COMPASS II

Y. Miyachi, Yamagata UniversitySlides are from N. Doshita's talk@ Pacific Spin 2011

Summary and time line

- The COMPASS facility provides many combinations of the beam and the target.
- •New programs are approved by CERN in 2010.
 - Polarized Drell-Yan for TMD PDFs.
 - GPDs for transversal imaging
 - Primakoff for pion and kaon polarizability

Schedule of the programs in the proposal 2012 : Primakoff 2013 : SPS Shutdown 2014 – 2016 : GPDs + DY

Beam :

Polarized lepton beam : μ^+ , μ^- 50-280 GeV/c (80% polarization @ 160GeV) Hadrom beam : π^+ , π^- , K⁺, K⁻, P

Target :

Polarized proton and deuteron target Liquid hydrogen target Thin nucleus target

Many combinations of the beam & the target

New programs (COMPASS II)

approved by CERN Research Board in 2010

- Polarized Drell-Yan measurement TMD PDFs π⁻ beam with polarized proton target
- GPD measurement $\mu^+ \mu^-$ beam with liquid hydrogen target Transverse imaging
- Pion and Kaon polarizability $\pi (\mu^{\circ}) beam with nucleus target$ Chiral perturbation theory

With a upgraded COMPASS spectrometer

TMD parton distributions

- 8 intrinsic transverse momentum dependent PDFs at LO
- Asymmetries with different angular dependences on hadron and spin azimuthal angles, Φ_h and Φ_s

Drell-Yan process and its angular distribution $H_a(P_a)$

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi(\lambda+3)} \left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{v}{2}\sin^2\theta\cos2\phi \right]$$

•The collinearity hypothesis would imply $\lambda=1$ and $\mu=v=0$.

•NA10 (CERN) and E615 (Fermlab)

modulation of cos2¢ up to 30%

- -Intrinsic transverse momentum \boldsymbol{k}_{T} of quarks inside hadron
 - 2 Boer-Mulders PDFs interaction Between target and beam quarks

Single polarized Drell-Yan cross section

The LO expansion of the single polarized Drell-Yan cross section is

$$\frac{d\sigma}{d^{4}qd\Omega} = \frac{\alpha^{2}}{Fq^{2}} \hat{\sigma}_{U} \left\{ \left(1 + D_{[\sin^{2}\theta]} \underline{A}_{U}^{\cos 2\phi} \cos 2\phi \right) + A_{U}^{\cos 2\phi} \cos 2\phi \right\} + A_{U}^{\cos 2\phi} \cos 2\phi \right\} + A_{U}^{\sin \phi_{S}} \sin \phi_{S} + D_{[\sin^{2}\theta]} \left(\underline{A}_{T}^{\sin \phi_{S}} \sin \phi_{S} \sin \phi_{S} + D_{[\sin^{2}\theta]} \left(\underline{A}_{T}^{\sin (2\phi + \phi_{S})} \sin (2\phi + \phi_{S}) + \underline{A}_{T}^{\sin (2\phi - \phi_{S})} \sin (2\phi - \phi_{S}) \right) \right\} + A_{T}^{\sin (2\phi - \phi_{S})} \sin (2\phi - \phi_{S}) \right\}$$

- A : azimuthal asymmetries :: convolution of 2 PDFs
- D : depolarization factor
- S : target spin component

$$\hat{\sigma}_{U}$$
: part of the cross-section surviving integration over ϕ and ϕ_{s}

$$F: 4\sqrt{\left(P_a \cdot P_b\right)^2 - M_a^2 M_b^2}$$

Universality of TMD PDFs

Because Sivers and Boer-Mulders PDFs are "Time-reversal odd", they are expected to change the sign when measured from SIDIS or from DY:

$$f_{1T}^{\perp}|_{DY} = -f_{1T}^{\perp}|_{SIDIS} \qquad h_1^{\perp}|_{DY} = -h_1^{\perp}|_{SIDIS}$$

We have the opportunity to test this sign change using the same Spectrometer and the transversely polarized target at COMPASS.

Theory predictions

DY 4.0 – 9.0 GeV/c2 in the COMPASS Setup

PLB612(2005)233, PRD73(2006)014021, PRD79(2009)054010, PRD(2006)114002, PRD78(2008)074010, PRD77(2008)054011, PPN41(2010)64

Signal and background

2 backgrounds sources

- •Physics background D, \overline{D} and J/ψ decays to $\mu^+\mu X$
- •Combinatorial background π and *K* decaying to μv

Better region to study Drell-Yan is $4 < M \text{ GeV/c}^2$.

Event rates and statistical accuracy

Luminosity $1.2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ (Beam intensity : 6 x 10⁷ pions/s)

 \Rightarrow 800 DY events per day with 4 < M < 9 GeV/c²

Assuming 2 years of data taking (280 days)

 \rightarrow 230k events in 4 < M < 9 GeV/c² region

This will translate into the statistical errors of the asymmetries.

Asymmetry	Dimuon mass (GeV/ c^2)		
	$2 < M_{\mu\mu} < 2.5$	J/ ψ region	$4 < M_{\mu\mu} < 9$
$\delta A_U^{\cos 2\phi}$	0.0020	0.0013	0.0045
$\delta A_T^{\sin \phi_S}$	0.0062	0.0040	0.0142
$\delta A_T^{\sin(2\phi+\phi_S)}$	0.0123	0.008	0.0285
$\delta A_T^{\sin(2\phi-\phi_S)}$	0.0123	0.008	0.0285

Possibility to study the asymmetries in the several x_{F} bins.

Beam test in 2009

190 GeV π^- beam + CH₂(40cm+40cm) target 3 days data taking

- The 2 target cells and the absorber can be distinguished.
- The mass resolution is expected.
- The absorber reduced combinatorial background by a factor about 10 at M = 2 GeV. lune 21 2011 N. Doshita

COMPASS polarized solid target system

N. Doshita

Large acceptance COMPASS Magnet

Transverse polarization

 Frozen spin target at 0.6 T dipole magnet (after polarizing at 2.5 T solenoid)

Cooling power

- Many secondly particles
 nuclear interaction
- 2 mW heat input expected with 6 x 10⁷ pions/s
- 5 mW cooling power at 70mK

Target cell

- Target area: 130 cm long with < ±30 ppm
- 2 cells (55, 55 cm long)
 20 cm gap

10

Proton target materials

<u>Figure of Merit</u> $PT_{EM} =$

$$PT_{FoM} = f^2 \times P_T^2 \times \rho \times F_f$$

	H-butanol	NH ₃	⁷ LiH
P_T	0.90	0.90	0.56 (H) *
			0.38 (⁷ Li)
ρ	0.985	0.853	0.820
f	0.135	0.176	0.125 (H)
			0.125 (⁷ Li)
F_{f}	0.62	0.50	0.55
PT_{FoM}	1	1.2	0.7

f: dilution factor ρ : density F_f : packing factor

-Normalized by H-butanol -Magnetic field 2.5T - Relaxation time NH₃ 4000h at 60 mK and 0.6T - If ⁷LiH reach 90%, PT_{FoM} is 2.1.

* J. Ball, NIM. A 526 (2004) 7.

Hadron absorber

- Compatible with the PT system
 Reduction of radiation level
 Possible to access to the PT instrumentation
- Non-magnetic material

Al_2O_3 – ideal material, very good ratio X/ λ with 2.4 m long + stainless steel and W (1.2 m Long in the beam pipe)

	X ₀ [g/cm ²]	ρ [g/cm³]	$\lambda_{int}(\pi)$ [g/cm ²]
Concrete	26,60	2,30	128,6
Alumina	27,94	3,97	129,3
Stainless Steel	13,94	7,90	160,9
Carbon	42,7	2,27	117,8

Beam :

Polarized lepton beam : μ^+ , μ^- 50-280 GeV/c (80% polarization @ 160GeV) Hadrom beam : π^+ , π^- , K⁺, K⁻, P

Target :

Polarized proton and deuteron target Liquid hydrogen target Thin nucleus target

Many combinations of the beam & the target

New programs (COMPASS II)

approved by CERN Research Board in 2010

- Polarized Drell-Yan measurement TMD PDF π^{-} beam with polarized proton target
- GPD measurement $\mu^+ \mu^-$ beam with liquid hydrogen target Transverse imaging
- Pion and Kaon polarizability Chiral perturbation theory π^{-} , K^{-} (μ^{-}) beam with nucleus target

With a upgraded COMPASS spectrometer

From inclusive reaction to exclusive reactions

Why COMPASS II for GPDs ?

•Explore uncovered region between ZEUS/H1 and HERMES+Jlab

•μ⁺ and μ⁻ beam
•Momentum 100 – 190
GeV
•80% polarization
 (at 160 GeV)
•Opposite polarization
 between μ⁺ and μ⁻

Deeply Virtual Compton Scattering

GPDs can be accessed from the hard exclusive DVCS processes.

Polarized muon beam with unpolarized target : GPD H

$$d\sigma_{(up \to up\gamma)} = d\sigma^{BH} + d\sigma_{unpol}^{DVCS} + P_{\mu}d\sigma_{pol}^{DVCS} \qquad d$$
$$+ e_{\mu}a^{BH}\operatorname{Re}(I) + e_{\mu}P_{\mu}\operatorname{Im}(I) \qquad I$$

 $d\sigma^{\scriptscriptstyle BH}$: well known

: interference term

Bethe-Heitler and DVCS cross sections at 160 GeV

MC: COMPASS setup with Ecal1+2 June 21 2011 N. Doshita

Beam test in 2008 and 2009

With 40cm long LH2 target and 1m long recoil proton detector

Observation of BH and DVCS events

2008 : observation of exclusive single photon production 2009 : observation of BH and DVCS events

Beam Charge and Spin Difference

The BH process is independent of beam charge and polarization.

$$D_{CS,U} = d\sigma^{+\leftarrow} - d\sigma^{-\to} = 2\left(P_{\mu}d\sigma_{pol}^{DVCS} + e_{\mu}\underline{\operatorname{Re}(I)}\right)$$

Phase II

One can access GPD *E* with a measurement of DVCS using transversely polarized proton target

 $c_0^{I} + c_1^{I} \cos \phi + c_2^{I} \cos 2\phi + c_3^{I} \cos 3\phi$

June 21 2011

Beam charge & spin difference $D_{CS,U}$

- Control detector acceptance and beam flux with high precision
- Error band assumes a 3 % systematic uncertainty between μ^+ and μ^-
- Use inclusive events and BH for check

COMPASS II setup for DVCS

(for higher acceptance in large X_B)

New target and RPD (CAMERA)

- LH2: 2.5m long and 4cm diameter minimum thickness of cryostat -> 1 mm thickness carbon fiber tube
- RPD : 2.8/3.6 m long scintillator slabs, 2 layers < 300 ps time resolution for TOF

New electromagnetic calorimeter : ECAL0

New programs (COMPASS II)

approved by CERN Research Board in 2010

- Polarized Drell-Yan measurement TMD PDFs
 π⁻ beam with polarized proton target
- GPD measurement Transverse imaging $\mu^+ \mu^-$ beam with liquid hydrogen target
- Pion and Kaon polarizability Chiral perturbation theory π^{-} , K^{-} (μ^{-}) beam with nucleus target

With a upgraded COMPASS spectrometer

Summary and time line

- The COMPASS facility provides many combinations of the beam and the target.
- •New programs are approved by CERN in 2010.
 - Polarized Drell-Yan for TMD PDFs.
 - GPDs for transversal imaging
 - Primakoff for pion and kaon polarizability

Schedule of the programs in the proposal 2012 : Primakoff 2013 : SPS Shutdown 2014 – 2016 : GPDs + DY

New programs (COMPASS II)

approved by CERN Research Board in 2010

- Polarized Drell-Yan measurement TMD PDF π^{-} beam with polarized proton target
- Pion and Kaon polarizability Chiral perturbation theory

 π^{-} , K^{-} (μ^{-}) beam with nucleus target

With a upgraded COMPASS spectrometer

Pion and polarisability measurement

The Primakoff reaction (embedding the pion Compton scattering)

$$\pi^- Z \rightarrow \pi^- Z \gamma$$

The differential cross section

$$\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} = \frac{\alpha^2 \left(s^2 z_+^2 + m_{\pi}^4 z_-^2\right)}{s \left(s z_+ + m_{\pi}^2 z_-\right)^2} - \frac{\alpha m_{\pi}^3 \left(s - m_{\pi}^2\right)^2}{4s^2 \left(s z_+ + m_{\pi}^2 z_-\right)} \cdot P$$

P : the pion polarizability term

$$z_{\pm} = 1 \pm \cos \theta_{cm}$$

 θ_{cm} : the scattering angle in CM system

 \boldsymbol{s} : the Mandelstam variables

Pion and polarisability measurement

The pion polarizability term *P* for the differential cross section

$$P = z_{-}^{2}(\alpha_{\pi} - \beta_{\pi}) + \frac{s^{2}}{m_{\pi}^{4}} z_{+}^{2}(\alpha_{\pi} + \beta_{\pi}) - \frac{\left(s - m_{\pi}^{2}\right)^{2}}{24s} z_{-}^{3}(\alpha_{2} - \beta_{2})$$

Leading order s-dependent

 $\alpha_{\pi}, \beta_{\pi}$: the pion electric and magnetic dipole polarizabilities $\alpha_2 - \beta_2$: the quadrupole polarizability difference

Kaon polarizability will be obtained by Primakoff scattering with charged Kaons at COMPASS.

Theoretical predictions on pion

Model	Parameter	$[10^{-4} fm^3]$
$\chi \mathrm{PT}$	$lpha_{\pi}-eta_{\pi}$	5.7 ± 1.0
	$lpha_{\pi}+eta_{\pi}$	0.16
NJL	$lpha_{\pi}-eta_{\pi}$	9.8
QCM	$lpha_{\pi}-eta_{\pi}$	7.05
	$lpha_{\pi}+eta_{\pi}$	0.23
QCD sum rules	$lpha_{\pi}-eta_{\pi}$	11.2 ± 1.0
Dispersion sum rules	$lpha_{\pi}-eta_{\pi}$	13.60 ± 2.15
	$\alpha_{\pi} + \beta_{\pi}$	0.166 ± 0.024

- Different theoretical models → Different values
- Experimental measurement → Stringent test of
- Different values Stringent test of theoretical approaches

Polarizability effect

Self-test with muon beam and measurement accuracy

- Pion and muon beams available Same momentum and setup configuration
- •Muon is the point-like particle. Primakoff cross section should correspond to theoretically predicted one.
- •The study of systematic effects

days

30

Expected total errors

beam.

days

90

Days

120

Experiments on nucleon spin research at CERN

	1980	1990	2000	2010
EMC				
SMC				
COMPASS				
COMPASS II				

 COMPASS provides results of g1(x), ΔG/G, Flavor separation (Δs(x)), f[⊥]_{1T}(x), h₁(x),.....

See the talks of Takahiro Iwata and Celso Franco

• COMPASS II was approved by CERN Research Board in 2010.