

Andrea Guerrieri

March 10, 2025

Based on M. Correia, A. Georgoudis, AG to appear soon

What is (im)possible in the Space of QFTs and Strings

Causality, symmetries, and unitarity constrain the space of physical observables

What we want to measure at colliders $\mathcal{S}_{in \to out} \equiv \langle in | out \rangle$

Relativistic QFT in flat space-time

Symmetries

Causality

Unitarity

Non-perturbative S-matrix Bootstrap

Relativistic QFT in flat space-time

Symmetries

Causality

Unitarity

2->2 S-matrix

Analyticity

Probability conservation

Well-defined set of constraints

Relativistic QFT in flat space-time

Symmetries

Causality

Unitarity

1) Strong non-perturbative Bounds on scattering observables

2) Study the physical properties of the the Extremal amplitude

2->2 S-matrix

Analyticity

Probability conservation

Well defined set of constraints

1) String theory is (almost) the only consistent UV completion of $D \ge 9$ supergravity

$$A_{QG} = \int \sqrt{-g} (R + 0 \times R^2 + 0 \times R^3 + \alpha_D R^4 + \alpha_$$

ALG, Penedones, Vieira <u>2212.00151</u> ALG, Muerali, Penedones, Vieira <u>2210.01502</u>

•	.) Univ	Universal prediction: $\alpha_D^{\min} < \alpha_D < \infty$		
	Dimension	String/M theory	Bootstrap α_D^{\min}	
	9	≥0.2411	0.223 ± 0.002	
ĺ	10	≥0.1389	0.124 ± 0.003	
	11	0.1304	0.101 ± 0.005	

1) String theory is (almost) the only consistent UV completion of $D \ge 9$ supergravity

$$A_{QG} = \int \sqrt{-g} (R + 0 \times R^2 + 0 \times R^3 + \alpha_D R^4 + \alpha_D R^4)$$

ALG, Penedones, Vieira 2212.00151 ALG, Muerali, Penedones, Vieira 2210.01502

QCD spectrum that couples to $\pi\pi$ states

•	.) Univ	Universal prediction: $\alpha_D^{\min} < \alpha_D < \infty$		
	Dimension	String/M theory	Bootstrap α_D^{\min}	
	9	≥0.2411	0.223 ± 0.002	
	10	≥0.1389	0.124 ± 0.003	
	11	0.1304	0.101 ± 0.005	

2) Combining Bootstrap and experimental data to extract the spectrum

We predict the measurable signal

Everytime there is an S-matrix talk and David Gross is present he asks: what about the total cross section?

Everytime there is an S-matrix talk and David Gross is present he asks: what about the total cross section?

Consider the 2->2 scattering amplitude of identical scalar particles of mass m=1

Everytime there is an S-matrix talk and David Gross is present he asks: what about the total cross section?

Consider the 2->2 scattering amplitude of identical scalar particles of mass m=1

Everytime there is an S-matrix talk and David Gross is present he asks: what about the total cross section?

Consider the 2->2 scattering amplitude of identical scalar particles of mass m=1

Total Cross Section

$$\sigma_{tot}(x)$$

 $t = 0 < -> b = \infty$

The Froissart-Martin Bound and its shortcomings

 $\sigma_{tot}(s) \lesssim \frac{g_s}{t_0} \log^2(s)$

$$g_s = 4\pi$$

 \log^2 because t_0 imaximum

we are in D=4

n momentum transfer allowed by analyticity e.g. $t_0 = 4$

The Froissart-Martin Bound and its shortcomings

1) An asymptotic bound hard to measure

Current fit:
$$\sigma_{tot}(s) \sim As^{0.008} + Bs^{-0.43}$$

we are in D=4

n momentum transfer allowed by analyticity e.g. $t_0 = 4$

The Froissart-Martin Bound and its shortcomings

Λ

$$\sigma_{tot}(s) \lesssim \frac{g_s}{t_0} \log^2(s) \qquad \qquad \log^2 \text{ because} \\ t_0 \text{ imaximum}$$

1) An asymptotic bound hard to measure

Current fit:
$$\sigma_{tot}(s) \sim As^{0.008} + Bs^{-0.43}$$

2) Affected by the Martin Pathology: a spin-2 at threshold is not forbidden by unitarity

$$T \supset \frac{P_2((u-t)/(u+t))}{\sqrt{s-4}} + \dots$$

we are in D=4

n momentum transfer allowed by analyticity e.g. $t_0 = 4$

For $\pi\pi$ scattering is ok, but not in general!

Maximize your favorite observable following the procedure below

Maximize your favorite observable following the procedure below

CROSSING SYMMETRY + ANALYTICITY

$$T(s, t, u) = \sum_{a,b,c}^{N_{max}} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

Maximize your favorite observable following the procedure below

CROSSING SYMMETRY + ANALYTICITY

$$T(s, t, u) = \sum_{a,b,c}^{N_{max}} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

UNITARITY
$$S_{\ell}(s) = 1 + i \frac{\sqrt{s - 4m^2}}{32\pi\sqrt{s}} \int_{-1}^{1} dz \, P_{\ell}(z)$$

Truncated set of semidefinite-positive constraints

 $T(s,t(z)) = z = \cos \theta$

 $|S_{\ell}|^2 \le 1$ $s_{grid} > 4m^2$, $\ell = 0, ..., L_{max}$

Maximize your favorite observable following the procedure below

CROSSING SYMMETRY + ANALYTICITY

$$T(s, t, u) = \sum_{a,b,c}^{N_{max}} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

UNITARITY
$$S_{\ell}(s) = 1 + i \frac{\sqrt{s - 4m^2}}{32\pi\sqrt{s}} \int_{-1}^{1} dz P_{\ell}(z) T(s, t(z)) \qquad z = \cos \theta$$

Truncated set of semidefinite-positive constraints

$$N_{max} \rightarrow \infty, L_{max} \rightarrow \infty, s_{grid} \rightarrow s$$

$$|S_{\ell}|^2 \le 1$$
 $s_{grid} > 4m^2, \quad \ell = 0, ..., L_{max}$

Triple Extrapolation

Paulos, Penedones, Toledo, van Rees, Vieira '17

$$\bar{\sigma}_{\rm tot}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^s \frac{s' - 4m^2}{s - 4m^2} \,\sigma_{\rm tot}(s') \, ds'$$

$$\bar{\sigma}_{\rm tot}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^s \frac{s' - 4m^2}{s - 4m^2} \,\sigma_{\rm tot}(s') \, ds'$$

1) We decompose the cross section in partial waves

$$T(s,t) = \frac{16\pi i\sqrt{s}}{\sqrt{s-4}} \sum_{\ell=0}^{\infty} (2l+1) P_l(z) \left(1 - S_\ell(s)\right)$$

$$\bar{\sigma}_{\rm tot}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^s \frac{s' - 4m^2}{s - 4m^2} \,\sigma_{\rm tot}(s') \,ds'$$

1) We decompose the cross section in partial waves

$$T(s,t) = \frac{16\pi i\sqrt{s}}{\sqrt{s-4}} \sum_{\ell=0}^{\infty} (2l+1) P_l(z) \left(1 - S_\ell(s)\right)$$

$$\sigma_{\text{tot}}(s) = 16\pi \sum_{\ell=0}^{\infty} \frac{(2\ell+1)}{s-4} \left(1 - \text{Re}S_{\ell}(s)\right)$$

$$\bar{\sigma}_{\rm tot}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^s \frac{s' - 4m^2}{s - 4m^2} \,\sigma_{\rm tot}(s') \,ds'$$

1) We decompose the cross section in partial

$$T(s,t) = \frac{16\pi i\sqrt{s}}{\sqrt{s-4}} \sum_{\ell=0}^{\infty} (2l+1) P_l(z) \left(1 - S_\ell(s)\right)$$

2) Divide et impera: split the sum and bound separately low and high spins

$$\bar{\sigma}_{\text{tot}}(s) = \int_{4}^{s} ds' \left(\sum_{\ell=0}^{L-2} + \sum_{\ell=L}^{\infty} \right) \frac{(2\ell+1)\left(1 - \operatorname{Re}S_{l}(s')\right)}{s-4}$$
$$\leq L(L-1) + \int_{4}^{s} ds' \sum_{\ell=L}^{\infty} \frac{(2\ell+1)\left(1 - \operatorname{Re}S_{l}(s')\right)}{s-4} \tag{8}$$

al waves
$$\sigma_{
m tot}(s) = 16\pi \sum_{\ell=0}^{\infty} \frac{(2\ell+1)}{s-4} \left(1 - {
m Re}S_{\ell}(s)\right)$$

$$\bar{\sigma}_{\text{tot}}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^s \frac{s' - 4m^2}{s - 4m^2} \,\sigma_{\text{tot}}(s') \,ds' \leq L(L-1) + \int_4^s ds' \sum_{\ell=L}^\infty \frac{(2\ell+1)\left(1 - \operatorname{Re}S_l(s')\right)}{s - 4} \tag{8}$$

3) We use causality and Regge boundedness

$$\lim_{s \to \infty} \frac{T(s, t < 4)}{|s|^2} = 0$$

$$\bar{\sigma}_{\text{tot}}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^s \frac{s' - 4m^2}{s - 4m^2} \,\sigma_{\text{tot}}(s')$$

3) We use causality and Regge boundedness

$$32\pi c_2(t_0) \equiv \frac{1}{4} \frac{\partial^2}{\partial s^2} T(s, t_0) \big|_{s \to 2+t_0/2}$$

$$\bar{\sigma}_{\rm tot}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^s \frac{s' - 4m^2}{s - 4m^2} \,\sigma_{\rm tot}(s')$$

3) We use causality and Regge boundedness

$$32\pi c_2(t_0) \equiv \frac{1}{4} \frac{\partial^2}{\partial s^2} T(s, t_0) \big|_{s \to 2+t_0/2}$$

Lowest dimensional dispersive coefficient

$$32\pi c_2(t_0) = rac{1}{\pi} \int\limits_4^\infty ds' \, rac{{
m Im}\, T(s',t_0)}{(s'-2+rac{t_0}{2})^3}$$

$$\bar{\sigma}_{\text{tot}}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^{s} \frac{s' - 4m^2}{s - 4m^2} \sigma_{\text{tot}}(s') \, ds' \leq L(L-1) + \int_{4}^{s} ds' \sum_{\ell=L}^{\infty} \frac{(2\ell+1)(1 - \operatorname{Re}S_l(s'))}{s - 4} \tag{8}$$
ase causality and Regge boundedness
$$\lim_{s \to \infty} \frac{T(s, t < 4)}{|s|^2} = 0$$
T-channel
 $32\pi c_2(t_0) \equiv \frac{1}{4} \frac{\partial^2}{\partial s^2} T(s, t_0) \Big|_{s \to 2+t_0/2}$
u-channel
t dimensional dispersive coefficient
 $b) = \frac{1}{\pi} \int_{4}^{\infty} ds' \frac{\operatorname{Im}T(s', t_0)}{(s' - 2 + \frac{t_0}{2})^3} \geq 32\pi \frac{\mathcal{K}_L(s, t_0)}{2\pi} \int_{4}^{s} ds' \sum_{\ell=L}^{\infty} (2\ell+1) \left(1 - \operatorname{Re}S_\ell(s')\right)$
 $\mathcal{K}_\ell(s, t_0) = \frac{1}{(s - 2 + \frac{t_0}{2})^3} \frac{\sqrt{s}}{\sqrt{s - 4}} P_\ell \left(1 + \frac{2t_0}{s - 4}\right) > 0$

$$32\pi c_2(t_0) \equiv \frac{1}{4} \frac{\partial^2}{\partial s^2} T(s, t_0) \big|_{s \to 2+t_0/2}$$

$$\bar{\sigma}_{\text{tot}}(s) \equiv \frac{1}{16\pi} \int_{4m^2}^{s} \frac{s' - 4m^2}{s - 4m^2} \sigma_{\text{tot}}(s') \, ds' \leq L(L-1) + \int_{4}^{s} \frac{ds' \sum_{\ell=L}^{\infty} \frac{(2\ell+1)(1 - \operatorname{Re}S_l(s'))}{s - 4}}{(2\ell+1)(1 - \operatorname{Re}S_l(s'))}$$
(8)
3) We use causality and Regge boundedness
$$\lim_{s \to \infty} \frac{T(s, t < 4)}{|s|^2} = 0 \qquad \text{T-channel}$$

$$32\pi c_2(t_0) \equiv \frac{1}{4} \frac{\partial^2}{\partial s^2} T(s, t_0) \Big|_{s \to 2+t_0/2} \qquad \text{U-channel} \qquad \text{S-chan}$$

$$32\pi c_2(t_0) = \frac{1}{\pi} \int_{4}^{\infty} ds' \frac{\operatorname{Im} T(s', t_0)}{(s' - 2 + \frac{t_0}{2})^3} \geq 32\pi \frac{\mathcal{K}_L(s, t_0)}{2\pi} \int_{4}^{s} \frac{ds' \sum_{\ell=L}^{\infty} (2\ell+1) \left(1 - \operatorname{Re}S_\ell(s')\right)}{\mathcal{K}_\ell(s, t_0) = \frac{1}{(s - 2 + \frac{t_0}{2})^3} \frac{\sqrt{s}}{\sqrt{s - 4}} P_\ell \left(1 + \frac{2t_0}{s - 4}\right)$$

 $\bar{\sigma}_{\rm tot}(s) \le L(L -$

$$-1) + rac{2\pi c_2(t_0)}{(s-4) \mathcal{K}_L(s,t_0)}$$

True bound for any s, L, t_0 given $c_2(t_0)$

 $\bar{\sigma}_{\rm tot}(s) \leq L(L -$

In particular, if $c_2(t_0) \equiv \max c_2(t_0)$ will give a universal bound

$$-1) + rac{2\pi c_2(t_0)}{(s-4) \mathcal{K}_L(s,t_0)}$$

True bound for any s, L, t_0 given $c_2(t_0)$

 $\bar{\sigma}_{\rm tot}(s) \leq L(L -$

In particular, if $c_2(t_0) \equiv \max c_2(t_0)$ will give a universal bound

$$ar{\sigma}_{ ext{tot}}(s) \leq L(L-1) + rac{2\pi c_2(t_0)}{(s-4) \mathcal{K}_L(s,t_0)}$$

True bound for any s, L, t_0 given $c_2(t_0)$

When $s \to \infty$, $L \sim \sqrt{s \log(s)}$, and recover the Froissart bound!

$$\bar{\sigma}_{tot}(s) \lesssim \frac{4\pi}{t_0} s \log^2(s)$$

 $\bar{\sigma}_{\rm tot}(s) \leq L(L -$

l₀

In particular, if $c_2(t_0) \equiv \max c_2(t_0)$ will give a universal bound

Non-perturbative S-matrix Bootstrap

$$-1) + rac{2\pi c_2(t_0)}{(s-4) \mathcal{K}_L(s,t_0)} \checkmark$$

True bound for any s, L, t_0 given $c_2(t_0)$

When $s \to \infty$, $L \sim \sqrt{s \log(s)}$, and recover the Froissart bound!

$$\bar{\sigma}_{tot}(s) \lesssim \frac{4\pi}{t_0} s \log^2(s)$$

Martin Pathology $c_2(t_0 \to 4) \to \infty$

 $\bar{\sigma}_{\rm tot}(s) \leq L(L -$

l₀

In particular, if $c_2(t_0) \equiv \max c_2(t_0)$ will give a universal bound

Non-perturbative S-matrix Bootstrap

$$-1) + rac{2\pi c_2(t_0)}{(s-4) \mathcal{K}_L(s,t_0)} \checkmark$$

- True bound for any s, L, t_0 given $c_2(t_0)$

When $s \to \infty$, $L \sim \sqrt{s \log(s)}$, and recover the Froissart bound!

$$\bar{\sigma}_{tot}(s) \lesssim \frac{4\pi}{t_0} s \log^2(s) \to (1.15\pi) s$$

Martin Pathology $c_2(t_0 \to 4) \to \infty$

We cannot set $t_0 = 4$, and then take the limit!!

For any s, optimal in
$$L$$
, t_0
 $\bar{\sigma}_{tot}(s) \leq L(L-1) + \frac{2\pi c_2(t_0)}{(s-4)\mathcal{K}_L(s,t_0)}$

The extremal amplitude at finite s

Factor 5 discrepancy: $1 - ReS_{\ell} = 2$ in the analytic for low ℓ ?

- What happens when $s \to \infty$?
- What is the amplitude that maximizes the interaction at all scales?

What is the amplitude that maximizes the interaction at all scales?

We look for it in the space of **S-matrix Data**

$$T(s,t) = \sum_{n,k=0}^{\infty} c_{n,k} \sigma^n \tau^k, \quad \sigma = \bar{s}^2 + \bar{t}^2 + \bar{u}^2, \ \tau = \bar{s}\bar{t}\bar{u} \qquad \bar{s} = s - 4/3 \qquad \text{Shifted Mandesltam at the crossing symmetric point s=t=u=4/3}$$

What happens when $s \to \infty$?

What is the amplitude that maximizes the interaction at all scales?

We look for it in the space of **S-matrix Data**

What happens when $s \to \infty$?

Non-perturbative S-matrix Bootstrap: $\max c_2$

We can extract the spectrum looking at complex zeros of $S_{\mathcal{C}}(s) = 0$ and compare with the peaks

$$S_{\ell}(s) = 1 + \frac{8\pi i}{\sqrt{s(s-4)}} \int_{4}^{\infty} Q_{\ell}(1 + \frac{2t}{s-4}) T_{t}^{\mathrm{ans}}(s,t) dt$$

$$S_{\ell}(s) = 1 + \frac{8\pi i}{\sqrt{s(s-4)}} \int_{4}^{\infty} Q_{\ell}(1 + \frac{2t}{s-4}) T_{t}^{ans}(s,t) dt$$

$$P = \frac{\ell}{150} \frac{1}{200} \frac{1}{250} \frac{1}{300} \int_{4}^{\infty} Q_{\ell}(1 + \frac{2t}{s-4}) T_{t}^{ans}(s,t) dt$$

$$S_{\ell}(s) = 1 + \frac{8\pi i}{\sqrt{s(s-4)^2}}$$

$$S_{\ell}(s) = 1 + \frac{8\pi i}{\sqrt{s(s-4)}} \int_{4}^{\infty} Q_{\ell}(1 + \frac{2t}{s-4}) T_{t}^{\mathrm{ans}}(s,t) dt$$

Regge theory interpretation

For $s \to \infty$, and fixed-t, Regge theory implies $T(s, t) \sim f(t)s^{\alpha(t)}$ Leading intercept should be $s^{1.15}$, but the ρ ansatz goes to a constant!

Regge theory interpretation

For $s \to \infty$, and fixed-t, Regge theory implies $T(s, t) \sim f(t)s^{\alpha(t)}$ Leading intercept should be $s^{1.15}$, but the ρ ansatz goes to a constant!

Compatible Effective Growth

Conclusions

We cleaned the dust around the Froissart bound (1964) We conjectured the amplitude that maximizes asymptotically the cross-section is at a cusp in the S-matrix Data Still to do: diffractive peak analysis, impact parameter representation For the future: the realistic case of proton-proton scattering

Conclusions

We cleaned the dust around the Froissart bound (1964) Still to do: diffractive peak analysis, impact parameter representation For the future: the realistic case of proton-proton scattering Can we formulate an analytic model for the $N_{max} \rightarrow \infty$ amplitude?

Do our Regge trajectories make sense?

- We conjectured the amplitude that maximizes asymptotically the cross-section is at a cusp in the S-matrix Data

- Yes, see the paper M. Correia, A. Georgoudis, AG to appear soon

Conclusions

We cleaned the dust around the Froissart bound (1964) We conjectured the amplitude that maximizes asymptotically the cross-section is at a cusp in the S-matrix Data Still to do: diffractive peak analysis, impact parameter representation For the future: the realistic case of proton-proton scattering

Can we formulate an analytic model for the $N_{max} \rightarrow \infty$ amplitude?

Do our Regge trajectories make sense? Yes, see the paper M. Correia, A. Georgoudis, AG to appear soon

"As far as I'm aware, Chew and I originally drew straight-line trajectories purely for simplicity. In the early days of Regge poles, speakers who had calculated the trajectories for some nonrelativistic potentials could always get a good laugh by contrasting our straight lines with their non-linear, crooked, cusp-ridden results." Frautschi (1985)

