistics become ~10%.

- In PHSD, it is necessary to simulate pA reaction and ¢ production
for each shift and broad parameter (unlike the previous analysis).

-> Need 1.5k cores and 9 months (for 30 parameters, current expectation)
CPU: Intel Xeon Max 9480 (1.9 GHz)
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Attempt to reduce required statistics 31

- To reduce statistical requirements, we try adding shift and broadening parameter
after PHSD.

- If it works, only two data sets (one for the base and one for the reference)
are needed and the required statistics are reduced by 1/15.

- Using momentum and density distribution
and modify mass by the method same as PHSD.

0 <005

......................................................................................................................

black: mod|fy mass inside PHSD ......................... ........................
0.06 red modlfy mass OutSIde PHSD ......................... , ....................... : ..

.........................................................................................................

...................................................................................................................

Statistics is insufficient, but systematic difference exists.



Summary 32

- Motivation
- Measurement of spectral modification in an environment
where chiral symmetry is partially restored.

- KEK-PS E325 experiment
p+A-> (o, w, O)+ X, (o0, w, @) >ete
- Significant spectral modifications in nuclear medium were observed.
- By considering the density distribution after the pA reaction as Woods-Saxon,
- Mass shift: -3.4%
- Width broadening: 3.6 times

- PHSD
* New approach to obtain more accurate information on
* the production point of ¢
- the density distribution after pA reaction
- These effects cannot be ignored.
- Large statistics is needed to decide the best fitting parameters.

Methods for comparing PHSD with experiment is established.



