Simulation and analysis of E325 ρ/ω spectra

1

E16 workshop @ Taiwan 240909

W. Nakai

Contents

- Introduction
	- Previous experimental results
	- Updated points from Naruki analysis
- Results
- Interpretation by model fitting
- Summary

Introduction

- The origin of the hadron mass is the spontaneous breaking of chiral symmetry.
- Under finite density and/or temperature, the symmetry is partially restored.
- According to the QCD sum rule, the mass of the ρ/ω meson is **reduced** by 16% at the normal nuclear density.

Previous experiments (CLAS, 2008)

CLAS, PRL 105, 112301 (2010)

Previous experiments (TAPS, 2016)

Previous results of the E325 (Naruki et al., 2006)

M. Naruki et al., Phys. Rev. Lett. 96 (2006) 092301.

Present analysis

- To better understand these discrepancies, we conducted a reanalysis of the E325 data.
- To study β γ -dependence, the improvement of statistics was needed.
	- Improved fiducial cut $\sim \times 2$
	- Increased dataset (Previous: 2002 data -> Present: 2001+2002 data) $\sim \times 1.5$
	- The improvement was a factor of three.
- The other updated points from the previous analysis
	- Internal radiative correction (IRC)
	- More recent form factors of Dalitz decay were used.
	- The asymmetric mass distribution function was applied in the model calculation.

Determination of the fiducial cut

- The cut was applied by the angle of the track at the target position to align acceptances at all target locations.
- The cut values were determined based on simulation.

Determination of the fiducial cut

- We refined our analysis by optimizing kinematical cuts.
- The acceptance coverage of the detector was widened.
- As a result, the number of ω mesons was increased by a factor of 2.

Dalitz decay

I. Froehlich et al., PoS ACAT (2007) 076.

- Form factors of the Dalitz decays were calculated by "PLUTO".
	- (Based on Vector Meson Dominance model)
- Helicity angle distribution $1 + \cos^2 \theta$ was used.

Internal radiative corrections (IRC)

- The effect of QED correction was not applied in the previous analysis.
- Calculated by "PHOTOS"

E. Barberio, B. van Eijk, and Z. Was, Comput. Phys. Commun. 66 (1991) 115.

• IRC was applied to not only two body decays but also Dalitz decays

 $\begin{array}{ccc} 0 & 1 & 2 \end{array}$ meson's peak J_{th})

∆x [mm]

 $\sigma_p/p = \sqrt{(1.39\% \cdot p \left[\text{GeV}/c \right])^2 + (0.49\%)^2}$

²*.*⁷ *<* ⁹*.*⁹ *[±]* ⁰*.*1 MeV/*c*²

all ⁸*.*² *[±]* ⁰*.*1 MeV/*c*²

-
- about 8 MeV at omega $4 \pm 0.1 \text{ MeV}/c^2$ meson's mass of each and $\frac{1}{2}$ $\frac{w}{4 + 0.1 \text{ MeV}/c^2}$ **-** *e* about o ivit v at onlit ga
- peak except for excess region

- The fitting results reproduce the data well except for the excess region.
- In this fit, the amplitude of ρ meson (Magenta) is consistent with 0.
- χ^2 values are summarized on the next page.

Fit results

15

(a) Include, $p < 0.01$ (b) Exclude, $p > 0.01$ **Table 12** χ^2 /ndf and its probability values from the fitting process, (a) including and (b) excluding the excess region. χ^2/ndf (a) Probability (a) χ^2/ndf (b) Probability (b) $\beta\gamma < 2.1$ 334*.*3/221 1.3e-06 186*.8*/193 0.61 C $2.1 < \beta \gamma < 2.7$ 322/206 4.1e-07 184.9/178 0.35 $2.7 < \beta \gamma$ 247.2/160 1.2e-05 132.9/132 0.46 $\beta\gamma < 2.1$ 892*.9*/628 1.5e-11 613*.6*/544 0.020 Cu $2.1 < \beta \gamma < 2.7$ 707.7/537 9.6e-07 519.9/453 0.016 $2.7 < \beta \gamma$ 507*.8*/418 0.0017 833*.7*/334 0.49

 $> 8 \sigma$ for all regions **Table 13** Yield of ω mesons, the number of excess instances, significance of excess, and excess ratio.

- I: Statistical error, []: Systematic error
- Conclusions
	- Significant excesses were observed for all targets and all $\beta \gamma$ regions.
	- Clear β γ -dependence was not observed.
- The excess ratios are affected by experimental effects.
	- To interpret the excesses, some model calculation is needed.

Model calculation (Generation point and Decay point)

• $\sigma \propto A^{2/3}$

T. Tabaru et al., Phys. Rev. C 74, 025201 (2006).

- The production position distribution is on the nucleus's surface on the proton's incident side.
- Vector mesons were traced in 0.1 fm steps and decayed with a width and mass that depends on the density.

•
$$
m(\rho) = \left(1 - k_1 \frac{\rho}{\rho_0}\right) m(0) \qquad \Gamma(\rho) = \left(1 + k_2 \frac{\rho}{\rho_0}\right) \Gamma(0)
$$

Mass shape formulae

- Non-relativistic Breit-Wigner (nBW)
- constant width and massdependent width relativistic Breit-Wigner
- CLAS used nBW/m³ as an approximation of massdependent Breit-Wigner.
- We tested two extreme cases: nBW (case (i)) and nBW/m³ (case (ii)).

Case (i): nBW

- Model fitting was performed with grid points in 0.02 steps for k1 and 1.0 for k2.
- The contours correspond to $\Delta \chi^2 = 1, 4, 9, \cdots$
- The k1 and k2 parameters were common for C, Cu, ω , ρ .
- In case (i), the minimum around $k2 = 3 6$.

• The result of $\rho/\omega \sim 0$ contradicts a previous 12 GeV p+p measurement.

- $\sigma \omega / \sigma \rho = 1.0 + 0.2$ (V. Blobel et al., Phys. Lett. B48, 73 (1974))

Case (ii): nBW/m3

- In case (ii), the optimized k2 values were consistent with 0 (no broadening).
- The optimized k1 values were about 0.10 0.12 for all bg regions.
- χ^2 values were better than those of case (i).

• Since the high mass side of the distribution of ρ is suppressed, the excess can be explained by modified- ρ .

Model fit, Results reduction in all model cases and in all model cases are results and $r_{\rm F}$ width broadening and α /

The 2 values, the 2 values, the case (ii) reproduces, the case (ii) reproduces, the case (ii) reproduces, the

- In the both cases, the k1 parameter had a finite value. *z* 2*xes* the *k*l narameter had a finite value *a* **the both cases, the K1 parameter had a finite value.**
- $\rho / ω$ -0 (case (i)) contradicts a previous p+p result.
- The asymmetric mass shape (case (ii)) reproduces data better than the symmetric one (case (i)).

k1 vs momentum (case (ii))

• Conclusions

- $-k1 > 0$ in any region, and the values are consistent with Hatsuda-Lee's value.
- Momentum dependence is not significant.
- The results can not be compared with S.H. Lee's calculation because the momentum region is $p < 1$ GeV/c.
	- ‣However, it is consistent with the results of longitudinal.

Summary

- Re-analysis of the E325 data was performed.
	- Statistics improved by a factor of three from the previous analysis.
- Significant excesses were observed for all targets and all β γ regions.
- Some model calculations were performed to evaluate the mass modification of ρ and ω mesons.
	- k1 > 0 for all regions, and the values are consistent with Hatsuda-Lee's value.
	- Asymmetric distribution reproduces the data better than when using symmetric distribution.
	- In case (ii), the result about k2 was consistent with no broadening.

Backups

- Tracking : Cylindrical Drift Chamber (CDC), Barrel DC (BDC)
- EID : Front Gas Cherenkov (FGC), Rear GC (RGC), Forward Lead Glass calorimeter (FLG), Real LG (RLG), Side LG (SLG)
- Start Timing Counter (STC)

material	mass	x position	width	height	thickness	interaction	radiation
	number	$ \text{mm} $	mm	mm	$\rm{[mg/cm^2]}$	length $[\%]$	length $[\%]$
2001							
carbon	12.011		25	25	92	0.11	0.21
copper	63.546	± 48	25	25	2×73	2×0.054	2×0.57
2002							
carbon	12.011		10	25	184	0.21	0.43
copper	63.546	$-43, -23, +24, +48$	10	25	4×73	4×0.054	4×0.57

Table 2.3: Configuration of the targets used in the year 2001 and 2002.

Target selection

- The vertex position was determined as the nearest point from all tracks of the same event.
- Cut within $\pm 3\sigma$ of peak position (each axis)

Obtained mass spectra

Mass $[GeV/c]$

Mass $[GeV/c^2]$

Mass [GeV/c

Mass $[GeV/c]^2$

2002, C

2001, Cu2

2002, Cu2

2002, Cu4

- For each dataset, each target position.
- Target position dependence was reduced by the fiducial cut.
- Clear ω and ϕ peaks can be observed.

Excess ratio, Systematic error

- Fit条件を変えながらexcess ratio を求め、系統誤差を評価
- A : Fit範囲を変える
- B : Massのbin幅を変える
- C : Mass scaleを変える
- D : Mass smearを変える
- E : Event mixing法を変える
- 各カテゴリーで一番大きいものを 2乗和する

Mass shape formulae A. Mass shape formulae a. Mondo copia $\ln n$ add dany canadiantente <u>iormula</u> (*^m ^m*0)² ⁺ ²

non-relativistic Breit-Wigner
\n
$$
nBW(m) = \frac{\Gamma_{\text{tot}}}{2\pi} \frac{1}{(m - m_0)^2 + \Gamma_{\text{tot}}^2/4},
$$

$$
\text{constant-width Relativistic Breit-Wigner} \over \text{cRBW}(m) = \frac{2}{\pi} \frac{mm_0 \Gamma_{ee}}{(m^2 - m_0^2)^2 + m_0^2 \Gamma_{\text{tot}}^2},
$$

rBWCERES(*m*) = (1 [−] ⁴*m*² π*/m*²)³*/*² *m*²Γ (*m*) $Vigner$ $\text{mRBW}(m) = -\frac{1}{\pi} \frac{1}{(m^2 - m_0^2)^2 + m^2 \Gamma_{\text{tot}}(m)^2},$ $\frac{1}{2}$ \mathbb{N} mass dependent width relativistic bien wight decay meson, and μ meson, $m = \frac{1}{\pi} \frac{m^2 - m_0^2}{(m^2 - m_0^2)^2 + m^2 \Gamma_{\text{tot}}(m)^2}$ where **invariant mass-dependent-width Relativistic Breit-Wigner** \mathbb{N} mdRB $W(m) = \frac{2}{m}$ $\pi (m^2 - m_0^2)^2 + m^2 \Gamma_{\text{tot}}(m)^2$ $\mathrm{mdRBW}(m)=\frac{2}{\tau}$ π $m^2\Gamma_{ee}(m)$ $\frac{m \cdot \mathbf{r} e e(m)}{(m^2 - m_0^2)^2 + m^2 \Gamma_{\text{tot}}(m)^2},$ **Figure 1.5 also dependent-width Rela** $\text{mdRBW}(m) = \frac{2}{\epsilon_0} \frac{m \cdot \text{deg}(m)}{2m}$ *m*2*ee*(*m*) mass-dependent-width Relativistic Breit-Wigner

0.8 0.9 1 mdRBW and assuming
$$
\Gamma_{\text{tot}}(m) = \frac{m}{m_0} \Gamma_{\text{tot}}
$$

$$
\Gamma_{ee}(m) = \left(\frac{m_0}{m}\right)^3 \Gamma_{ee}
$$

$$
\text{mdRBW2}(m) = \frac{2}{\pi} \frac{\left(m_0^3/m\right) \Gamma_{ee}}{\left(m^2 - m_0^2\right)^2 + \left(m^4/m_0^2\right) \Gamma_{\text{tot}}^2}
$$

case (iii): nBW + unmodified omega

- Fixed the mass shape of ω meson vacuum one.
- Only the modification of ρ meson was allowed.

34

Case (iv) : nBW/m^3 + unmodified omega

Model fit, Results

- Representative values of k1 and k2 are obtained by fitting a parabolic surface around the grid point to minimize.
- Statistical errors and upper bounds for k1 and k2 were obtained from $\Delta \chi^2 = 16.81$
- ρ/ω -0 case (i) contradicts the p+p result.
- case (ii) is the best. The difference from case (iv) is less than 16.81.

Excluding the excess region

Excluding the excess region, including η

Including the excess region

Including the excess region, including η

Excluding the excess region

Excluding the excess region, including η

Including the excess region

Including the excess region, including η

θ CM distribution (Helicity angle of ω ->ee) extracted by Side band subtraction method

rho0 -> ee, after Vertex momentum cut

• Aligned for all the axis (bg, pt, and rapidity)

rho-omega interference

$$
|F|^2 = \left| \frac{1}{m^2 - m_\rho^2 + im\Gamma_\rho^{\text{tot}}} + \frac{R}{m^2 - m_\omega^2 + im\Gamma_\omega^{\text{tot}}} \right|^2
$$
 Mixin

$$
R = \sqrt{\frac{\Gamma_\omega^{\text{tot}}}{\Gamma_\rho^{\text{tot}}}} \cdot \sqrt{\frac{\sigma_\omega}{\sigma_\rho} Br(\omega \to e^+ e^-)} \times e^{i\theta}
$$
 Sprin

- \cdot ... • F. M. Renard. rho-omega mixing. In G. Hoehler, editor, Springer Tracts in Modern Physics, volume 63, page 98. Springer-Verlag GmbH, 1972.
- $\theta = 2$ radian is favored by some theory. (Private communication w/ R. Veenhof)
- No need to consider $\theta > \pi$ region (Obviously high-mass) tail will not fit the data)

ρ-ω interference chi2 vs (theta, r/w)

- The parameters were not common for C, Cu, and for each bg region.
- The best chi2 values were very large.

Excess ratio vs bg

- In the model calculation, the model parameters were fixed as k1 $= 0.12$, k2 = 0.0, rho/omega ratio = 1.0
- nBW/m^{\land}3 was used for the mass function.