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Dual Resonance
Models



Dual Resonance Models

= Data from p-p scattering and heavy-ion collision experiments shows
families of higher-spin hadronic resonances that seem to lie on linear
Regge trajectories, J ~ oy + o/ M?.
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Figure 1: Chew-Frautschi plot for p and w mesons /
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Dual Resonance Models

= Puzzle: The tree-level exchange of a spin J particle of mass m;
leads to the following behaviour in the t-channel

JImax J
—S
M(s, t) = —ng%, = M(s, t) ~ sTm
J J

= Veneziano Amplitude:

[(—a's)F(—a't)

Ven
M0 = B —a)

= Duality: For Re(s) < 1,

- 1 X (s+1)(s+2)..(s+n—-1) 1
M(V)(S7t):§+z( ) 3!( )t_n

n=1

= Regge Trajectories: Residue at t = n goes as 5" !.

So, highest-spin exchanged particle with mass n has spin J =n— 1.
= Regge Behavior: For fixed t and large s, M(Ve") (s, t) ~ s~ 1+t
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Field Theory Representations

= A function that satisfies M(s, t) = M(t,s) and has the Regge
behaviour

lim  |M(s,t)| =0

|s|—o00,fixed t
can be expressed via a crossing symmetric dispersion relation

M(s,t)—l/wda{ LI ! }A“)(U,MMA)

T o—s o—t o+ o+ A

= 09 is the location of the first singularity along the s-channel and
AL)(s, t) is the corresponding discontinuity

1
AC)(s, t) = lim (M(s + ie, t) — M(s — i€, 1)) = - ImM(s, 1)
e—
= Dual resonance models belong to this class.
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Field Theory Representations

Figure 2: Field Theory Representation: Poles in all channels + contact terms

= Open superstring amplitude: Since M (s, t) ~ s~1*t we can
apply the CSDR. A®)(s, t) = —7d(s — n) Res M(s, t).
s=n

M=s)f(—-t) 1 =1 1 1 1
I_(l—s—t)_stJr;n!<s—n+t—n+)\+n>
y (1_/\+ (s+/<\1£tn+)\))

= This is called the "field-theory representation” [A.Sinha, A.P.Sahal. 9/30



d Theory Representations

= Salient features:

= Crossing symmetric at each mass level.

= It converges everywhere except at the poles for Re(\) > —1.

= Allows truncation without losing unitarity.

= Bootstrap: Allows for a larger domain in s, t to impose constraints.

= A Unified Dispersion Relation

I <
i <>i<

Fixed-t

LCSDR

CSDR Fixed-u
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Field Theory Representations

= Lorentz invariance implies a partial wave expansion of the residues:

n) 5053 2t
Ress—p,M(s, t) = —w%: cé )Cz 2 <z =1+ s)

D=3
where C, 2 (z) are the Gegenbauer polynomials in D dimensions.

= The general formula looks like

o3 [+ o e 1 (e )

= Tree-Level Unitarity: CZ(") >0

* )\ Independence/ Null Constraints: 95 M (s, t) = 0,Re\ > —1.
These are exactly the same as crossing symmetry constraints from
the fixed-t dispersion relation.
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String Bootstrap: Set up

= Bootstrap Approach: Bound the space of consistent scattering

amplitudes by imposing physical constraints such as unitarity,

crossing symmetry, Lorentz invariance, analyticity, etc.

= Q: In the space of (bootstrap) consistent scattering amplitudes

that satisfy duality, is the open superstring amplitude special?

= Wilson Coefficients: Expansion around s+t =0and st =0

Miow (s, t) = Woo + Wio(s + t) + Worst + - -

= Bootstrap Constraints: In D = 10,

Crossing Symmetry: M(s, t) = M(t,s)

Analyticity: Only simple poles at s = n,Vn € Z>o.

Residues at Poles: Residues are polynomials of order £pma = n— 1.
Unitarity: At tree-level, cé") >0

A-Independence/Null constraints: % M (s, t) = 0, for

k € Z>1,A > —1,(s, t) € Dy
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String Bootstrap: Set Up
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Figure 3: Example of D, we use for bootstrap
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Entanglement in
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Entanglement in scattering

= Linearized Entropy: For a 2-2 scattering process is defined as
E[Q=1-Tra[pal, pa=Trepas, pas = S|Q)(QIS

o Q) =D 4548lki,a)a ® | k2, b)g is a general state in Ha ® Hp.

= Density matrix is computed via

1 2 o
=2 [ cls8i0) (@15 1u, 0.

= The initial state is considered to be unentangled.
QPd = |ky,a)a ® |ko, b)g, = E[QPY =0

= Entanglement Power: Defined as AE[Q] = £F[Q] — £7[Q).
AE[Q] can be computed perturbatively in some small coupling g.

= For an unentangled initial state, up to leading order in g2 [R. Aoude,
G. Elor, G. N. Remmen, O. Sumensari]

AE[QP] = AN Im M2 (kiky — kyko).

= Only elastic, forward (t = 0) scattering contributes. -



Entanglement in scattering

= In open superstring theory, the tree-level, color-ordered, four-gluon
scattering amplitude is given by

s)I(—t)
1234 2?“7(
M )= Ml—s—t)’
FH = P F Fa 0 FEP + Fu i FIY Fa ag FSP 4 Fu FIY Fp ag FEP
— 4 { Fupus P Fa g F¥ + Fuyun FY Faap FE¥ + Fuyn FY P aFE* )
» Fiu = Piu€iv — Piveiy for the i-th gluon.
= In the forward limit, lim;_q F* = —2s%¢; -ca 60 - €3
= So we can define
AEmassive = 8TNS?e1 - €465 - €3 Z Ress—nM(s,0)d(s — n).
n=1

= We are interested in the first finite moment of entangling power

[S) ZmaX

EPM — / A‘S‘masswe Z Z ) — W070

n=1 (=0
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String Bootstrap: Results

= Maximize Wy o/Minimize Entanglement
Npax =30, = 1072, kppax = 6, A = 14.6.
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Figure 4: Heat map for duality violation for entanglement minimizing
amplitudes in the allowed Wi o — Wo 1 plane 19/30



ring Bootstrap: Results

= Maximize Wy o/Minimize Entanglement
(Nmax = 30a €= 10_97 kmax = 67 )\ = 146)

n Exact Bootstrap

1 1 1.000

2 .6714 8-6717 n Exact Bootstrap
3 0.0119 0.0121 3 0 0

4 0.00289 0.00297 4 0.00108 0.000367

5 ©.000867 ©.000898 5 0.000636 0

6 ©.000300 0.000311 6 ©.000325 0.000123

7 ©.000114 0.000119 7 0.000163 0.000118

8 0.0000469 | ©0.0000486 8 0.0000831 | ©.0000752
9 | 0.0000204 | ©.0000211 9 | o.c00e430 | o.e000427
10 | 9.26x10° | 9.59x18° 10 | ©.0000227 | ©.0000235
11 | 4.37x10° | 4.52x10° 11 | 0.0000122 | ©.0000130
12 | 2.12x10° | 2.19x10° 12 | 6.64x10° | 7.20x10°
13 | 1.86x10° | 1.89x10° 13 | 3.67x10° | 4.01x10°
14 | s.41x107 5.57x107 14 | 2.85x10° | 2.25x10°
15 | 2.81x107 | 2.98x107 15 | 1.16x10°° [ 1.27x10°

(a) Leading Regge trajectory (b) Subleading Regge trajectory 20/30



String Bootstrap: Results

= Maximize Wy o/Minimize Entanglement
(Nmax = 30a €= 10_97 kmax = 67 )\ = 146)
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Figure 5: We plot |./\/l ( o t) { versus s for t = {—5.1,-0.1,0.5,3.2}.
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Bootstrap using PINNs

= Why use PINNs for bootstrap?

= The bootstrap problems we discussed till now and in fact, all
bootstrap problems are either Linear optimization problems, or
Semi-definite optimization problems.

= These can be handled well via traditional methods like SDPB.

» Caveat: We used ¢ ~ 1072 while imposing the constraint
—e< 3’/{/\/1)\ (s, t, C,E")) <, for (s,t) € Dy and 1 < k < Kpmax

However, truncated to some N,,.x, it is not guaranteed that these
constraints will be satisfied to some € << 1.
= |t is more appropriate to impose ratio constraints

1 My, (s, t) - 8§M>\(5, t)
M)\Q(S,t) - M)\(S,t)

= These are non-linear in the parameters cé"). Traditional methods like
SDPB are not useful. This is why we use PINNs.
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Bootstrap using PINNs

= Neural networks: Maps with several tunable parameters. In our case,

NN (£, n, 6;) = ")
= Neuron Input-Output: y = o (Zk’""x j’}/,’(y,iw*l + bj!‘/’)

N VY
(0:,0

Figure 6: Architecture: Input layer with 2 neurons for (¢, n), 2 hidden layers
with 64 neurons, output layer wih 1 neuron for cé"). Every neuron has the
ReLU activation function o(x) = max(0, x). Final layer has the SoftPlus
activation function v(x) = log(1 + €*) for positive cé")s.

Total Parameters = [2(64) + 64] + [64(64) + 64] + [64(1) + 1] = 4417.
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Bootstrap using PINNs

Typically, neural networks learn the "best fit curve” to a given data
by minimizing a loss function that measures the error in the fit.
PINNs are a sub-class of neural networks where the loss function
includes physical constraint terms.

True solution to the constraint equations is learned as the PINN
updates its parameters every epoch) via the gradient descent
method to approach the minimum of the loss function

Oni1 =0, —nVe,Le,, n = learning rate

We define the following loss function

L“))z

2
£ (GJM) =—Woo+ 5 (Wlo = (—4(3))) + B2 (Wo1 "

1 )
+Bs Z £(s,t),  Who=—EPM
s,t€Dy

Hyperparameters [3; set the tolerance for constraint violation. Bigger
B; means smaller tolerance = min(EPM) = min (£ (HJM))
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Bootstrap using PINNs

= We implement PINN using the Python library PyTorch.

. 1 o o M/\1(57 t) 2
Case 1: When | L(s, t) = <1 Mo (5,) t)> ,

s For Npax =13, A =5.6,\1 =5.1, \» = 6.1,
= We pick i = 104, Nepochs = 2 X 10° and
Dy ={(s,t)] —55<s<55,-02<t<02,A;=1,A, =04}

= Solution:

max(Wp) = —1.506, Wio — (—¢(3)) =2.8 x 107°

Wor — %M) =-52x10"°, Lomen=85x10"*

= Leading Regge Trajectory:

C(gl) C{z) C2(3) C3(4) Cis) cés)
Open String 1 0.0714 | 0.0119 | 0.00289 | 0.000867 | 0.000300

PINN 0.999 | 0.0715 | 0.0121 | 0.00300 | 0.000922 | 0.000332

26/30



Bootstrap using PINNs

k 2
N ‘max 1 8,(./\/1)\(5 t)
= Case 2: When | L(s,t) = : b
0= (Faes o
n For kmax = 1, Npax = 20,\ = 14.6, \1 = 5.1, \o = 6.1,
= We pick 81 = o = 10°% 83 = 10° , Nepochs = 4 x 10° and
Dy ={(s,t)|0.4 <s<10.4,t =10.1,A, = 1}
= Solution:

max(Woo) = —1.426, Wio — (—¢(3)) = —6.7 x 1077

4 ~
Wo1 — %() = —4.8 x 1077, Lmean = 4.2 X 1075'

= Leading Regge Trajectory:

C(gl) C£2) 62(3) C§4) C‘(‘S) CEEG)
Open String 1 0.0714 | 0.0119 | 0.00289 | 0.000867 | 0.000300

PINN 0.991 | 0.0574 | 0.0057 | 0.00131 | 0.000473 | 0.000277

= For open string, at (s,t) = (10.4,10.1), M(s, t) ~ 1.34 x 10° and
O\M\(s,t) ~ —2.51. = Only PINN method can work!.
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Bootstrap using PINNS

= Regge Pole from PINNs

{pole
t

-3.5 -3.0 -2.5 -2.0 -15 -1.0 -0.5

Figure 7: The blue dots denote the location of the Regge pole {0 of c(¥, t)
as a function t. We find that these blue dots lie on the red straight line
obtained by making a fit with our data. The intercept ~ —1 matches the open
superstring value.
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Summary



= We present a new way to set up the numerical S-Matrix bootstrap
using a parametric crossing symmetric dispersion relation.

= The dispersion relation can be continuously deformed to the fixed-s,
fixed-t and CSDRs suggesting an underlying "worldsheet™ picture.

= We minimize the first finite moment of the entangling power (EPM)
and find that the optimal solution is an excellent approximation to
the open superstring amplitude.

= We initiate the use of PINNs for the bootstrap to perform non-linear,
constrained optimization, and the complex ¢ Regge pole analysis.

= We also study closed string-like amplitudes and find Dual resonance

models there also minimize the first finite moment of the entangling
power (EPM).

THANK YOU
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= Parametric series representation for the hypergeometric deformed
amplitudes

L - R (r+ L1 s, L - ir+2,-s1 — 5 +2;1)

= Parametric representation for Closed-String amplitude
F(—sl)r(—sz)r(—s3) _ 1 T
1+51)|_(1+52)|_(1+53) 515,53

1 1 n 1 n 1 n 1 "
nl(n!)z si—n S—n S3—n A+n

r

—

ANE

Il =

2 2 (n4+ X)(n—2X)?

Y

. n—2/\\/1 (s +A)(52+A)(53+A)>
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Figure 8: We plot }M (51 + ﬁ7 sz) ’ versus s; for the optimal closed-string like

amplitude
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