Measurement of polarization dependence

K. Aoki

KEK/J-PARC

E16 workshop @ Taiwan Academia Sinica

Pol dependence of mass distribution

- PLB805 (2020) 135412, Kim-Gubler
 - calculated the momentum dependence of phi mass (dispersion relation)
 - Also polarization dependence of mass.
 - Experimental investigation important.

Anomaly-induced chiral mixing of ϕ and $f_1(1420)$

- Phys. Rev. D106, 5 (2022) C. Sasaki
 - Chiral mixing effect in dense matter can be seen in e⁺e⁻ channel when chiral symmetry is restored. And it behaves differently for different pol.
 - T(Transverse) affected. L(Longitudinal) stays.
- ϕ and $f_1(1420)$ are parity partner.
 - Part of their components are chiral partners. 10⁰
 - Genuine signal of chiral symmetry restoration: Degeneracy of chiral partner!

$$p = 1.0 \text{GeV/c}$$

T=50 MeV
 $p = 2.5 p_{0}$

We have learned from Ejima-san

that the unpol measurement itself is difficult. E16 workshop @Taiwan Sep. 20

CONTENTS

- Decay angle $\phi \rightarrow e^+e^- / K+K-$ to access polarization
- Expected spectrum
 - Based on E325-type model calc.
- How can we experimentally separate?
 - Finding orthogonal functions.
- Do the methods work?
- How to improve?

Polarization \leftarrow \rightarrow Angular dist. in helicity rest frame

• Phys.Rev. D 107,7 (2023) I.W. Park, H. Sako, K.A., P.Gubler, S.H.Lee

• *φ* → ee

- Spin 1 is taken by the spin of ee.
 - $\cos\theta = \pm 1$: T 100%
- $\cos \theta = 0$: L 50%, T 50%
- 💮 Small FSI
 - Limited acceptance at $\cos \theta^* = \pm 1$

 $\phi \rightarrow e^+e^- vs \phi \rightarrow K^+K^-$

$\phi \rightarrow e^+e^-$

- Spin 1 is taken by ee pol.
- $\cos \theta = 0 : L 50\%, T 50\%$
- ြာ• Small FSI

 $\phi \rightarrow K^+K^-$

- Spin 1 is taken by KK OAM
- $\bigcirc \bullet \cos \theta = \pm 1 : L \ 100\%$
- $\bigcirc \bullet \cos \theta = 0 : \mathsf{T} \ 100\%$
- Suffer from FSI
 - Treated by transport model

- Small BR (2.98 x 10⁻⁴)
 - 15k for 53 days (E16 Run1)

• 260k for 30 days (E88)

Spin dependence.

Spin of phi |1,1> |1,0> |1,-1>

Spin of ee |1,1> |1,-1>

K. Aoki, E16 workshop @Taiwan Sep. 2024

Play with Kim-Gubler model to get expected mass spectra

- PLB 805, 10 (2020)
 - T: Transverse / L: Longitudinal
 - T : L = 2:1
- I replaced the shift with the E325 value.

Monte Carlo simulation input

- Momentum distribution is taken from JAM.
- Mass: Breit-Wigner distribution.
- Internal Radiative Correction (IRC)
 - Calculated by PHOTOS
 - IRC makes a tail on the lower side.

E325-type calculation using KG param.

- E325 model assumption
 - Density assumed to be WS potential shape.
 - ϕ production probability proportional to density.
 - According to mass-number dependence of σ (σ _{pA} ~ A)
 - # of entries is arbitrary.
 - (cf) Run1 exp: ~1.7k ($\beta\gamma$ <1.25), Run2 exp: 12k for ($\beta\gamma$ <1.25)
- Smearing (mimic experimental effect)
 - Mass by 7 MeV/c², $\cos(\theta)$ by 0.01

Basic idea: find orthogonal func. (to extract T. mass)

• G(m, x) : Measured mass (m) and angle $(x = \cos \theta^*)$ distribution:

$$G(m,x) = g_T(m) f_T(x) + g_L(m) f_L(x)$$
Measured Want to know Known Want to know Known

- $g_{T,L}(m)$: Mass distribution for T and L.
- $f_{T,L}(x)$: Daughter particle's angular distribution for T and L. $f_T(x) \propto (1 + x^2)$ $f_L(x) \propto (1 - x^2).$
- If we can find a function $h_T(x)$ that is orthogonal to $f_L(x)$ • $h_T(x)$: eliminates L and what's left is T

 $= g_T(m) \int f_T(x)h_T(x)dx$

 $= g_T(m) \times \text{Const.}$

K. Aoki, E16 workshop @Taiwan Sep. 2024

Finding orthogonal functions

- The Gram-Schmidt's method:
 - Assume we have $\alpha_1(x), \alpha_2(x)$ and build two functions:

$$\alpha_1$$

 $\alpha_2 - \frac{\langle \alpha_1 \cdot \alpha_2 \rangle}{\langle \alpha_1 \cdot \alpha_1 \rangle} \alpha_1$
 $ightarrow 0$ rthogonal to each other.

- $h_L(x)$: (orthogonal to f_T = eliminates T) extracts L.
- $h_T(x)$: (orthogonal to f_L = eliminates L) extracts T.

 $\overline{\alpha_2}$

 $\alpha'_2 \ (= \overrightarrow{\alpha_2})$

 $\langle \alpha_1 \cdot \alpha_2 \rangle =$

 $(\alpha_1 \cdot \alpha_2)$

 $\overrightarrow{\alpha_1}$

 $\alpha_1(x)\alpha_2(x)dx$

The method applied. for $\beta\gamma$ < 1.25 sample.

• $\cos \theta = [-1,1]$

• $\cos \theta = [-0.8, 0.8]$

- LINE : According to polarization information which God only knows
- + : Extracted using the orthogonal functions $h_T(x)$, $h_L(x)$

Same statistics but different angular acceptance in the rest frame of ϕ .

• $\cos \theta = [-1,1]$

•
$$\cos \theta = [-0.7, 0.7]$$

•
$$\cos \theta = [-0.5, 0.5]$$

K. Aoki . E16 workshop @Taiwan Sep.

Angular acceptance of ϕ . E16 case.

- GEANT4 as an acceptance filter.
- Results
 - LG trig eff has to be multiplied
 - ~90% 0.4GeV, ~75% 0.3GeV
 - Reality is between Green and black.
 - Smaller acceptance for $\cos \theta = \pm 1$
- (Needs acceptance correction for analysis.)
- $|\cos \theta| < 0.7 \sim 0.8$ maybe used w/ acceptance correction but rather marginal.
- How can we increase the sensitivity to $|\cos \theta| \rightarrow 1$

Mom

none

>0.2

>0.3

>0.4

cut for e

e⁺ e⁻ angle at lab. ϕ meson $\beta\gamma$ <1.25 JAM+IRC w/o GEANT4.

• $\cos \theta^* = [-0.9, -0.8)$: Angular coverage wise OK?

K. Aoki, E16 workshop @Taiwan Sep. 2024

E16 spectrometer case but release requirements.

V90 Kon V90 Ko

- If we restrict ourselves to
 GTR1(R~200mm)
 - GTR2(R~400mm)
 - <u>GTR3(R~600mm)</u>
 - HBD(R~1200mm)
 - LG (R~1500mm) ← E16.
- Making it compact
 - TOF for low momentum e. triggerless DAQ.
 - Add backward modules.
- Making it wider

K. Aoki , E16 workshop @Taiwan Sep. 2024 TPC-type configuration 17

Orthogonal functions for K+K-

- We can also find orthogonal functions for KK
- Thanks to the high statistics and lucky distribution, we may simply select sweet spots (near cos=1 or 0) to see the spectrum.

• KK

$$\begin{array}{rcl} x = \cos \theta = [-1,1] \\ f_T(x) &= (1-x^2) \\ f_L(x) &= x^2 \\ h_T(x) &= \frac{1}{2} [3-5x^2] \\ h_L(x) &= \frac{1}{2} [5x^2-1] \end{array}$$

• ee

$$\begin{array}{rcl} x = \cos \theta = [-1,1] \\ f_T &=& 1 + x^2 \\ f_L &=& 1 - x^2 \\ h_T &=& 5x^2 - 1 \\ h_L &=& 2 - 5x^2 \end{array}$$

Summary

- Good motivation for polarization dependent mass meas.
 - It can be studied by exploiting decay angular distribution.
- KK vs ee
 - KK:
 - Good: Lot of statistics. Lucky angular distribution.
 - Bad: FSI. Treated by PHSD.
 - ee:
 - Good: Free from FSI.
 - Bad: small statistics, unlucky angular distribution.
- Orthogonal function can be used to extract polarization dependence.
- Backward daughter has lower momentum, open angle at lab wide.
 - Compact or wide angular coverage is highly desired.
- E16 spectrometer
 - |Theta| < 0.7 or 0.8 marginal.
- Beyond E16 spectrometer
 - Make it compact and/or wider acceptance.