E88 Status and Plan High-statistics $\phi \rightarrow K^+K^-$ decay measurements in p+A

E16 Collaboration at Taiwan 2024/9/9-10 Hiroyuki Sako (JAEA) for the E88 collaboration

Contents

- 1. Introduction and goals
- 2. Experimental setup
- 3. Expected results
- 4. Preparation status
- 5. Summary

J-PARC E88

Study of in-medium modification of ϕ mesons inside the nucleus in $\phi \rightarrow K+K-$ measurements with the E16 spectrometer Approved as Stage-I status (physics importance) in 2022

- H. Sako (Spokesperson), S. Sato, M. Ichikawa (ASRC/J-PARC, JAEA)
- K. Aoki, Y. Morino, K. Ozawa (KEK/J-PARC)
- W. C. Chang, M. L. Chu (Academia Sinica, Taiwan)
- T. Chujo, S. Esumi, Y. Miake, T. Nonaka (Univ. of Tsukuba)
- M. Inaba (Tsukuba Univ. of Technology)
- M. Naruki (Kyoto Univ.)
- T. Sakaguchi (BNL)
- T. N. Takahashi (RCNP, Osaka Univ.), S. Yokkaichi (RIKEN)

Study of $\boldsymbol{\varphi}$ meson in the nucleus

• Goals

Studies of in-medium modification of ϕ mesons and its relation to $\overline{q}q$ condensate

- The mass shift of ϕ meson is sensitive to $\bar{s}s$ condensate in finite density

Experimental status

- No difference of BR betw. φ→e+e- and K+K- in A+A at SPS-CERES (PRL96, 152301 (2006))
- No φ mass shift in φ→K+K- in γ+A collisions (LEPS) (Ishikawa, PLB 608 (2005) 215)
- Only in p+A (KEK-E325), low mass excess in φ→e+eobserved (J-PARC E16 will measure with higher statistics)
- ALICE pφ femtoscopy result suggests attractive interaction between φ and p (S. Acharya, et al. Phys. Rev. Lett. 127(17), 172301 (2021))

P. Gubler and K. Ohtani, PRD **90**, 094002 (2014)

- E325 observed excess at lower mass at βγ<1.25 in p+Cu
- E325 has no $\phi \rightarrow K+K$ data at $\beta\gamma < 1.25$

E88 will focus on Low βγ with extremely high statistics

$\phi \rightarrow K+K-$ and $\phi \rightarrow e+e-$ in p+A

Advantage of $\phi \rightarrow K^+K^-$ over $\phi \rightarrow e^+e^-$

- 1. Much higher statistics
- 2. Branching ratio sensitive to ϕ mass shift Small Q value (32MeV) of $\phi \rightarrow K^+K^-$

However, $\phi \rightarrow K^+K^-$ is modified by FSI (KN)

Transport model development for $\phi \rightarrow KK$

- - P. Gubler (JAEA), S. H. Lee (Yonsei Univ.), E. Bratkovskaya, T. Song (Frankfurt U./GSI)
 - K-N interaction based on chiral unitary model including off-shell effects
 - K^{\pm} in-medium modified spectral function
 - At high density, K- mass peak decreases and width increases
 - K+ mass increases due to repulsive potential of 20-30 MeV, while the width remains narrow
 - Scattering and absorption of K^{\pm} in nucleus (e.g. to $\pi\Sigma$)
 - $\boldsymbol{\phi}$ spectral function of Breight-Wigner shape

T. Song et al, PRC103 044901 (2021) P_K [GeV/c]

HSD calculations for $\phi \rightarrow K^+K^-$

J-PARC E88 Setup

- 6 forward modules for K^{\pm} identification in top and bottom layers
- MRPC (Mulit-gap Resistive Plate Chamber) and SC (Start timing counter) for Time-of-Flight measurement
- AC (Aerogel Cherenkov counter) for pion rejection
- STS (Silicon Tracking System) and GTR (GEM Trackers) for track reconstruction

Particle identification and acceptance

M²: calculated with TOF between MRPC and SC →Required MRPC and SC timing resolution ~70ps, 50ps $y-p_T$ acceptance

p+Cu (No AC veto)

9

Expected statistics

Beam time: 30 days with 30 GeV proton beam at 10⁹ / spill

- C (0.1% int.) + Cu (0.1% int.) + Pb (0.1% int.) targets
- Statistics increased by factor of 300 (p+C) and 500 (p+Cu) from E325

φ→K+K- at E88			
	С	Cu	Pb
φ (βγ<1.25)	72k	113k	314k
φ (1.25<βγ<1.75)	84k	146k	340k
φ (1.75<βγ<2.1)	3k	3k	8k
φ→K+K- at E325			
φ (1.0<βγ<1.7)	99	285	
φ (1.7<βγ<2.2)	143	279	
φ (2.2<βγ<3.5)	177	269	F. Sakuma (E

PRL 98 152302

ϕ Polarization through decay angle of $\phi \to K^+K^-$ and $\phi \to e^+e^-$

I.W. Park, H. Sako, K. Aoki, P. Gubler and S.H. Lee, Phys. Rev. D 107, 074033 (2023).

Decay angle distributions in ϕ rest frame for L/T ϕ polarizations

E88 has ~ 100% CM angle acceptance for $\phi \rightarrow KK$

 $\phi \rightarrow K^+ K^-$ can distinguish both T and L polarizations \[
\[
\[
\[
\]
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\[
\]
\

Dispersion relation

Based on QCD sum rules in H.J. Kim and P. Gubler, Phys. Lett. B **805**, 135412 (2020)

p+Pb toy model

Multi-gap Resistive Plate Chamber (MRPC)

Readout : Discriminator + HUL-HRTDC Slewing correction with TOT Enhanced high-rate capability

• Warming glass sheets→lower resistivity

 \rightarrow shorter recovery time from discharge

Start-timing Counter (SC)

- Segmented scintillation counters
 - Slats of 4mmx4mmx100mm plastic scintillation counter (EJ-228)
 - Photon detection with SiPMs (MPPC S13360-3050, 3mmx3mm)
- Prototype test with ⁹⁰Sr source
 - Timing resolution : $55 \pm 4 \text{ ps}$
- Expected hit rate in the experiment
- ~ 100 kHz/slat

Aerogel Cherenkov Counter (AC)

Light collection cone

Aerogel n=1.15 t=30mm

Cosmic-ray testEfficiency ~90%

Kaon ID detectors test at E16 (Apr-Jun 2024).

• 3 MRPCs, 4 ACs, and 3 SCs with 1/24 scale of a module were tested in E16 spectrometer

Results in Apr-Jun 2024 beam test TOF between MRPC and reference counters

Particle Identification in Apr-Jun 2024 test

Horizontal positions of SC and MRPC segments assuming the particles originate from the target

Triggerless Streaming DAQ at E88?

Current plan

• K+K- trigger w/ SC, MRPC, and AC

Possible new scheme

- Triggerless continuous (streaming) readout of MRPC, SC, AC (and STS and GTR)
- Advantages
 - Much simpler system
 - No need to implement complicated K+K- trigger
 - No AC necessary?
 - We could collect data in the whole $\beta\gamma$ range (if no limit in the data rate)
 - We could measure all charged hadrons!
- Issues:
 - GTR streaming readout is not yet possible
 - High hit rates (MRPC is probably ok, SC may be ok behind GTR)
 - Event filtering in software is required to reduce the data rate to be recorded
 - Challenging development

Plan

- PID tests again in Run 1 (Apr. 2025-)
 - Possibly test of streaming readout for part of detectors
- Stage-II status request for the final experimental approval (Jan., July 2025)
- Applying for a Kakenhi budget (Kiban-S) for JFY2025
 - Mass production of AC, SC and MRPCs if approved
- Physics run in JFY2026 2027?

Summary

- We aim to measure φ→K⁺K⁻ decay in p+C, p+Cu and p+Pb with extremely high statistics to study modification of φ in the nucleus, focusing on low φ velocity.
- In 30-day beam time, we will collect ~1M $\phi \rightarrow K^+K^-$ decays at $\beta\gamma$ <2, which has higher statistics than KEK-E325 by 2-orders of magnitude.
- We analyze K⁺K⁻ invariant mass spectra in high mass resolution to evaluate mass modification depending on momentum and polarization.
- We compare the difference in the target mass dependence of the yields from
 →e⁺e⁻ data to evaluate FSI.

We welcome new collaborators!