Angular Fractals in Thermal CFT

Nathan Benjamin USC

Non-perturbative methods in QFT Kyushu IAS-iTHEMS March 10, 2025 Based on 2405.17562 Jaeha Lee, Sridip Pal, David Simmons-Duffin, Yixin Xu

(See also 2306.08031:

Jaeha Lee, Hirosi Ooguri, and David Simmons-Duffin)

What are universal features all CFTs share?

What are universal features all CFTs share?

In 2d, there is a universal formula for **entropy** called Cardy's formula

$$\rho^{d=2}(\Delta,j) \sim \exp\left[\sqrt{\frac{c}{3}}\pi\left(\sqrt{\Delta+j-\frac{c}{12}}+\sqrt{\Delta-j-\frac{c}{12}}\right)\right], \quad \Delta \gg c.$$

(Cardy, 1986)

What are universal features all CFTs share?

In 2d, there is a universal formula for **entropy** called Cardy's formula

$$\rho^{d=2}(\Delta,j)\sim \exp\left[\sqrt{\frac{c}{3}}\pi\left(\sqrt{\Delta+j-\frac{c}{12}}+\sqrt{\Delta-j-\frac{c}{12}}\right)\right],\quad \Delta\gg c.$$

(Cardy, 1986)

Derived from modular invariance of the torus partition function

$$Z(\tau, \bar{\tau}) = Z(\gamma \tau, \gamma \bar{\tau}), \quad \gamma \in SL(2, \mathbb{Z})$$

 $Z(\beta) = Z(\beta^{-1})$

 $\lim_{\beta \to 0} Z(\beta^{-1}) \sim e^{\frac{2\pi c}{12\beta}}$

$$Z(\beta) = Z(\beta^{-1})$$

$$\lim_{\beta \to 0} Z(\beta^{-1}) \sim e^{\frac{2\pi c}{12\beta}}$$

Take inverse Laplace transform to read off high energy density of states

 $Z(\beta) = Z(\beta^{-1})$

 $\lim_{\beta \to 0} Z(\beta^{-1}) \sim e^{\frac{2\pi c}{12\beta}}$

Take inverse Laplace transform to read off high energy density of states

Valid for **all** 2d CFTs but for holographic theories it has a beautiful interpretation as black hole entropy

(Strominger, 1997)

$$\mathsf{Tr}((-1)^{J}e^{-\beta(H+i\Omega J)}) \sim e^{\frac{4\pi^{2}c}{4\times 12\beta(1+\Omega^{2})}}$$

And more general formulas for a phase with rational angle

$$\mathsf{Tr}((-1)^{J}e^{-\beta(H+i\Omega J)}) \sim e^{\frac{4\pi^{2}c}{4\times 12\beta(1+\Omega^{2})}}$$

And more general formulas for a phase with rational angle

Do similar such formulas exist in d>2?

$$\mathsf{Tr}((-1)^{J}e^{-\beta(H+i\Omega J)}) \sim e^{\frac{4\pi^{2}c}{4\times 12\beta(1+\Omega^{2})}}$$

And more general formulas for a phase with rational angle

Do similar such formulas exist in d>2?

Hints: black hole entropy still universal. But modular invariance not available on $S^{d-1} \times S^1$

Thermal effective field theory

Consider dimensionally reducing a CFT on a very long, thin cylinder. Generically this is a **gapped** QFT in (d-1) dimensions

Thermal effective field theory

Consider dimensionally reducing a CFT on a very long, thin cylinder. Generically this is a **gapped** QFT in (d-1) dimensions

$$\langle \mathcal{O}(\vec{x}_1)\mathcal{O}(\vec{x}_2)\rangle_\beta \sim e^{-|\vec{x}_1-\vec{x}_2|/\xi}$$

 $\xi \propto 1/T$

Thermal effective field theory

Consider dimensionally reducing a CFT on a very long, thin cylinder. Generically this is a **gapped** QFT in (d-1) dimensions

$$\langle \mathcal{O}(\vec{x}_1)\mathcal{O}(\vec{x}_2)\rangle_\beta \sim e^{-|\vec{x}_1-\vec{x}_2|/\xi}$$

$\xi \propto 1/T$

The gapped theory is kind of a higher dimensional "modular dual" Idea: couple the original CFT to a background metric and write the gapped theory as a function of the background fields Idea: couple the original CFT to a background metric and write the gapped theory as a function of the background fields

Let's first write the metric in KK form

$$G_{\mu\nu}dx^{\mu}dx^{\nu} = g_{ij}(\vec{x})dx^{i}dx^{j} + e^{2\phi(\vec{x})}(d\tau + A_{i}(\vec{x}))^{2}$$

Idea: couple the original CFT to a background metric and write the gapped theory as a function of the background fields

Let's first write the metric in KK form

$$G_{\mu\nu}dx^{\mu}dx^{\nu} = g_{ij}(\vec{x})dx^{i}dx^{j} + e^{2\phi(\vec{x})}(d\tau + A_{i}(\vec{x}))^{2}$$

Partition function of CFT on this geometry is the captured by the gapped (d-1)-dim theory coupled to (d-1)-dim background fields

$$Z_{\rm CFT}(G) = Z_{\rm gapped}(g_{ij}, A_i, \phi).$$

Lore of massive QFT: Z_{gapped} can be captured by local effective action for (d-1)-dim fields

$$Z_{\text{gapped}}(g_{ij}, A_i, \phi) \sim e^{-S_{\text{th}}[g_{ij}, A_i, \phi]}$$

Lore of massive QFT: Z_{gapped} can be captured by local effective action for (d-1)-dim fields

$$Z_{\text{gapped}}(g_{ij}, A_i, \phi) \sim e^{-S_{\text{th}}[g_{ij}, A_i, \phi]}$$

Errors of the form $e^{-L/\xi}$

Lore of massive QFT: Z_{gapped} can be captured by local effective action for (d-1)-dim fields

$$Z_{\text{gapped}}(g_{ij}, A_i, \phi) \sim e^{-S_{\text{th}}[g_{ij}, A_i, \phi]}$$

Errors of the form $e^{-L/\xi}$

Symmetries highly constrain the thermal action $S_{th}!$

What symmetries constrain S_{th} ?

What symmetries constrain S_{th} ?

1. (d-1)-dim coordinate invariance and gauge invariance of KK field (coming from d-dim coordinate invariance)

What symmetries constrain S_{th} ?

- 1. (d-1)-dim coordinate invariance and gauge invariance of KK field (coming from d-dim coordinate invariance)
- 2. Weyl invariance of original theory

$$Z_{\rm CFT}(e^{2\sigma}G) = Z_{\rm CFT}(G)e^{-S_{\rm anom}[G,\sigma]},$$

forces S_{th} to be a function of the gauge field and of Weyl-invariant metric $\hat{g}_{ij} \equiv e^{-2\phi}g_{ij}$,

$$S_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-f + c_1 \beta^2 \widehat{R} + c_2 \beta^2 F^2 + \ldots \right) + S_{\rm anom}$$

$$S_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-f + c_1 \beta^2 \widehat{R} + c_2 \beta^2 F^2 + \ldots \right) + S_{\rm anom}$$

We will parametrize universal CFT data (density of states) in terms of f, c_1, c_2, \ldots

$$S_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-f + c_1 \beta^2 \widehat{R} + c_2 \beta^2 F^2 + \ldots \right) + S_{\rm anom}$$

We will parametrize universal CFT data (density of states) in terms of f, c_1, c_2, \ldots

Aside: Why is 2d special? One answer modular invariance. In our language: only local gauge invariant term is f! So in 2d, perturbative terms truncate

$$S_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-f + c_1 \beta^2 \widehat{R} + c_2 \beta^2 F^2 + \ldots \right) + S_{\rm anom}$$

We will parametrize universal CFT data (density of states) in terms of f, c_1, c_2, \ldots

Aside: Why is 2d special? One answer modular invariance. In our language: only local gauge invariant term is f! So in 2d, perturbative terms truncate

Moreover f is the Casimir energy of the CFT on a circle, so in 2d f is related to the central charge c

Density of states

We want to know spin-dependence so put the theory on $S^1_\beta \times S^{d-1}$ and twist the angles on $S^{d-1} {\rm by} \, \beta \overrightarrow{\Omega}$

Density of states

We want to know spin-dependence so put the theory on $S^1_\beta imes S^{d-1}_\beta$ and twist the angles on S^{d-1} by $\beta \overline{\Omega}$

$$Z(\beta, \vec{\Omega}) = \operatorname{Tr} \left[e^{-\beta(D + \varepsilon_0) + i\beta \vec{\Omega} \cdot \vec{M}} \right] \sim e^{-S[\hat{g}, A]}.$$

Density of states

We want to know spin-dependence so put the theory on $S^1_\beta \times S^{d-1}$ and twist the angles on $S^{d-1} {\rm by} \, \beta \overline{\Omega}$

$$Z(\beta, \vec{\Omega}) = \operatorname{Tr} \left[e^{-\beta(D + \varepsilon_0) + i\beta \vec{\Omega} \cdot \vec{M}} \right] \sim e^{-S[\hat{g}, A]}.$$

Now we just need to compute $S[\hat{g}, A]$ in this geometry. Put manifold in KK form, plug in \hat{g}, A into thermal effective action

$$S_{\rm th} = \frac{\operatorname{vol} S^{d-1}}{\prod_{i=1}^{n} (1+\Omega_i^2)} \left[-fT^{d-1} + (d-2) \left((d-1)c_1 + (2c_1 + \frac{8}{d}c_2) \sum_{i=1}^{n} \Omega_i^2 \right) T^{d-3} + \dots \right]$$

$$S_{\rm th} = \frac{\operatorname{vol} S^{d-1}}{\prod_{i=1}^{n} (1+\Omega_i^2)} \left[-fT^{d-1} + (d-2) \left((d-1)c_1 + (2c_1 + \frac{8}{d}c_2) \sum_{i=1}^{n} \Omega_i^2 \right) T^{d-3} + \dots \right]$$

cosmological constant term

Einstein term

Maxwell term

$$S_{\rm th} = \frac{\operatorname{vol} S^{d-1}}{\prod_{i=1}^{n} (1+\Omega_i^2)} \begin{bmatrix} -fT^{d-1} + (d-2) \left((d-1)c_1 + (2c_1 + \frac{8}{d}c_2) \sum_{i=1}^{n} \Omega_i^2 \right) T^{d-3} + \dots \end{bmatrix}$$

$$cosmological \ constant \ term \qquad Einstein \ term \qquad Maxwell \ term$$

From this we can read off the partition function (at large T) and take an inverse Laplace transform to read off entropy as a function of Δ, J

Taking an inverse Laplace transform gives us the density of states

Taking an inverse Laplace transform gives us the density of states

In 2d, this of course reproduces the usual Cardy formula

$$\rho_{d=2}^{\text{states}}(\Delta,J) \sim \exp\left[\sqrt{\frac{2c}{3}}\pi \left(\sqrt{\frac{\Delta+J}{2} - \frac{c}{24}} + \sqrt{\frac{\Delta-J}{2} - \frac{c}{24}}\right)\right]$$

For example, in 3d we get:

$$\begin{split} \log \rho_{d=3}^{\text{primaries}}(\Delta,J) &= 3\pi^{1/3} f^{1/3} \left(\Delta+J\right)^{1/3} \left(\Delta-J\right)^{1/3} - \frac{5}{3} \log(\Delta^2-J^2) + \log \Delta \\ &+ \log \left(\frac{16\pi^{1/3} f^{4/3}}{\sqrt{3}}\right) - 8\pi c_1 + \frac{32c_2 J^2 \pi}{3(\Delta^2-J^2)} + O(\Delta^{-1/3}). \end{split}$$

For example, in 3d we get:

$$\log \rho_{d=3}^{\text{primaries}}(\Delta, J) = 3\pi^{1/3} f^{1/3} \left(\Delta + J\right)^{1/3} \left(\Delta - J\right)^{1/3} - \frac{5}{3} \log(\Delta^2 - J^2) + \log \Delta + \log \left(\frac{16\pi^{1/3} f^{4/3}}{\sqrt{3}}\right) - 8\pi c_1 + \frac{32c_2 J^2 \pi}{3(\Delta^2 - J^2)} + O(\Delta^{-1/3}).$$

To evaluate the inverse Laplace transform, we did a saddlepoint approximation. We need the saddle to be at large T!

For example, in 3d we get:

$$\log \rho_{d=3}^{\text{primaries}}(\Delta, J) = 3\pi^{1/3} f^{1/3} \left(\Delta + J\right)^{1/3} \left(\Delta - J\right)^{1/3} - \frac{5}{3} \log(\Delta^2 - J^2) + \log \Delta + \log \left(\frac{16\pi^{1/3} f^{4/3}}{\sqrt{3}}\right) - 8\pi c_1 + \frac{32c_2 J^2 \pi}{3(\Delta^2 - J^2)} + O(\Delta^{-1/3}).$$

To evaluate the inverse Laplace transform, we did a saddlepoint approximation. We need the saddle to be at large T!

d=2:
$$\Delta - |J| \gg c$$

d>2: $\Delta - |J| \gg \sqrt{f\Delta}$

(Aside: d>2 formula is for one fugacity turned on; for more fugacities exponent changes)

Holographic theories

From black hole thermodynamics in AdS:

Holographic theories

From black hole thermodynamics in AdS:

$$\log Z\left(T,\vec{\Omega}\right) = \frac{\operatorname{vol}S^{d-1}(4\pi)^{d-1}}{4d^{d}G_{N}} \frac{\ell_{\mathrm{AdS}}^{d-1}T^{d-1}}{\prod_{i=1}^{\lfloor d/2 \rfloor}\left(1+\Omega_{i}^{2}\right)} \left(1 - \frac{d^{2}\left((d-1) + \sum_{i=1}^{\lfloor d/2 \rfloor}\Omega_{i}^{2}\right)}{16\pi^{2}T^{2}} + \mathcal{O}\left(\frac{1}{T^{4}}\right)\right),$$

(Carter, 1973) (Gibbons, Perry, Pope, 2004)

Holographic theories

From black hole thermodynamics in AdS:

$$\log Z\left(T,\vec{\Omega}\right) = \frac{\operatorname{vol}S^{d-1}(4\pi)^{d-1}}{4d^d G_N} \frac{\ell_{\operatorname{AdS}}^{d-1}T^{d-1}}{\prod_{i=1}^{\lfloor d/2 \rfloor}\left(1+\Omega_i^2\right)} \left(1 - \frac{d^2\left((d-1) + \sum_{i=1}^{\lfloor d/2 \rfloor}\Omega_i^2\right)}{16\pi^2 T^2} + \mathcal{O}\left(\frac{1}{T^4}\right)\right),$$

(Carter, 1973) (Gibbons, Perry, Pope, 2004)

Leading order in G_N we have:

$$f = \frac{(4\pi)^{d-1}\ell_{AdS}^{d-1}}{4d^d G_N}$$

$$c_1 = \frac{(4\pi)^{d-3}\ell_{AdS}^{d-1}}{4(d-2)d^{d-2}G_N}$$

$$c_2 = -\frac{(4\pi)^{d-3}\ell_{AdS}^{d-1}}{32(d-2)d^{d-3}G_N}$$

Kerr black holes in AdS for D>3 suffer from instability. They are only stable if (with one fugacity turned on):

$$E - J/\ell > \#\sqrt{E}\ell^{\frac{D-3}{2}}G_N^{-1/2}$$

(Cardoso, Dias, 2004)

Kerr black holes in AdS for D>3 suffer from instability. They are only stable if (with one fugacity turned on):

$$E - J/\ell > \#\sqrt{E}\ell^{\frac{D-3}{2}}G_N^{-1/2}$$

(Cardoso, Dias, 2004)

Similar condition we found for the CFT entropy to be valid!

d>2:
$$\Delta - |J| \gg \sqrt{f\Delta}.$$

Kerr black holes in AdS for D>3 suffer from instability. They are only stable if (with one fugacity turned on):

$$E - J/\ell > \#\sqrt{E}\ell^{\frac{D-3}{2}}G_N^{-1/2}$$

(Cardoso, Dias, 2004)

Similar condition we found for the CFT entropy to be valid!

d>2:
$$\Delta - |J| \gg \sqrt{f\Delta}$$
.

Similar analogy in AdS₃/CFT₂

Cardy valid when: $\Delta - |J| \gg c$

Cardy valid when: $\Delta - |J| \gg c$

If light states are "sparse" then $\Delta - |J| \gtrsim c$, is enough

(Hartman, Keller, Stoica, 2014)

Cardy valid when: $\Delta - |J| \gg c$

If light states are "sparse" then $\Delta - |J| \gtrsim c$, is enough

(Hartman, Keller, Stoica, 2014)

Although we do not have modular invariance in higher d, reasonable to conjecture a similar extension of our formula

Cardy valid when: $\Delta - |J| \gg c$

If light states are "sparse" then $\Delta - |J| \gtrsim c$, is enough

(Hartman, Keller, Stoica, 2014)

Although we do not have modular invariance in higher d, reasonable to conjecture a similar extension of our formula

Our formula valid when: $\Delta - |J| \gg \sqrt{f\Delta}$.

Cardy valid when: $\Delta - |J| \gg c$

If light states are "sparse" then $\Delta - |J| \gtrsim c$, is enough

(Hartman, Keller, Stoica, 2014)

Although we do not have modular invariance in higher d, reasonable to conjecture a similar extension of our formula

Our formula valid when: $\Delta - |J| \gg \sqrt{f\Delta}$.

If light states are "sparse" then $\Delta - |J| \gtrsim \sqrt{f\Delta}$, is enough??

Large chemical potential

So far we've computed $Z(\beta, \Omega) = \text{Tr}(e^{-\beta(H+i\Omega J)})$ for small β and an O(1) chemical potential Ω

Large chemical potential

So far we've computed $Z(\beta, \Omega) = \text{Tr}(e^{-\beta(H+i\Omega J)})$ for small β and an O(1) chemical potential Ω

What if Ω is large, i.e. $\beta \Omega = O(1)$? (Note the 2π periodicity.)

Large chemical potential

So far we've computed $Z(\beta, \Omega) = \text{Tr}(e^{-\beta(H+i\Omega J)})$ for small β and an O(1) chemical potential Ω

What if Ω is large, i.e. $\beta\Omega=O(1)?$ (Note the 2π periodicity.)

For example this would include $Tr((-1)^{J}e^{-\beta(H+i\Omega J)})$

In 2d, we can compute $Tr((-1)^{J}e^{-\beta(H+i\Omega J)})$ by using a more complicated $SL(2,\mathbb{Z})$ modular transformation

$$\begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$$

to map this partition function to low temperature

In 2d, we can compute $Tr((-1)^{J}e^{-\beta(H+i\Omega J)})$ by using a more complicated $SL(2,\mathbb{Z})$ modular transformation

$$\begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$$

to map this partition function to low temperature

This then gives
$$\operatorname{Tr}((-1)^{J}e^{-\beta(H+i\Omega J)}) \sim e^{\frac{4\pi^{2}c}{4\times 12\beta(1+\Omega^{2})}}$$

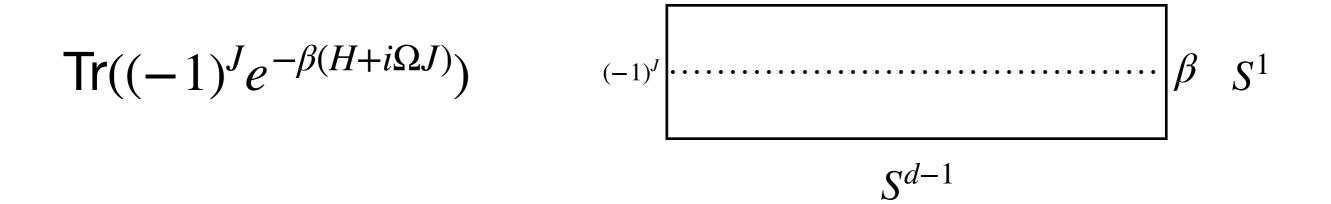
In 2d, we can compute $Tr((-1)^{J}e^{-\beta(H+i\Omega J)})$ by using a more complicated $SL(2,\mathbb{Z})$ modular transformation

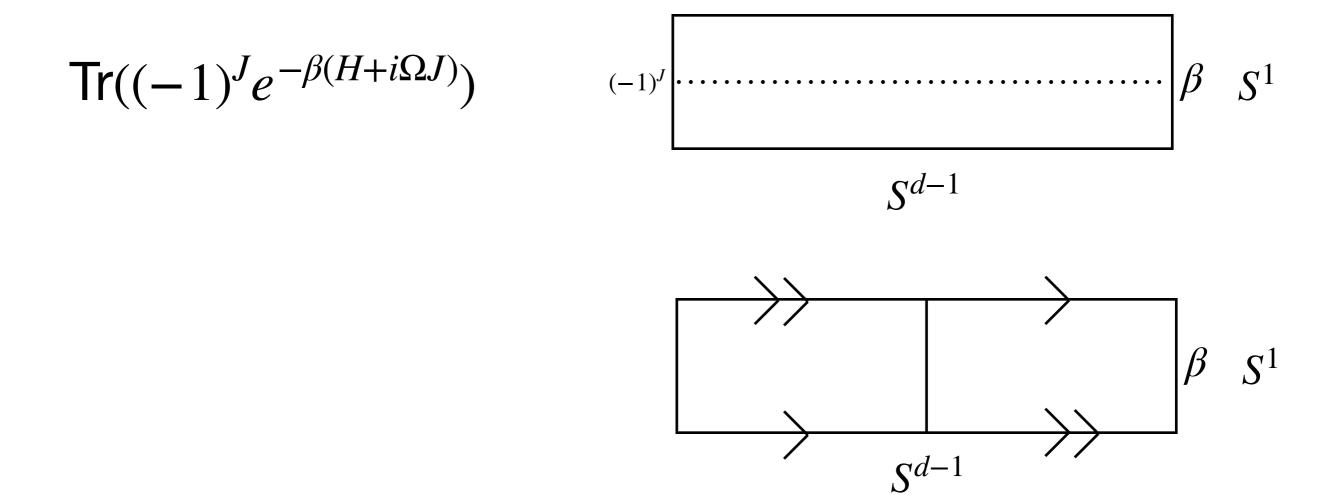
$$\begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$$

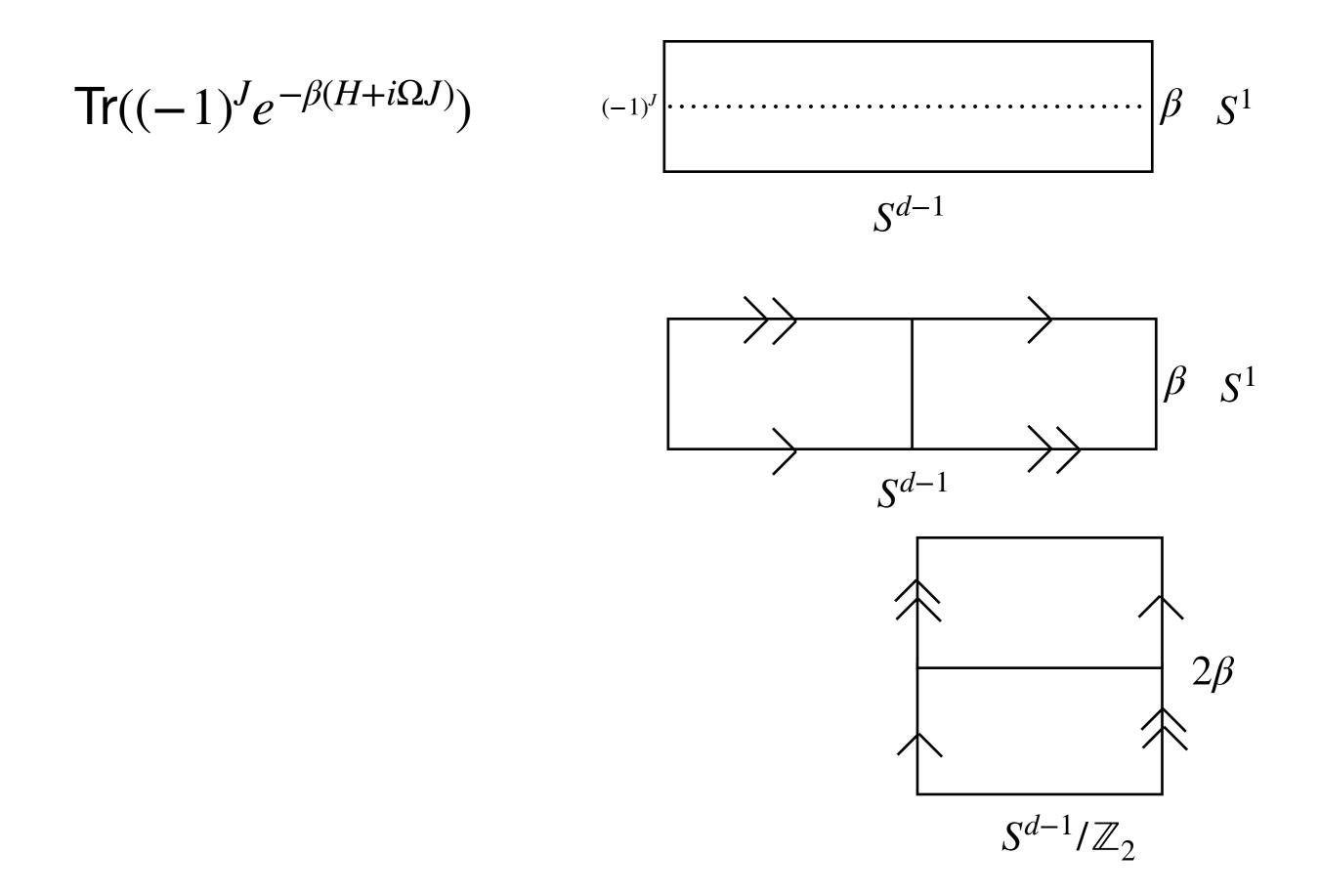
to map this partition function to low temperature

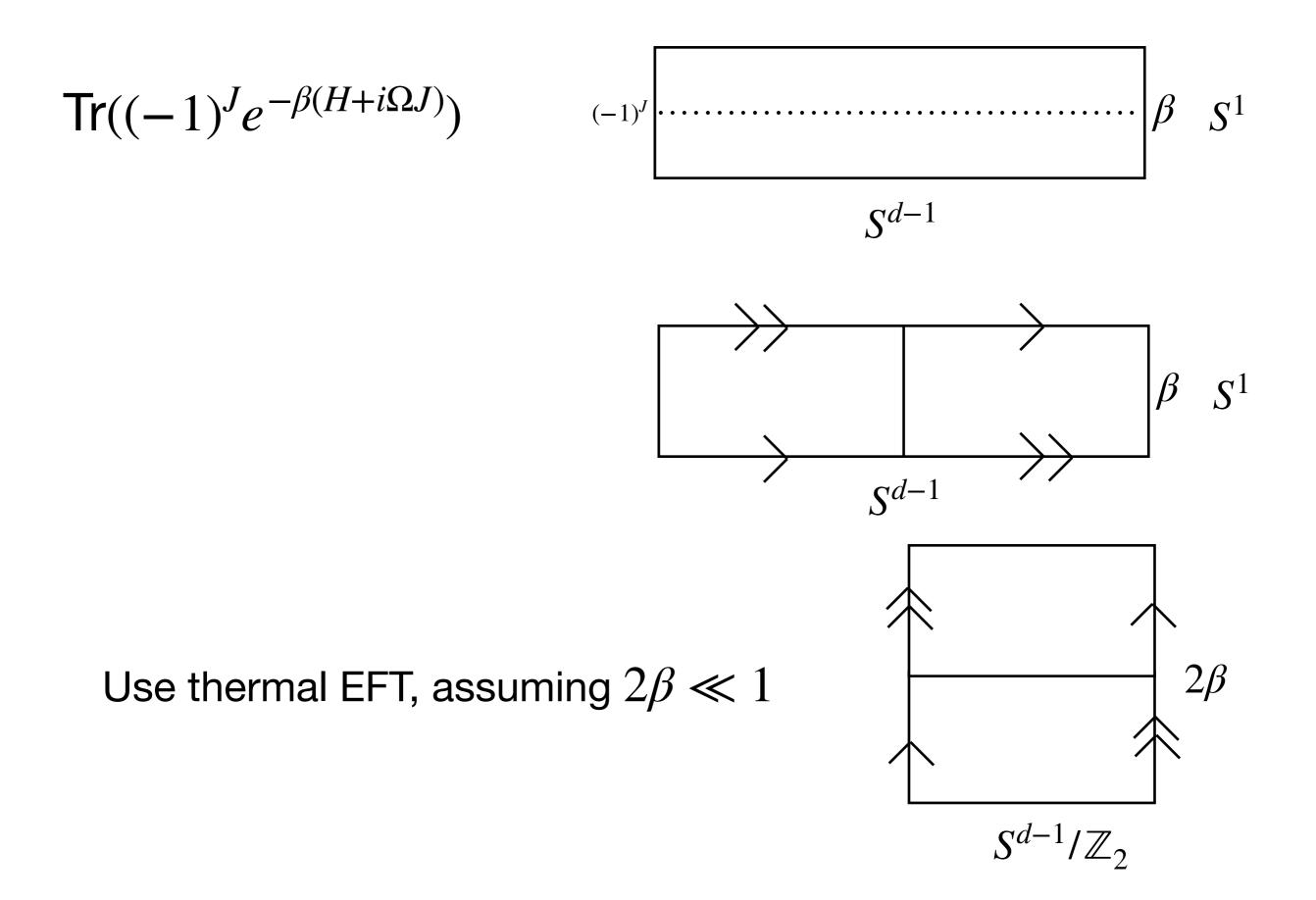
This then gives
$$\operatorname{Tr}((-1)^{J}e^{-\beta(H+i\Omega J)}) \sim e^{\frac{4\pi^{2}c}{4\times 12\beta(1+\Omega^{2})}}$$

down by a factor of 4









$$\log \operatorname{Tr} \left((-1)^{J} e^{-\beta(H+i\Omega J)} \right) = \frac{\operatorname{vol} S^{d-1} f T^{d-1}}{2^{d} (1+\Omega^{2})} + \dots + S_{D}$$

$$\log \operatorname{Tr} \left((-1)^{J} e^{-\beta(H+i\Omega J)} \right) = \frac{\operatorname{vol} S^{d-1} f T^{d-1}}{2^{d} (1+\Omega^{2})} + \dots + S_{D}$$

Down by factor of 2^d — a factor of 2^{d-1} from T^{d-1} and a factor of 2 from S^{d-1}/\mathbb{Z}_2 volume

$$\log \operatorname{Tr} \left((-1)^{J} e^{-\beta(H+i\Omega J)} \right) = \frac{\operatorname{vol} S^{d-1} f T^{d-1}}{2^{d} (1+\Omega^{2})} + \dots + S_{D}$$

Down by factor of 2^d — a factor of 2^{d-1} from T^{d-1} and a factor of 2 from S^{d-1}/\mathbb{Z}_2 volume

Can also be a local defect action living at fixed locus of \mathbb{Z}_2 . Will be a perturbative correction in 1/T

$$\log \operatorname{Tr} \left((-1)^{J} e^{-\beta(H+i\Omega J)} \right) = \frac{\operatorname{vol} S^{d-1} f T^{d-1}}{2^{d} (1+\Omega^{2})} + \dots + S_{D}$$

Down by factor of 2^d — a factor of 2^{d-1} from T^{d-1} and a factor of 2 from S^{d-1}/\mathbb{Z}_2 volume

Can also be a local defect action living at fixed locus of \mathbb{Z}_2 . Will be a perturbative correction in 1/T

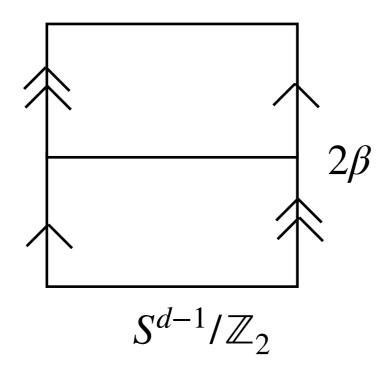
In general if we add a phase of $e^{2\pi i(p/q)J}$, get factor of q^d

Defects

In addition to effective temperature changing, there can also be a new defect action on the fixed point

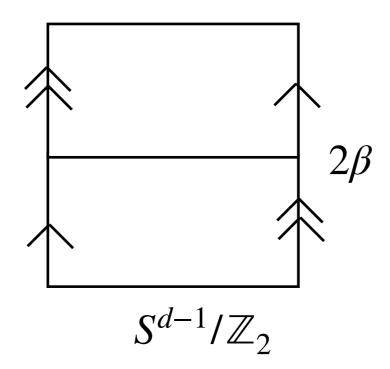
Defects

In addition to effective temperature changing, there can also be a new defect action on the fixed point



Defects

In addition to effective temperature changing, there can also be a new defect action on the fixed point



For example, if d=3, S^{3-1}/\mathbb{Z}_2 has fixed points on the north and south poles

$$\log \operatorname{Tr} \left((-1)^{J} e^{-\beta(H+i\Omega J)} \right) = \frac{\operatorname{vol} S^{d-1} f T^{d-1}}{2^{d} (1+\Omega^{2})} + \dots + S_{D}$$

$$\log \operatorname{Tr} \left((-1)^{J} e^{-\beta(H+i\Omega J)} \right) = \frac{\operatorname{vol} S^{d-1} f T^{d-1}}{2^{d} (1+\Omega^{2})} + \dots + S_{D}$$

Leading term still correct but S_D introduces **new** Wilson coefficients that start at T^{d-3}

$$\log \operatorname{Tr} \left((-1)^{J} e^{-\beta(H+i\Omega J)} \right) = \frac{\operatorname{vol} S^{d-1} f T^{d-1}}{2^{d} (1+\Omega^{2})} + \dots + S_{D}$$

Leading term still correct but S_D introduces **new** Wilson coefficients that start at T^{d-3}

$$f R^{q} = 1,$$

$$\log \operatorname{Tr}(e^{-\beta H}R) \sim \frac{1}{q} \log \operatorname{Tr}(e^{-q\beta H}) + S_{D}$$

Fermionic CFTs

Need to specify spin structure along S^1 :

Fermionic CFTs

Need to specify spin structure along S^1 :

$$\operatorname{Tr}\left[e^{-\beta(H-i\Omega J)}\right] \sim e^{-S_{\mathrm{th}}},$$
$$\operatorname{Tr}\left[(-1)^{F}e^{-\beta(H-i\Omega J)}\right] \sim e^{-\tilde{S}_{\mathrm{th}}}.$$

Fermionic CFTs

Need to specify spin structure along S^1 :

$$\operatorname{Tr}\left[e^{-\beta(H-i\Omega J)}\right] \sim e^{-S_{\mathrm{th}}},$$
$$\operatorname{Tr}\left[(-1)^{F}e^{-\beta(H-i\Omega J)}\right] \sim e^{-\tilde{S}_{\mathrm{th}}}.$$

$$S_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-f + c_1 \beta^2 \widehat{R} + c_2 \beta^2 F^2 + \ldots \right)$$
$$\tilde{S}_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-\tilde{f} + \tilde{c_1} \beta^2 \widehat{R} + \tilde{c_2} \beta^2 F^2 + \ldots \right)$$

$$\log\left[\operatorname{Tr}(e^{-\beta(H-i\Omega J)}e^{2\pi i\frac{p}{q}J})\right] \sim \begin{cases} \frac{1}{q^d}\frac{f \operatorname{vol} S^{d-1}}{\beta^{d-1}(1+\Omega^2)} + \dots, & p+q \operatorname{odd}, \\ \frac{1}{q^d}\frac{f \operatorname{vol} S^{d-1}}{\beta^{d-1}(1+\Omega^2)} + \dots, & p+q \operatorname{even}. \end{cases}$$

$$\log\left[\operatorname{Tr}(e^{-\beta(H-i\Omega J)}e^{2\pi i\frac{p}{q}J})\right] \sim \begin{cases} \frac{1}{q^d}\frac{f \operatorname{vol} S^{d-1}}{\beta^{d-1}(1+\Omega^2)} + \dots, & p+q \operatorname{odd}, \\ \frac{1}{q^d}\frac{f \operatorname{vol} S^{d-1}}{\beta^{d-1}(1+\Omega^2)} + \dots, & p+q \operatorname{even}. \end{cases}$$

This is exactly like what happens in a 2d CFT from modular invariance — depending on p+q, we get either NS or Ramond sector

$$S_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-f + c_1 \beta^2 \widehat{R} + c_2 \beta^2 F^2 + \ldots \right)$$
$$\tilde{S}_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-\tilde{f} + \tilde{c_1} \beta^2 \widehat{R} + \tilde{c_2} \beta^2 F^2 + \ldots \right)$$

$$\log\left[\operatorname{Tr}(e^{-\beta(H-i\Omega J)}e^{2\pi i\frac{p}{q}J})\right] \sim \begin{cases} \frac{1}{q^d}\frac{f \operatorname{vol} S^{d-1}}{\beta^{d-1}(1+\Omega^2)} + \dots, & p+q \operatorname{odd}, \\ \frac{1}{q^d}\frac{f \operatorname{vol} S^{d-1}}{\beta^{d-1}(1+\Omega^2)} + \dots, & p+q \operatorname{even}. \end{cases}$$

This is exactly like what happens in a 2d CFT from modular invariance — depending on p+q, we get either NS or Ramond sector

$$S_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-f + c_1 \beta^2 \widehat{R} + c_2 \beta^2 F^2 + \dots \right)$$
$$\tilde{S}_{\rm th} = \int \frac{d^{d-1}\vec{x}}{\beta^{d-1}} \sqrt{\widehat{g}} \left(-\tilde{f} + \tilde{c_1} \beta^2 \widehat{R} + \tilde{c_2} \beta^2 F^2 + \dots \right)$$
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

Differences in Wilson coefficients are the higher d analog of Ramond ground state energy

Summary

We described a technique called the thermal effective action to systematically study CFT data at large dimension

This encodes the spectrum of local CFT operators as a function of dimension and spin at large dimension

Also obtained large chemical potential formulas using similar techniques