核子構造WGレポート

第5回WGミーティング@理研和光 2011年7月11日(月) 後藤雄二(理研)

目次

- イントロダクション
 - 何を知りたいのか
- 現在の目標、研究の対象
 - 現在何を研究しているか
- 将来の目標
 - 将来何を研究したいか
- 実験計画
- まとめ

(1)何を知りたいのか

- (1.1)何を目標、対象としているのか、そしてその 意義
 - 核子(およびハドロン、原子核)の構造は、要素還元論的 にはある程度理解されている
 - しかし実際はより複雑な構造を持っており、その理解なくしては説明できない多くの現象を知っている
 - QGP, 横偏極現象、small-x/large-xでの振舞い
 - 高エネルギー素粒子実験に対するinputとしても必要
 - どこまで第1原理であるQCDに基づき理解できるか
 - より高い予言能力を持ちたい
 - パートン描像を超えたハドロン構造
 - カイラル対称性、閉じ込めのメカニズム

(1)何を知りたいのか

- (1.2)歴史
 - 1970年代、1980年代
 - 基礎が築かれた
 - 1990年代、2000年代
 - プロダクション
 - 2010年代、2020年代
 - 新たなパラダイムを築けるか?
 - 2030年以降
 - 新たなパラダイムに基づいた発展、統合??

(2)現在何を研究しているか

- 築かれた基礎に対するプロダクションの時代?
- 新たなパラダイムの模索?

(2)現在何を研究しているか

- (2.1)方法
 - 理論的枠組み
 - 実験的枠組み
- (2.2)PDFの精密化とスピンパズル
 - inclusive DISとスピンパズル
 - semi-inclusive DIS
 - pp衝突
 - W生成
 - QCDグローバル解析
 - 反クォーク分布、フレーバー依存性の測定
 - 小さいx領域
 - 大きいx領域

(2)現在何を研究しているか

- (2.3)横偏極現象の解明
 - 理論的枠組み
 - pp衝突、Drell-Yan過程
 - semi-inclusive DIS, DVCS
 - GPD、TMD
- (2.4)破砕関数、偏極破砕関数の測定
- (2.5)形状因子の測定
- (2.6)QCD非摂動論
 - 格子QCD
 - 有効理論、有効模型
 - AdS/CFTからのアプローチ

(3)将来何を研究したいか

- 新たなパラダイムを築けるか?
 - 核子(およびハドロン、原子核)の精密な3次元構造の記述
 - それに基づくQCDの精密検証
- 今後5年から10年の目標(2020年頃まで)
 - TMD分布関数の測定
- 20年以内の目標(2030年頃まで)
 - GPD関数の測定

TMD分布関数の測定

- Sivers分布関数の偏極SIDIS過程と偏極Drell-Yan 過程による測定
 - 符号の逆転、理論的基盤の確立
- 模型の発展
 - Twist-3との比較、符号の不一致
 - Sivers関数のk_T分布、x分布のノード
 - *k*₇分布のflavor依存、*x*依存
- Transversity分布関数、Boer-Mulders分布関数の 測定
- 理論的基盤の確立を目指す
- 核子中の軌道角運動量との関連を探る

GPD関数の測定

- 多次元データを基に模型を築く
 - 核子中の多体相関を記述していなければならない
 - 形状因子、PDF、small-x/large-xでの振舞い、(他の有効模型、Regge理論...)との整合
- DVCS過程とHEMP過程
 - HERA (H1/ZEUS/HERMES)とJlab (CLAS/Hall-A)での 結果
 - COMPASS, Jlab-12GeV, EICでの計画
- Jiの和則から軌道角運動量の導出
 - TMD分布関数との整合

(3)将来何を研究したいか

- 新たなパラダイムに基づいた発展、統合
 - 核子構造の3次元的記述の統合は可能か?
 - 高エネルギーハドロン、原子核の物理
 - 4分野(ハイパー核、高エネルギー原子核、新ハドロン、核子構造)を超えた計画?
 - 宇宙線、天体など(宇宙論、物性…)の他分野を含む発展?
- 20年以降の目標(2030年以降)を考える!

(4)実験計画

- (4. 1) CERN/COMPASS
- (4. 2)RHIC
- (4.3) Drell-Yan実験
- (4. 4)Belle
- (4. 5) Jlab-12 GeV
- (4. 6) EIC/ENC/LHeC
- (4. 7) J-PARC
- (4.8) neutrino散乱、neutrino factory

EIC

(4)実験計画

- 必要人数?
- 必要予算?
- (現在の人数、予算)
 - COMPASS:約10名(山形大、宮崎大)、科研費その他
 - RHIC(スピン物理):約30名(理研、京大、東工大、立教大、KEK)、理研から約2億円/年
 - SeaQuest:約10名(東工大、理研、山形大、KEK)、科研費、大学運営費、その他、約3000万円/年
 - Belle(破砕関数): 数名(理研)
 - オーバーラップを考えると計40名程度?

2021

2026

スケジュール

COMPASS

RHIC Drell-Yan

eRHIC

SeaQuest

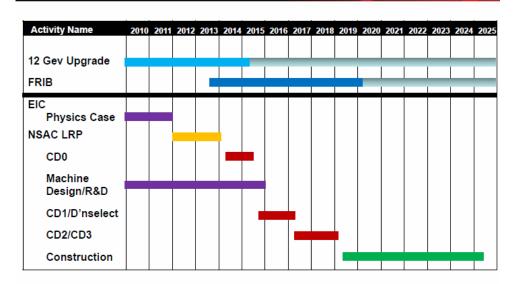
(偏極標的?)

BELLE

JLab

12GeV

ELIC


J-PARC (high-momentum)

(非偏極、偏極標的)

(偏極ビーム?)

EIC Realization Imagined

EIC

21

Ø ₹A

(5)まとめ