## Opening a new door:

Nano-Hertz Gravitational-Wave Astronomy

Keitaro Takahashi Kumamoto University 2024/9/27



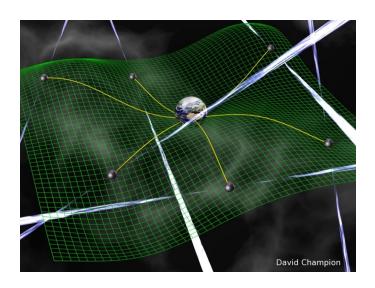


#### Who am I?

2005 University of Tokyo, Ph.D. (Katsuhiko Sato) 2005-2007 Princeton University, JSPS overseas fellowship 2007-2008 Kyoto University, JSPS fellowship 2009-2011 Nagoya University, GCOE assistant professor 2011- Kumamoto University

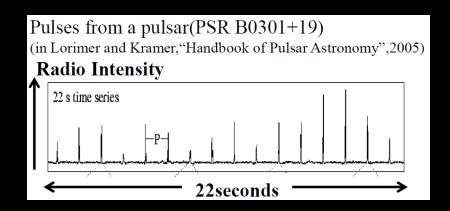
my fields: pulsar timing array, epoch of reionization cosmic magnetism, SETI, history of astronomy past interests: neutrino astrophysics, brane world, cosmic strings, etc.

#### **Contents**

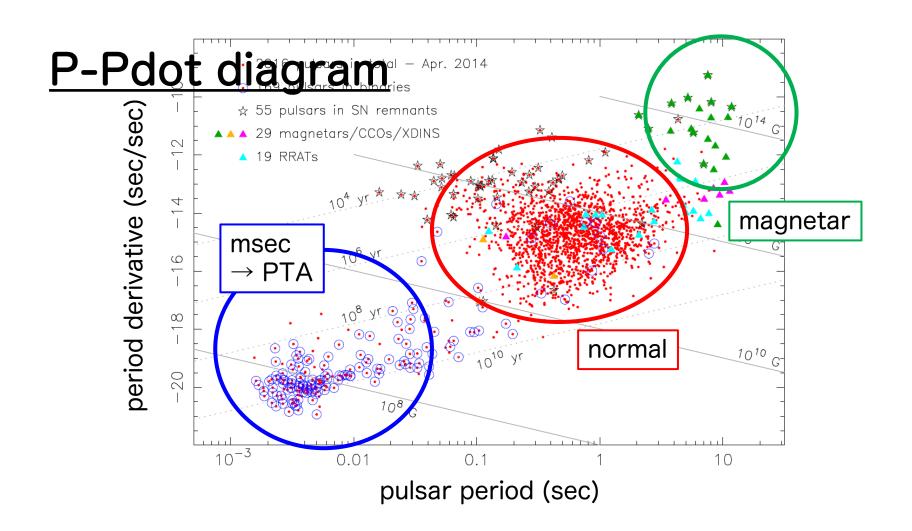

- 1. Nano-Hz Gravitational Waves
- 2. Pulsar Timing Array
- 3. Evidence for GW Background
- 4. Astrophysical Implication
- 5. Future Prospects

1. Nano-Hz Gravitational Waves

#### pulsar timing array


#### PTA in a nutshell

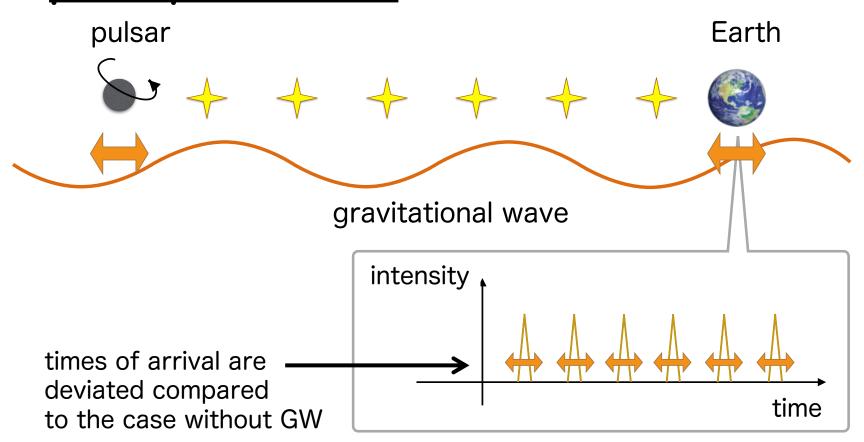
- direct detection of GWs
- very stable msec pulsars
- precise timing for O(10) years
- GWs induce irregularity in pulse arrival time of O(100) nsec
- GW frequency
  - $\rightarrow$  observation period and cadence
  - $\rightarrow$  (1 week)<sup>-1</sup> ~ (10 years)<sup>-1</sup>
  - $\rightarrow$  1  $\mu$  Hz  $\sim$  1nHz



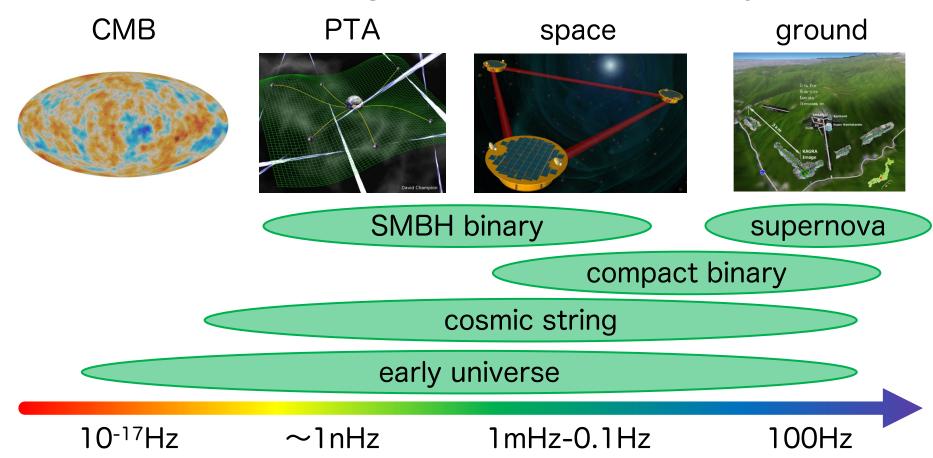

### <u>pulsar</u>

- fast-rotating neutron star
- periodic pulse : 1msec 10sec
- radio ~ optical ~ gamma-rays
- ISM study, gravity test, GW detection
- · 3,000 pulsars so far




Jocelyn Bell Burnell (1943-)Antony Hewish (1924-2021)Nobel Prize in 1974

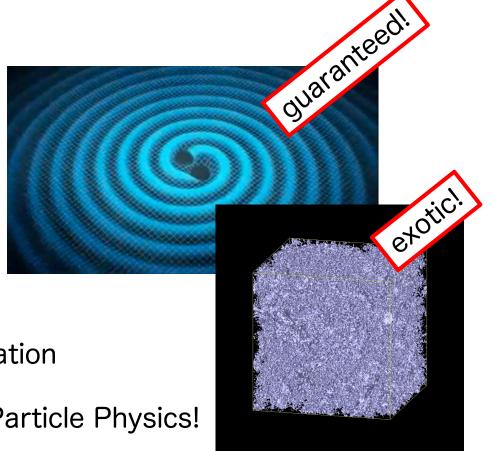



S. Kuroyanagi



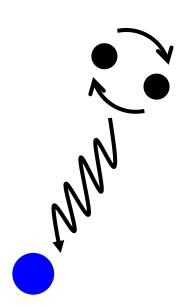
S. Kuroyanagi



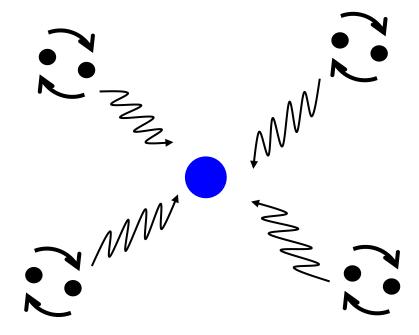

### multi-wavelength GW astronomy



#### Nano-Hz GWs


- SMBH binary
- cosmic string
- inflation
- phase transition
- 2nd-order scalar perturbation

Astrophysics, Cosmology, Particle Physics!



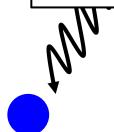

#### single source & BG

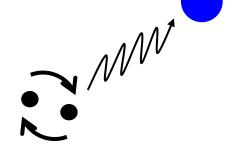
single source



GW background




#### single source & BG


single source

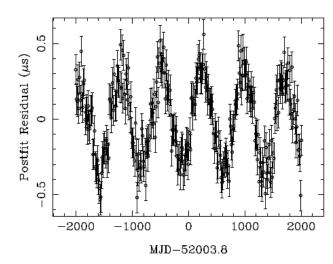
GW background

GWB is expected to be easier to detect. Higher sensitivity is needed to detect GWs from single sources.

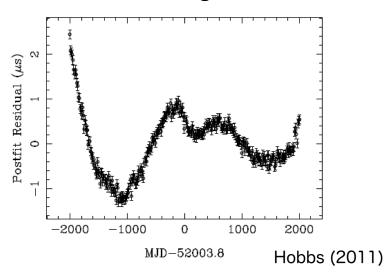








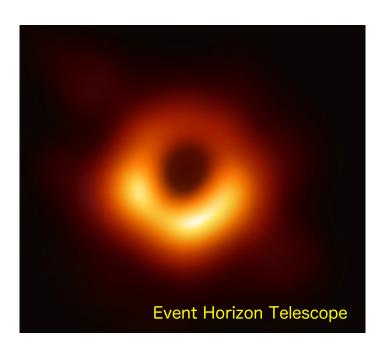

### timing residual


GWs → deviation of pulse arrival time from prediction

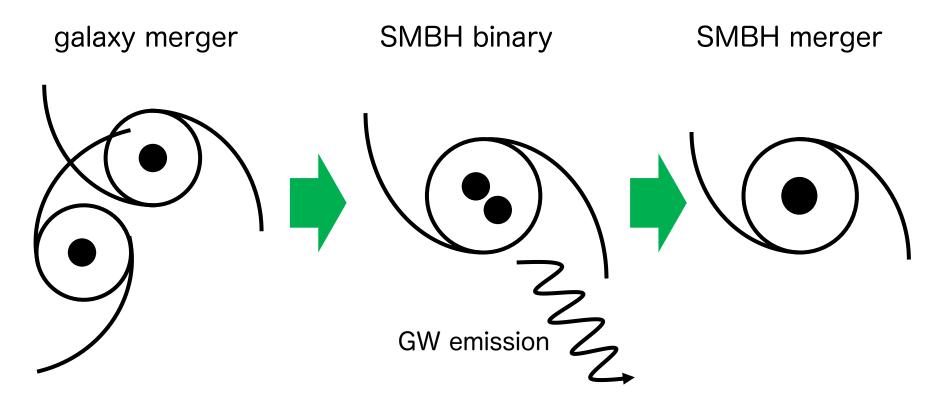
→ timing residual

single source

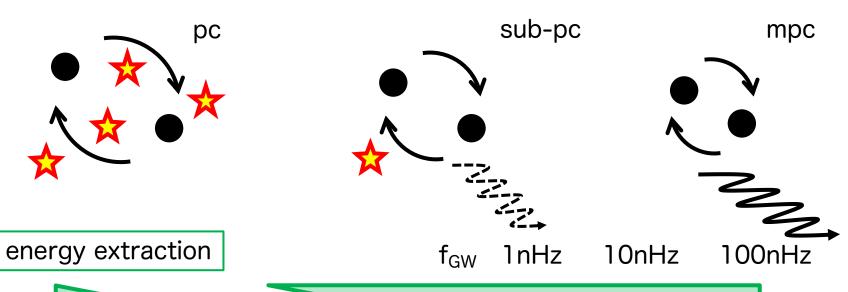



#### GW background




#### supermassive black hole

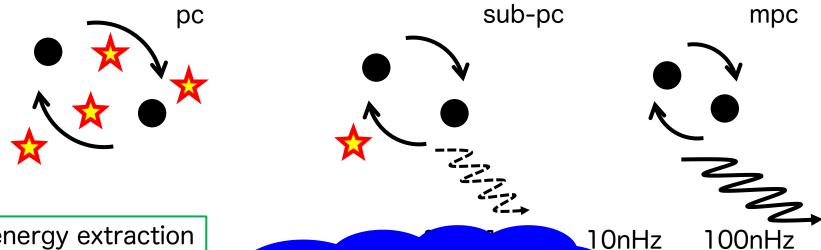
#### SMBHs at galactic center


- · 10<sup>6</sup> ~10<sup>9</sup> M<sub>sun</sub>
- discovered by dynamics and energetics
- · recently image was obtained
- correlation between SMBH mass and galactic quantities such as bulge mass
- · co-evolution with galaxy
- · unknown: formation & evolution
  - → galaxy merger is a key



### galaxy merger & SMBH binary




### **SMBH** binary evolution



GW emission

dynamical friction

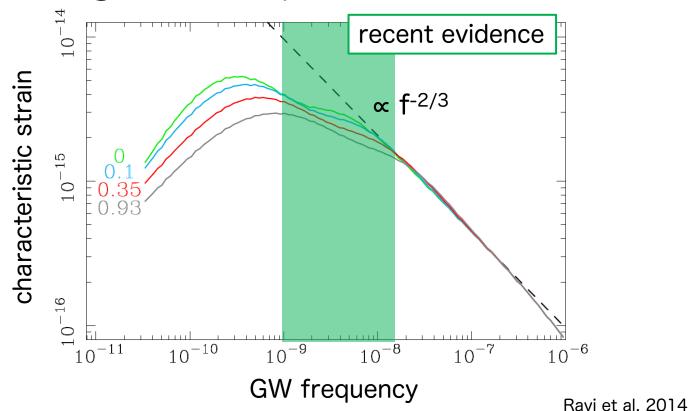
### SMBH binary evolution



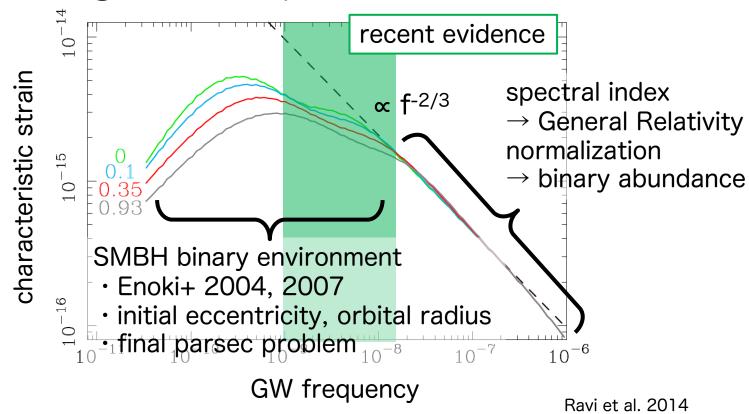
energy extraction

"final pc problem"

- star injection to loss-cone emission
- molecular cloud
- circum-binary disk


dynamical frid

### **GW** frequency


typical GW frequencies

$$f_{\text{GW}} = 2.3 \times 10^{-8} \text{ Hz} \left(\frac{a}{1 \text{ mpc}}\right)^{-3/2} \left(\frac{m}{10^6 M_{\odot}}\right)^{1/2}$$
  
=  $4.4 \times 10^{-9} \text{ Hz} \left(\frac{a}{30 \text{ mpc}}\right)^{-3/2} \left(\frac{m}{10^9 M_{\odot}}\right)^{1/2}$ 

#### GW background spectrum



#### GW background spectrum



# 2. Pulsar Timing Array

### PTA projects

IPTA (International PTA consortium)

- EPTA (Europe)
- NANOGrav (North America)
- PPTA (Australia)
- InPTA (India + Japan)



- · CPTA (China)
- MPTA (South Africa)











These are independent groups but cooperate closely.

#### **Indian PTA**

India-Japan collaboration

- uGMRT (SKA pathfinder)
- · low frequency (250-1450MHz)
  - → precise dispersion measure
- · 1st data release in 2022
- · 2nd data release soon





#### PTA flowchart

pulsar search

search for stable pulsars as many as possible

timing obs

measure time of pulse arrival (ToA)

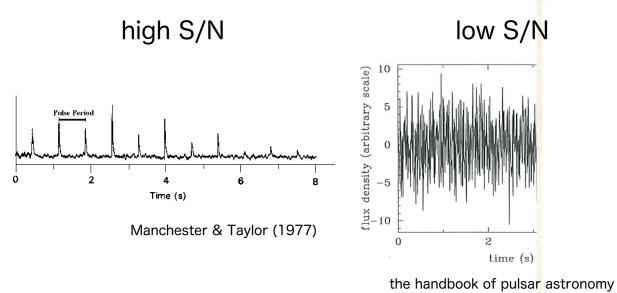
timing model

determine timing model parameters: period, period derivative...

noise analysis

noise model in ToA

GW analysis


extract GW signal from noise

interpretation

astrophysical implication of measured GW

### **folding**

Most of pulsars are so dim that individe detected and folding is necessary



is 'white', i.e. the Fourier power is distril frequency range. Well-behaved white noi tion of the significance level of any signal Although time series obtained from real p ble Gaussian noise, fluctuations in the re systems often manifest themselves via a s

noise' component when viewed in the Fo

sumed purely Gaussian noise. The rour

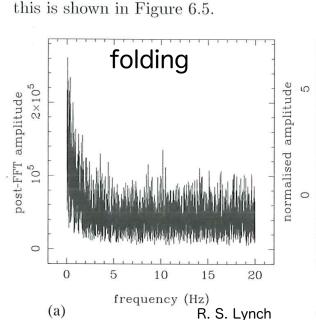
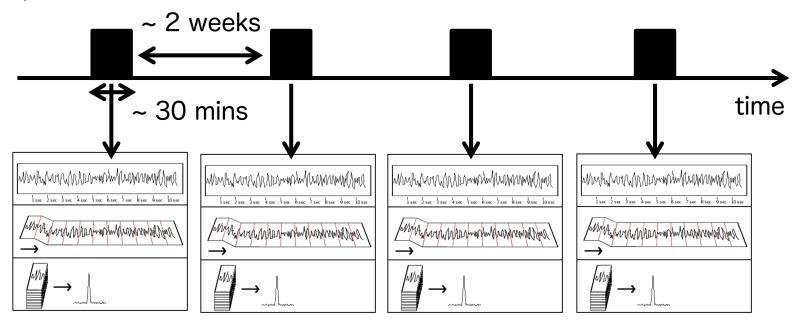




Fig. 6.5. (a) Amplitude spectrum from data

scope. (b) Spectrum after a whitening proce

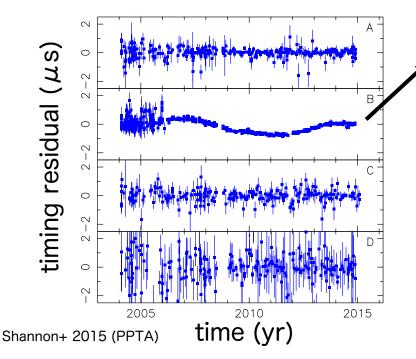
### timing observation

observe each pulsar once in a few weeks, and determine the pulse arrival time for each observation (1 ToA for 1 obs)



### timing model

deterministic model of pulse arrival time


- pulsar period & its derivative
- dispersion measure
- pulsar position and motion
- Earth motion
- gravitational fields of solar system objects
- pulsar orbital parameters (if binary)
- → we can predict Time of Arrival

#### Shapiro delay due to solar system objects

| Shapiro delay due to Sun         | $112\mu\mathrm{s}$ |
|----------------------------------|--------------------|
| Shapiro delay due to Venus       | $0.5\mathrm{ns}$   |
| Shapiro delay due to Jupiter     | $180\mathrm{ns}$   |
| Shapiro delay due to Saturn      | $58\mathrm{ns}$    |
| Shapiro delay due to Uranus      | $10  \mathrm{ns}$  |
| Shapiro delay due to Neptune     | $12\mathrm{ns}$    |
| Second order Solar Shapiro delay | 9 ns               |

### timing residual

timing residual: deviation of ToA from timing-model prediction



GW?  $\rightarrow$  No!

- If GW, other pulsars would also be affected.
- The residual due to GW depends on the relative position of the GW source and pulsar.
  - → (Hellings & Downs correlation)
- Extract GW signal by modeling noises

#### noise model

#### stochastic noise

- white noise
  - radiometer noise
  - fluctuations intrinsic to pulsar

$$\sigma_{\text{scaled}}^2 = \text{EFAC}^2 \times \sigma_{\text{original}}^2 + \text{EQUAD}^2$$

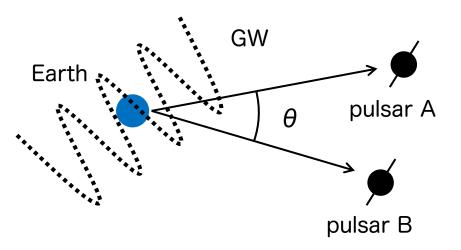
- •red noise : temporal correlation
  - independent on radio frequency: include GWs
  - · dependent of radio frequency: ISM effects

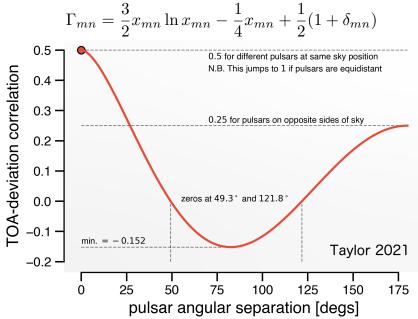
$$y(t) = \sum_{j=1}^{N_{\text{coef}}} Y_j \left( a_j \cos(j\omega t) + b_j \sin(j\omega t) \right) \left( \frac{v}{v_{\text{ref}}} \right)^{-\alpha} \qquad \omega = 2\pi/T_{\text{span}}$$

### **GW** signal

features of GW signal in timing residual

1. temporal correlation of O(1) years


$$f_{\rm GW} = 1.4 \times 10^{-7} \text{ Hz} \left(\frac{a}{3 \text{ mpc}}\right)^{-3/2} \left(\frac{m}{10^9 M_{\odot}}\right)^{1/2}$$


- 2. common to multiple pulsars
  - → Common Red Signal (CRS)
- 3. inter-pulsar correlation depending on angular separation
  - → Hellings & Downs correlation

### Hellings & Downs correlation

#### Hellings & Downs 1983

- correlation in timing residuals of 2 pulsars
- · depends on angular separation
- · "quadrupole" pattern of GW





### 3. Evidence for GW Background

#### worldwide announcement

6/29 UTC 0:00 : papers, arXivs, press release

- EPTA + InPTA ← (Japan)
- NANOGrav
- PPTA
- · CPTA

#### conclusion

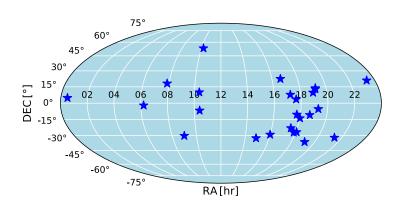
- GW background signal :  $2\sim4\,\sigma$   $\rightarrow$  evidence (detection  $5\,\sigma$ )
- results from different PTAs are roughly consistent
- consistent with that from SMBH binaries
- cannot reject other sources

#### **EPTA+InPTA**

focus on EPTA+InPTA (2023) similar analysis method for other PTAs show comparison later EPTA

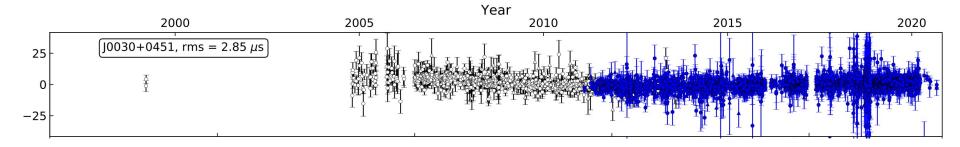





#### Effelsberg, Lovell, Nançay Sardina, WSRT, LEAP

· 25 pulsars, 24.5 years

#### **InPTA**

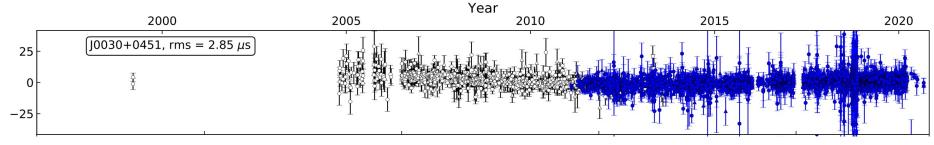

- uGMRT
- · 10 pulsars, 3.5 years
- low-frequency observation

#### pulsar distribution



#### noise model

timing residual of J0030+0451




select noise model & estimate parameters from timing residual

- white noise: no time correlation
- red noise (RN): achromatic time-correlated
- · dispersion measure noise (DM): chromatic time-correlated
- scattering variation (SV): chromatic time-correlated

#### noise model

timing residual of J0030+0451



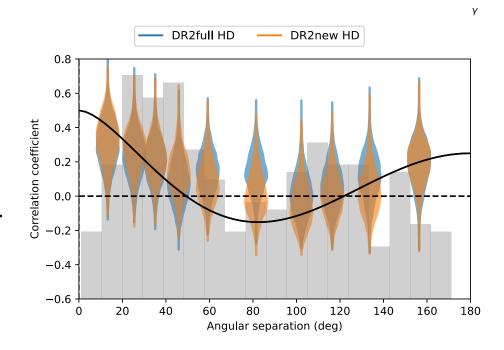


| Pulsar     | PTA  | Favoured | Red noise                      |                         |                        | DM noise                       |   |   | Time span |
|------------|------|----------|--------------------------------|-------------------------|------------------------|--------------------------------|---|---|-----------|
|            |      | Models   | $\overline{N_{\mathrm{coef}}}$ | A                       | γ                      | $\overline{N_{\mathrm{coef}}}$ | A | γ | yr        |
| J0030+0451 | EPTA | RN       | 10                             | $-14.93^{+0.83}_{-1.1}$ | $5.49^{+1.93}_{-1.56}$ | X                              | X | X | 21.96     |

|                   | Pulsar     | PTA        | Favoured | Red noise                      |                          | DM noise                               |                                |                          | Time span              |       |
|-------------------|------------|------------|----------|--------------------------------|--------------------------|----------------------------------------|--------------------------------|--------------------------|------------------------|-------|
|                   |            |            | Models   | $\overline{N_{\mathrm{coef}}}$ | A                        | γ                                      | $\overline{N_{\mathrm{coef}}}$ | A                        | γ                      | yr    |
| noise models      | J0030+0451 | EPTA       | RN       | 10                             | $-14.93^{+0.83}_{-1.1}$  | 5.49 <sup>+1.93</sup> <sub>-1.56</sub> | X                              | X                        | X                      | 21.96 |
| for 25 pulsars    | J0613-0200 | EPTA+InPTA | RN+DM    | 10                             | $-14.99^{+0.94}_{-1.24}$ | $5.34^{+2.06}_{-1.6}$                  | 129                            | $-11.58^{+0.06}_{-0.06}$ | $1.34^{+0.28}_{-0.26}$ | 23.83 |
| 101 23 paisars    | J0751+1807 | EPTA+InPTA | DM       | X                              | X                        | X                                      | 115                            | $-11.72^{+0.2}_{-0.2}$   | $2.69^{+0.51}_{-0.49}$ | 25.12 |
|                   | J0900-3144 | EPTA       | RN+DM    | 135                            | $-12.76^{+0.09}_{-0.08}$ | $1.06^{+0.28}_{-0.27}$                 | 150                            | $-11.94^{+0.67}_{-0.87}$ | $3.89^{+2.12}_{-1.79}$ | 13.64 |
| RN is identified  | J1012+5307 | EPTA+InPTA | RN+DM    | 149                            | $-13.03^{+0.05}_{-0.04}$ | $1.21^{+0.17}_{-0.17}$                 | 47                             | $-11.95^{+0.11}_{-0.12}$ | $1.74^{+0.39}_{-0.37}$ | 24.61 |
| riv is identified | J1022+1001 | EPTA+InPTA | RN+DM    | 30                             | $-13.8^{+0.51}_{-0.99}$  | $3.01^{+1.55}_{-0.97}$                 | 100                            | $-11.46^{+0.09}_{-0.08}$ | $0.14^{+0.26}_{-0.13}$ | 25.37 |
| for 11 pulsars.   | J1024-0719 | EPTA       | DM       | X                              | X                        | X                                      | 34                             | $-11.82^{+0.18}_{-0.21}$ | $2.46^{+0.87}_{-0.66}$ | 23.14 |
| roi i i paicaro.  | J1455-3330 | EPTA       | RN       | 49                             | $-13.26^{+0.28}_{-0.49}$ | $2.21^{+1.35}_{-1.04}$                 | X                              | X                        | X                      | 15.72 |
|                   | J1600-3053 | EPTA+InPTA | RN+DM    | 21                             | $-14.05^{+0.49}_{-0.89}$ | $2.86^{+1.99}_{-1.24}$                 | 148                            | $-11.46^{+0.04}_{-0.04}$ | $1.99^{+0.12}_{-0.12}$ | 15.42 |
|                   | J1640+2224 | EPTA       | DM       | X                              | X                        | X                                      | 145                            | $-11.66^{+0.14}_{-0.13}$ | $0.48^{+0.49}_{-0.4}$  | 24.44 |
|                   | J1713+0747 | EPTA+InPTA | RN+DM    | 12                             | $-14.19^{+0.27}_{-0.29}$ | $3.28^{+0.66}_{-0.63}$                 | 148                            | $-11.86^{+0.05}_{-0.04}$ | $1.59^{+0.19}_{-0.19}$ | 24.5  |
|                   | J1730-2304 | EPTA       | DM       | X                              | X                        | X                                      | 10                             | $-11.56^{+0.55}_{-0.57}$ | $2.22^{+1.56}_{-1.45}$ | 16.1  |
|                   | J1738+0333 | EPTA       | RN       | 11                             | $-12.93^{+0.36}_{-0.4}$  | $2.14^{+1.31}_{-1.2}$                  | X                              | X                        | X                      | 14.12 |
|                   | J1744-1134 | EPTA+InPTA | RN+DM    | 10                             | $-14.12^{+0.41}_{-0.72}$ | $3.45^{+1.19}_{-0.75}$                 | 150                            | $-11.82^{+0.1}_{-0.07}$  | $0.26^{+0.37}_{-0.23}$ | 25.14 |
|                   | J1751-2857 | EPTA       | DM       | X                              | X                        | X                                      | 41                             | $-11.08^{+0.22}_{-0.33}$ | $2.13^{+0.99}_{-0.7}$  | 14.69 |
|                   | J1801-1417 | EPTA       | DM       | X                              | X                        | X                                      | 14                             | $-10.73^{+0.27}_{-0.26}$ | $1.68^{+1.16}_{-1.06}$ | 13.71 |
|                   | J1804-2717 | EPTA       | DM       | X                              | X                        | X                                      | 38                             | $-11.19^{+0.18}_{-0.83}$ | $0.78^{+2.95}_{-0.71}$ | 14.73 |
|                   | J1843-1113 | EPTA       | DM       | X                              | X                        | X                                      | 73                             | $-11.03^{+0.08}_{-0.08}$ | $2.07^{+0.36}_{-0.31}$ | 16.8  |
|                   | J1857+0943 | EPTA+InPTA | DM       | X                              | X                        | X                                      | 11                             | $-11.86^{+0.27}_{-0.28}$ | $2.88^{+0.66}_{-0.62}$ | 25.11 |
|                   | J1909-3744 | EPTA+InPTA | RN+DM    | 20                             | $-14.89^{+0.78}_{-0.85}$ | $4.77^{+1.96}_{-1.79}$                 | 150                            | $-11.85^{+0.05}_{-0.05}$ | $1.31^{+0.16}_{-0.15}$ | 17.14 |
|                   | J1910+1256 | EPTA       | DM       | X                              | X                        | X                                      | 10                             | $-11.71^{+0.66}_{-0.84}$ | $2.98^{+2.38}_{-1.87}$ | 15.21 |
|                   | J1911+1347 | EPTA       | DM       | X                              | X                        | X                                      | 10                             | $-11.98^{+0.39}_{-0.47}$ | $3.06^{+1.36}_{-1.06}$ | 14.2  |
|                   | J1918-0642 | EPTA       | DM       | X                              | X                        | X                                      | 138                            | $-12.09^{+0.4}_{-0.44}$  | $3.49^{+1.13}_{-1.06}$ | 19.71 |
|                   | J2124-3358 | EPTA+InPTA | DM       | X                              | X                        | X                                      | 18                             | $-11.77^{+0.34}_{-0.39}$ | $2.07^{+1.09}_{-0.98}$ | 17.15 |
|                   | J2322+2057 | EPTA       | NONE     | X                              | X                        | X                                      | X                              | X                        | X                      | 14.68 |

### signal models

types of red noise

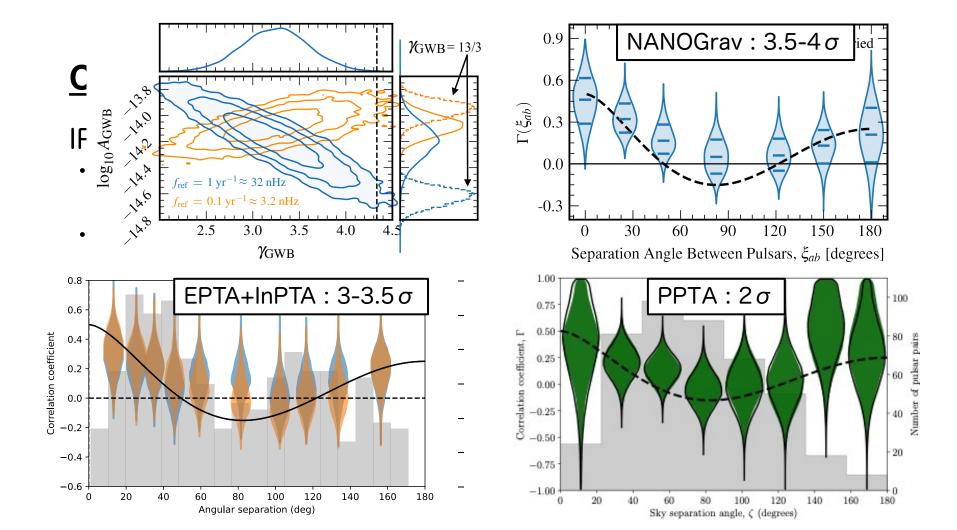

- PSRN : pulsar specific red noise
- · CURN: common uncorrelated red noise
  - GWB : common + quadrupole (GW background)
  - CLK: common + monopole (clock error)
  - EPH: common + dipole (solar system ephemeris error)

These can be identified by studying inter-pulsar correlation.

#### **HD** correlation

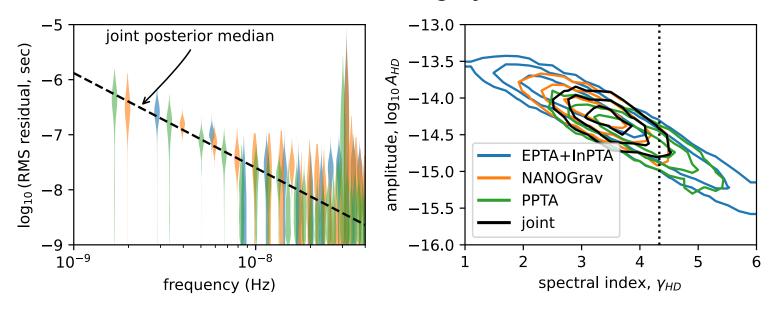
inter-pulsar correlation for Common Red Signal

- 25 pulsars  $\rightarrow$  300 pairs
- · 10 angle bins
- · 30 pairs in each bin
- roughly consistent with HD curve but slightly larger than HD at around 90 deg




#### model selection

model selection by comparing Bayes factor of various signal models and "individual red noise & common red noise"

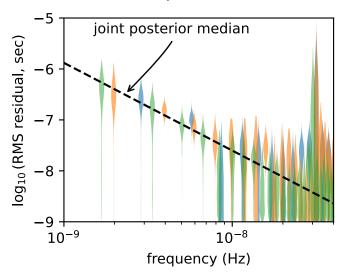

|    |                   | DR2full    |                | DR2full+   | DR2n       | DR2new   |            |  |
|----|-------------------|------------|----------------|------------|------------|----------|------------|--|
| ID | Model             | ENTERPRISE | FORTYTWO       | ENTERPRISE | ENTERPRISE | FORTYTWO | ENTERPRISE |  |
| 1  | PSRN + CURN       | _          | -              | _          | _          | -        | _          |  |
| 2  | PSRN + GWB        | 4          | 5              | 4          | 60         | 62       | 65         |  |
| 3  | PSRN + CLK        | < 0.01     | < 0.01         | < 0.01     | 0.2        | 1.2      | 0.3        |  |
| 4  | PSRN + EPH        | < 0.01     | $\sim 10^{-4}$ | < 0.01     | 0.2        | 0.2      | 1.3        |  |
| 5  | PSRN + CURN + CLK | 2          | 1              | 2.7        | 0.8        | 2        | 1.6        |  |
| 6  | PSRN + CURN + EPH | 1          | 0.1            | 1          | 1          | 1        | 1.6        |  |
| 7  | PSRN + GWB + CURN | 3          | 3              | 4          | 27         | 13       | 25         |  |
| 8  | PSRN + GWB + CLK  | 5          | 12             | 7          | 28         | 35       | 57         |  |
| 9  | PSRN + GWB + EPH  | 3          | 3              | 3.6        | 33         | 29       | 43         |  |

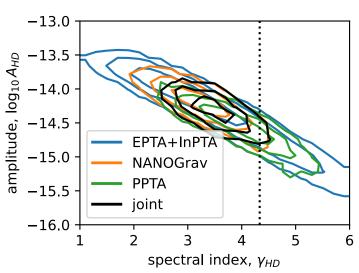
"PSRN + GWB" is most favored with 0.05% ( $\sim 3\sigma$ ) significance



#### comparison: power spectrum

IPTA collaboration 2024: comparison of EPTA+InPTA, NANOGrav & PPTA, which are roughly consistent.



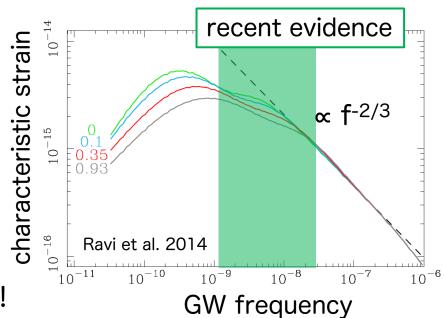


4. Astrophysical Implication

### GW background spectrum

Currently, not so precise, but...

- power law index may be deviated from the nominal 13/3?
- deviation from power law?






### GW background spectrum

frequency range 1x10<sup>-9</sup> Hz ~ 3x10<sup>-8</sup> Hz

$$f_{\text{GW}} = 4 \times 10^{-9} \text{ Hz} \left(\frac{a}{30 \text{ mpc}}\right)^{-\frac{3}{2}} \left(\frac{m}{10^9 M_{\odot}}\right)^{\frac{1}{2}}$$

- $a = 10 \sim 100 \text{mpc} (10^9 \text{ M}_{\text{sun}})$
- energy extraction other than GW emission
- not necessarily 13/3
- not necessarily power law
- · deviation is useful information!



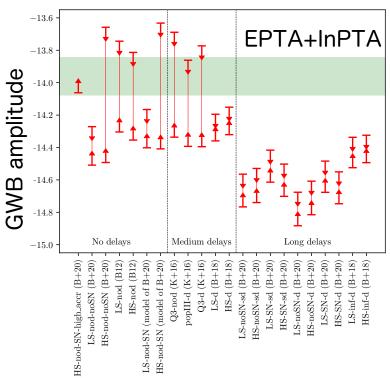
### GW background from SMBH binaries

#### **GWB**

population of SMBH binaries

- normalization & shape of spectrum
- galaxy merger history
- evolution from galaxy merger to binary formation
  - → time lag between SMBHB formation & galaxy merger

higher harmonics distribution

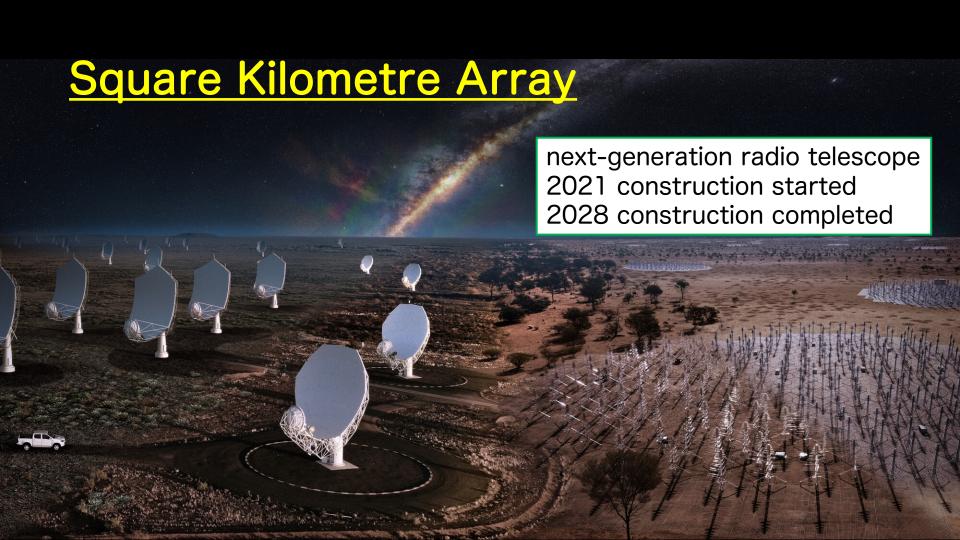

- · shape of spectrum
- · initial binary eccentricity

### comparison with SMBH models

focus on GWB amplitude

the measured GWB amplitude is close to the maximum allowed by galaxy merger history

- rapid SMBH formation
- efficient energy extraction




Model (delays increasing left to right)

## 5. Future Prospects

### to improve

- understand systematics better
  - monopole in inter-pulsar correlation?
  - pulse jitter: pulsar intrinsic fluctuations
  - RFI, solar system ephemeris
- · longer time baseline
  - just continue observations
- more pulsars
  - combine different PTAs
  - more sensitive telescope



## SKA-LOW THE SKA'S LOW-FREQUENCY TELESCOPE



FREQUENCY RANGE: 50 MHz—





# SKA-MID THE SKA'S MID-FREQUENCY TELESCOPE



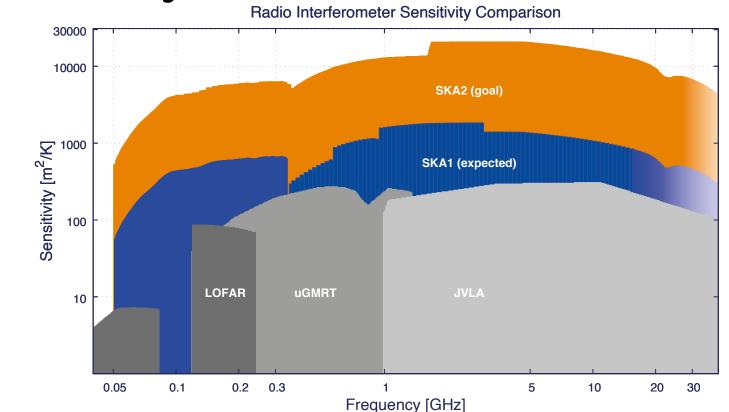
LOCATION: SOUTH AFRICA

350 MHz-15.4 GHz

WITH A GOAL OF 24 GHz



197 DISHES


(INCLUDING 64 MEERKAT DISHES)



MAXIMUM BASELINE:

150km

sensitivity



Survey Speed  $[m^4/K^2 \deg^2 PWV=5mm]$ 

### **SKA Sciences**

- Pulsars
- Cosmic Dawn/Epoch of Reionization
- HI & Continuum Survey
- Galaxy Evolution & Cosmology
- Cosmic Magnetism
- Star & Planet Formation
- Exoplanet & SETI

Science Book 1,000 pages × 2



### **SKA Japan**

#### SKA Japan

- · since 2008
- · 250 members
- · Chair : N. Sugiyama (Nagoya)
- · V. Chair: K. Takahashi (Kumamoto)

#### **Activity**

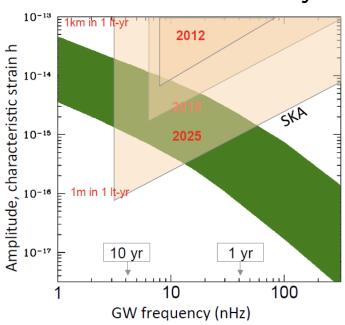
- · SWG, EWG
- workshop, webinar
- · precursor : MWA, ASKAP



### **SKA PTA**

#### SKA1 survey

- 9,000 normal pulsars
- 1,400 msec pulsars


#### SKA2 survey

- · 30,000 normal pulsars
- · 3,000 msec pulsars

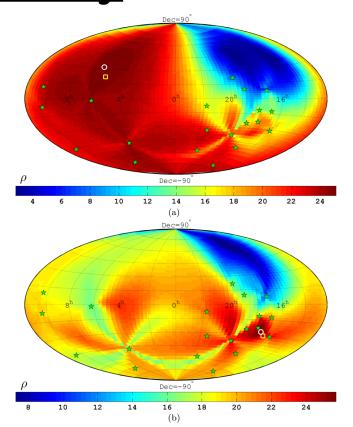
x10!

SKA-PTA much more msec pulsars & much higher sensitivity

#### SKA1-PTA sensitivity



### from detection to astronomy


°GW source (□)³ most likelihood (○) pulsar (☆)

#### Zhu+ 2015

- PPTA simulation
- angular resolution of GW source
  - $\rightarrow$  > O(10) deg<sup>2</sup>
  - → GW source cannot be identified

#### Kato & KT (2023)

- precise pulsar distance from VLBI (< GW wavelength)</li>
- GW angular resolution improves by a few orders



#### Nano-Hz GW astronomy



D = 85 Mpc  $M_1 = 3.2 \times 10^9 \text{ M}_{sun}$   $M_2 = 5.1 \times 10^7 \text{ M}_{sun}$  a = 0.35 pc, e = 0.14



 $D = 156 \text{ Mpc} \\ M_1 = 9.2 \times 10^9 \text{ M}_{sun} \\ M_2 = 7.5 \times 10^9 \text{ M}_{sun} \\ a = 1.3 \text{ pc, } e = 0.25$ 



 $D = 245 \text{ Mpc} \\ M_1 = 4.3 \times 10^9 \text{ M}_{\text{sun}} \\ M_2 = 5.9 \times 10^8 \text{ M}_{\text{sun}} \\ a = 0.12 \text{ pc, } e = 0.02$ 

#### future prospects

2023 Evidence of GWB from 4 PTAs

2024 IPTA comparison

2025 IPTA combination : ongoing

MeerKAT, FAST join

**GWB** detection

single source

2029 SKA1

GWB power spectrum

→ SMBH evolution model

precise GWB power spectrum

 $\rightarrow$  other sources

203? SKA2

**GWB** anisotropy

SMBH binary catalog

#### <u>summary</u>

- •pulsar timing array
  - direct detection of nano-Hz GWs with msec pulsars
- evidence for GW background
  - · EPTA+InPTA, NANOGrav, PPTA, CPTA
  - statistical significance of HD correlation :  $2\sim4\,\sigma$
  - consistent with GW background from SMBH binaries
  - cannot reject other sources due to low S/N and limited range of power spectrum measurement
- future prospects
  - · IPTA: data combination
  - · SKA1, SKA2
  - precise measurement, single sources, astronomy