

立教大学 B4 柳川隼人

卒研テーマ:MIPピーク位置のバイアス依存性

研究背景

- 過去にテストビーム実験 が行われ、第三回ではバ イアス電圧50V。
- 一方Run24で行われたpp衝
 突のバイアス電圧は100V
- これらの実験では、入射 ビームの粒子やエネルギー は異なるものの、いずれも ほぼMIPと考えられる。
- しかし、実際の解析結果に は約3割の差が見られた。

検証に用いたデータ

- Run24のAu+Au Beam でエネルギーの 損失のバイアス依存性を見る。
- 対象のデータはバイアス電圧が、 50V,75V,100Vのデータ2セットを用いる。

Date/Time 束	Run# \Xi	Run Type 👳	Mag – Link –	Comments
2024/10/16 1:11	54679	beam 🔹	On 👻	HV scan HV=50V
2024/10/16 1:41	54681	beam 💌	On 💌	HV scan HV=75V
2024/10/16 1:54	54683	beam 👻	On 👻	HV scan junk Run
2024/10/16 2:05	54685	beam 🔹	On 💌	HV scan HV=100V
2024/10/16 2:19	54686	beam 💌	On 💌	HV scan HV=50V
2024/10/16 2:30	54687	beam 💌	On 💌	HV scan HV=75V
2024/10/16 2:46	54688	beam 💌	On 👻	HV scan HV=100V

通過粒子のエネルギー損失の測定

• INTTは、3ビットのADCによってエネルギーを測定している。

- ノイズが入っていることを考慮してFittingする。
- MIPのエネルギー損失量を決め、
 バイアス電圧ごとに比較する。

- •ノイズを想定した指数関数の分布と、ランダウの分布を用意して足し上げる。
- 分布は以下に表記した関数に従う乱数をヒストグラムにfillした。
- Binの幅は右のADCの表をもとに設定した。

ADC	DAC		
0	15~30		
1	30~60		
2	60~90		
3	90~120		
4	120~150		
5	150~180		
6	180~210		
7	210~		

MIPのバイアス電圧依存検証の下準備(練習)

- 右のグラフについて、指数関数とランダウを同時にfittingし、元の関数のパラメータを得ることが目標。
- 実際のデータを扱う時は、衝突点とのクラスターの角度を考慮する。

MIPのバイアス電圧依存検証の下準備(練習)

実際のデータについて

スライド3に記述したRunデータに対し、以下の処理を行った。
 (Fun4Allを使う部分は糠塚さんにやってもらいました。)

- -Run 50377のホットチャンネルの解析結果を用いて、ホットチャンネルを解析から排除
- -ヒットのクラスタリング
- -10kイベントを解析
- -vertex再構成はcoresoftwareのInttXYVertexFinder, InttZVertexFinder を使用
- -(注)ローカルモードで取得したランなのでMBDを使ったvertex再構成はできない
- ・ヒストグラムは0から900までを30等分したビンを用意し、Fillした。

ADC7のカット

- FPHXチップの仕様のため、DAC値が210以上のヒットは すべて210としてカウントされる。
- そのため、φ方向のクラスターサイズが1のクラスターの うち、2/3をカットした。
 →ADCのオーバーフロービンの補正

(波多,2024,糠塚,2024)を参考にした。

• DAC420でも同じ処理を行った。(8/9カット)

バイアス電圧ごとのMIPピークを比較

- 衝突点との角度の条件を絞らずにMIPピークのバイアス電圧依存を確認した。(50イベント)
- 誤差は統計誤差のみ

角度 θ ごとの ADC 分布

- 大まかに角度ごとのadc分布を作成した。
- 衝突点との角度が大きいほど、MIPピークも大きく なることは整合性が取れている。
- 角度によってMIPピークが異なることを考慮して、
 解析を進めなければならない。

角度日によるカット

- 角度θが90°に近いヒットを見る。
- 75°~105°のデータをすべて90°のデータと仮定 してMIPピークを見るため、3%ほど誤差が増える。

角	正弦	余弦	正接	æ	正弦	余弦	正接
	(sin)	(cos)	(tan)	19	(sin)	(\cos)	(tan)
30	0.5000	0.8660	0.5774	75	0.9659	0.2588	3.7321
31	0.5150	0.8572	0.6009	76	0.9703	0.2419	4.0108
32	0.5299	0.8480	0.6249	77	0.9744	0.2250	4.3315
- 33	0.5446	0.8387	0.6494	78	0.9781	0.2079	4.7046
34	0.5592	0.8290	0.6745	79	0.9816	0.1908	5.1446
35	0.5736	0.8192	0.7002	80	0.9848	0.1736	5.6713
36	0.5878	0.8090	0.7265	81	0.9877	0.1564	6.3138
37	0.6018	0.7986	0.7536	82	0.9903	0.1392	7.1154
38	0.6157	0.7880	0.7813	83	0.9925	0.1219	8.1443
39	0.6293	0.7771	0.8098	84	0.9945	0.1045	9.5144
40	0.6428	0.7660	0.8391	85	0.9962	0.0872	11.4301
41	0.6561	0.7547	0.8693	86	0.9976	0.0698	14.3007
42	0.6691	0.7431	0.9004	87	0.9986	0.0523	19.0811
43	0.6820	0.7314	0.9325	88	0.9994	0.0349	28.6363
44	0.6947	0.7193	0.9657	89	0.9998	0.0175	57.2900
45	0.7071	0.7071	1.0000	90	1.0000	0.0000	

三角関数表

https://www.math.s.chibau.ac.jp/~yasuda/sysKOU/cit-H20/trig-table.pdf より

7

バイアス電圧ごとのMIPピークを比較

• 75°~105°のデータから、MIPピークのバイアス電圧依存を確認した。(10Kイベント)

 ・ 誤差は統計誤差と系統誤差(3%)の二乗和で評価

バイアス電圧ごとのMIPピークを比較

• 同様に85°~95°のデータから、MIPピークのバイアス電圧依存を確認した。(10Kイベント)

 ・ 誤差は統計誤差と系統誤差(0.4%)の二乗和で評価

- MIPピークのZvertex依存の確認(各バイアス電圧)
- MIPピークのInner, Outer Layerのエントリーの差への依存(各バイアス電圧)
- ADC分布のNoizeの割合を調べる。
- ADC210-240にMIPピークをもつθの範囲を求める。
- (糠塚さん担当)ランごとにホットチャンネル解析を行い、ホットチャンネル除去を 最適化する。
- (糠塚さん担当) Vertex再構成のやり方を確認し、性能評価も行う。
 (進行中)

Back up