Application of PHSD to KEK-PS E325 experiment

<u>M. Ichikawa^{A,B,C},</u> P. Gubler^A, M. Naruki^D, and S. Yokkaichi^C ^AJAEA, ^BKEK, ^CRIKEN, ^DKyoto Univ.

Thanks to E. Bratkovskaya and T. Song

7 Sep. 2024

Outline

- \cdot Physics motivation
- KEK-PS E325 experiment
- PHSD transport approach
 - \cdot Features related my work
 - \cdot Elementary output of PHSD
- \cdot Application of PHSD to KEK-PS E325

physics motivation

Origin of hadron mass

Vector meson in nuclei

Vector mesons decay into lepton pair.

-> Avoid strong final state interaction with nucleus

KEK-PS E325 experiment

KEK-PS E325 experiment

KEK-PS E325 experiment

Significant Spectral modification was observed in samples with the highest probability of decay in nuclei.

Previous analysis

Parameterize spectral modification with mass shift and width broadening

$$m(\rho) = (1 - k_1 \frac{\rho}{\rho_0})m_0$$
$$\Gamma(\rho) = (1 + k_2 \frac{\rho}{\rho_0})\Gamma_0$$

The flight length of ϕ is longer than the radius of nuclei.

- -> \$\phi\$ decays at various densities, from nuclear density to vacuum (not only 0 or \$\rho\$).
 Density
 Density
 Image: Construction of the sectrum of
- Fit experimental data with simulated spectrum

for various k1 and k2.

Previous analysis

Sum of χ^2 of the 6 spectrums (regarding minimum value as 0)

In what density does ϕ decay?

Space time evolution of nucleon distribution after the pA reaction may exist.

-> The density that ϕ feel at decay is non-trivial.

PHSD transport approach

New approach using PHSD

Parton-Hadron-String Dynamics (PHSD) transport approach

- A microscopic covariant dynamical approach for strongly interacting systems in and out-of equilibrium
- Simulate the time evolution of ϕ , nucleons and other hadrons during the pA reaction.
- Treat nuclei as nucleons interacting with ϕ and other hadrons <-> previous analysis: just an external field

Consider spectral modification in time evolution.

- -> More accurate information on
 - \cdot the production point of ϕ
 - the density distribution after pA reaction

can be obtained.

Analysis method

- Make spectra that can be compared with experimental data.
 - \cdot Make data of ϕ by PHSD (various mass shift and broadening parameters)
 - Add internal radiative correction (IRC) by PHOTOS
 - Decay Isotropically
 - Simulate tracks of e+e- by Geant4
 - Add detector resolution and efficiency
 - \cdot Fit tracks from detector responses
 - Reconstruct spectrum

Time integration method

In PHSD, to increase statistics efficiently, time integration method is used.

• Treated with weights for the probability of e+e- decay

e⁺e⁻ decay probability in PHSD =
$$1 - \exp(-\frac{\Gamma_{ee}\Delta t}{\hbar\gamma}) \sim \frac{\Gamma_{ee}\Delta t}{\hbar\gamma} \quad (\Gamma_{ee} \propto \frac{m_{pole}^4}{m^3})$$

Time evolution with spectral modification 16

• For each of the 51 density (0, $0.06\rho_0$, \cdots , $3\rho_0$),

٠

cumulative distribution functions (CDF) of relativistic Breit-Wigner are calculated and the values are stored for each mass of 0.4 MeV/c².

• If the density difference from the last mass change is >0.06 ρ_{0} , mass is re-calculated so that the cumulative probability matches the one of previous mass in the previous CDF. Energy is conserved and momentum is re-calculated.

Elementary output of PHSD

ϕ production: creation process

12 GeV p + Cu

- string: ~90 %
- KK: ~5 %
- πB: ~5 %

Creation process			h_c_id	
÷	mB string	Entries	67150	
30000		Mean	22.25	
		Std Dev	11.07	
25000		Underflow	0	
		Overflow	0	
20000	II BB string			
15000				
+ + +	NN -> ϕ NN (string)			
10000				
5000 KR	<u> </u>	πB		
		, , , []		
$0 \frac{1}{0}$	10 20 30 40 50	60		

ϕ production

67150

3.92

1.827

1240

0

production point of ϕ

• Production point distribution of ϕ largely follows Woods-Saxon distribution.

• The parameters of WS are different between Muto's analysis and PHSD.

Time evolution of nucleons

Spacial distribution of baryon density (coordinate: lab system, density: CM system)

After the collision, some nucleons are stripped along the beam axis and then the nucleus is spread out in all directions?

Time evolution of nucleons

- The central density gradually decreases and the distribution broadens.
- The initial state differs significantly from the WS in the Muto's paper.
 - <- Mainly due to the difference of WS parameters
- Time evolution of nucleus cannot be ignored.

Application of PHSD to KEK-PS E325

Internal radiative correction (IRC)

- The following physical processes distort invariant mass spectrum of e+e-.
- · Using PHOTOS, we evaluate the effects on the ϕ decays in the PHSD output.
 - \cdot PHOTOS: Monte-Carlo for QED radiative correction

Internal radiative correction (IRC)

These effects resemble reduced mass scenario.

Experimental effects

- Energy loss of e+e-
 - External radiative correction
 - Bethe-Bloch
 - -> Decrease measured ϕ mass.
- Position resolution of detectors
 - -> Wider width of measured ϕ mass

Using Geant4 to incorporate these effects.

Geant4: Monte-Carlo simulation of the passage of particles through matter

Momentum distribution

The momentum distribution of the current analysis (PHSD + PHOTOS + Geant4) almost reproduces that of the experiment.

Current status

Methods for comparing PHSD with experiment is established. All that remains is to increase the statistics of simulation.

Estimation of statistical requirement

- Based data (m, weight): PHSD + experimental effect
- Mass and weight are taken from the based data randomly and independently each other and make spectrum.
- \cdot Fit experimental data by the spectrum every 10,000 events and plot $\chi^{\,2}$
- \cdot Repeat the above operation 5 times and compare each $\chi^{\, 2}$

If we need χ^2 fluctuation < 0.1 for one target and $\beta \gamma$,

>10M events are needed (w/o correlation between steps).

Statistics of simulation

- Considering the detector acceptances of the E325 experiment for the momentum distribution obtained from PHSD, the statistics become ~10%.
- In PHSD, it is necessary to simulate pA reaction and ϕ production for each shift and broad parameter (unlike the previous analysis).
- -> Need 1.5k cores and 9 months (for 30 parameters, current expectation) CPU: Intel Xeon Max 9480 (1.9 GHz)

Attempt to reduce required statistics

 To reduce statistical requirements, we try adding shift and broadening parameter after PHSD.

31

- If it works, only two data sets (one for the base and one for the reference) are needed and the required statistics are reduced by 1/15.
- Using momentum and density distribution and modify mass by the method same as PHSD.

Statistics is insufficient, but systematic difference exists.

Summary

- \cdot Motivation
 - Measurement of spectral modification in an environment where chiral symmetry is partially restored.
- KEK-PS E325 experiment
 - · p + A -> (ρ , ω , ϕ) + X, (ρ , ω , ϕ) -> e⁺e⁻
 - Significant spectral modifications in nuclear medium were observed.
 - By considering the density distribution after the pA reaction as Woods-Saxon,
 - Mass shift: -3.4%
 - Width broadening: 3.6 times
- PHSD
 - \cdot New approach to obtain more accurate information on
 - \cdot the production point of ϕ
 - $\boldsymbol{\cdot}$ the density distribution after pA reaction
 - \cdot These effects cannot be ignored.
 - \cdot Large statistics is needed to decide the best fitting parameters.

Methods for comparing PHSD with experiment is established.