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What are universal features all CFTs share?

In 2d, there is a universal formula for entropy called 
Cardy’s formula

Derived from modular invariance of the torus partition 
function

Z(τ, τ̄) = Z(γτ, γτ̄), γ ∈ SL(2,ℤ)

(Cardy, 1986)



Z(β) = Z(β−1)

lim
β→0

Z(β−1) ∼ e
2πc
12β



Z(β) = Z(β−1)

lim
β→0

Z(β−1) ∼ e
2πc
12β

Take inverse Laplace transform to read off high energy 
density of states



Z(β) = Z(β−1)

lim
β→0

Z(β−1) ∼ e
2πc
12β

Take inverse Laplace transform to read off high energy 
density of states

Valid for all 2d CFTs but for holographic theories it has a 
beautiful interpretation as black hole entropy 

(Strominger, 1997)
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Looking at more complicated modular transforms leads to 
spin-weighted formulas for density of states

Tr((−1)Je−β(H+iΩJ)) ∼ e
4π2c

4 × 12β(1 + Ω2)

And more general formulas for a phase with rational angle

Do similar such formulas exist in d>2? 

Hints: black hole entropy still universal. But 
modular invariance not available on Sd−1 × S1
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Thermal effective field theory
Consider dimensionally reducing a CFT on a very long, 
thin cylinder. Generically this is a gapped QFT in (d-1) 
dimensions

The gapped theory is kind of a higher dimensional 
“modular dual” 
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Idea: couple the original CFT to a background metric 
and write the gapped theory as a function of the 
background fields

Let’s first write the metric in KK form

Partition function of CFT on this geometry is the 
captured by the gapped (d-1)-dim theory coupled to 
(d-1)-dim background fields
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What symmetries constrain ?Sth

(d-1)-dim coordinate invariance and gauge invariance 
of KK field (coming from d-dim coordinate invariance) 

Weyl invariance of original theory

forces  to be a function of the gauge field and of 
Weyl-invariant metric

Sth

1.

2.
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We will parametrize universal CFT data (density of states) 
in terms of  f, c1, c2, …

Aside: Why is 2d special? One answer modular invariance. 
In our language: only local gauge invariant term is f! So in 
2d, perturbative terms truncate

Moreover f is the Casimir energy of the CFT on a circle, so 
in 2d f is related to the central charge c
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Density of states
We want to know spin-dependence so put the theory on 

 and twist the angles on by  S1
β × Sd−1 Sd−1 β ⃗Ω

Now we just need to compute  in this geometry. Put 
manifold in KK form, plug in  into thermal effective action

S[ ̂g, A]
̂g, A
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When the dust settles… 

cosmological constant term Einstein term Maxwell term

From this we can read off the partition function (at large T) and 
take an inverse Laplace transform to read off entropy as a 
function of Δ, J
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Taking an inverse Laplace transform gives us the density 
of states

In 2d, this of course reproduces the usual Cardy formula
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To evaluate the inverse Laplace transform, we did a saddle-
point approximation. We need the saddle to be at large T!

d=2: 

d>2: 

(Aside: d>2 formula is for one fugacity turned on; for more fugacities exponent changes)

For example, in 3d we get:
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Holographic theories

Leading order in  we have:GN

From black hole thermodynamics in AdS: 

(Carter, 1973)

(Gibbons, Perry, Pope, 2004)
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Kerr black holes in AdS for D>3 suffer from instability. They 
are only stable if (with one fugacity turned on): 

E − J/ℓ > # Eℓ
D − 3

2 G−1/2
N

(Cardoso, Dias, 2004)

Similar condition we found for the CFT entropy to be valid!

d>2: 

Similar analogy in AdS3/CFT2
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In 2d CFT, there is a famous “extension” of Cardy’s formula for 
holographic theories, using modular invariance

Cardy valid when:

If light states are “sparse” then is enough

(Hartman, Keller, Stoica, 2014)

Although we do not have modular invariance in higher d, 
reasonable to conjecture a similar extension of our formula 

Our formula valid when: 

If light states are “sparse” then is enough??
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Large chemical potential
So far we’ve computed  =  for 
small  and an O(1) chemical potential 

Z(β, Ω) Tr(e−β(H+iΩJ))
β Ω

What if  is large, i.e. ? (Note the  
periodicity.)

Ω βΩ = O(1) 2π

For example this would include Tr((−1)Je−β(H+iΩJ))
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In 2d, we can compute  by using a more 
complicated  modular transformation 

Tr((−1)Je−β(H+iΩJ))
SL(2,ℤ)

(−1 0
2 −1)

to map this partition function to low temperature

This then gives Tr((−1)Je−β(H+iΩJ)) ∼ e
4π2c

4 × 12β(1 + Ω2)

down by a factor of 4
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Sd−1

S1β(−1)J

Sd−1

S1β

Tr((−1)Je−β(H+iΩJ))

Sd−1/ℤ2

2βUse thermal EFT, assuming 2β ≪ 1
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log Tr ((−1)Je−β(H+iΩJ)) =
vol Sd−1fTd−1

2d(1 + Ω2)
+ … + SD

Down by factor of  — a factor of  from  and 
a factor of 2 from  volume

2d 2d−1 Td−1

Sd−1/ℤ2

Can also be a local defect action living at fixed locus of 
. Will be a perturbative correction in 1/Tℤ2

In general if we add a phase of , get factor of e2πi(p/q)J qd
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Defects
In addition to effective temperature changing, there can 
also be a new defect action on the fixed point

Sd−1/ℤ2

2β

For example, if d=3,  has fixed points on the 
north and south poles

S3−1/ℤ2
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In general there will be a codimension 2 surface where 
these defects can live. This will contribute to the free 
energy as Td−3

log Tr ((−1)Je−β(H+iΩJ)) =
vol Sd−1fTd−1

2d(1 + Ω2)
+ … + SD

Leading term still correct but  introduces new Wilson 
coefficients that start at 

SD
Td−3

log Tr(e−βHR) ∼
1
q

log Tr(e−qβH) + SD

If ,Rq = 1
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This is exactly like what happens in a 2d CFT from modular 
invariance — depending on p+q, we get either NS or 
Ramond sector



This is exactly like what happens in a 2d CFT from modular 
invariance — depending on p+q, we get either NS or 
Ramond sector

Differences in Wilson coefficients are the higher d analog of 
Ramond ground state energy 



Summary
We described a technique called the thermal effective 
action to systematically study CFT data at large 
dimension

This encodes the spectrum of local CFT operators as a 
function of dimension and spin at large dimension

Also obtained large chemical potential formulas using 
similar techniques 


