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What is (im)possible in the Space of QFTs and Strings

| in > |out >UV CFT

IR CFT

RG Flow

Typical QFT

Conformal 
Bootstrap

S-matrix Bootstrap

What we want to measure at colliders 
𝒮in→out ≡ < in |out >

Causality, symmetries, and unitarity constrain the space of physical observables
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Non-perturbative S-matrix Bootstrap

Causality 

Symmetries 

Analyticity

Symmetries, crossing 

Probability conservationUnitarity

Relativistic QFT in flat space-time 2->2 S-matrix

1) Strong non-perturbative Bounds on scattering observables

2) Study the physical properties of the the Extremal amplitude

Well defined set of constraints 



1) String theory is (almost) the only consistent UV completion of D  9 supergravity≥

AQG = ∫ −g(R + 0 × R2 + 0 × R3+αDR4 + …)

String/M theory Bootstrap αmin
DDimension

0.1389
≥
≥

Universal prediction: αmin
D < αD < ∞

ALG, Penedones, Vieira  2212.00151 
ALG, Muerali, Penedones, Vieira 2210.01502

https://arxiv.org/abs/2212.00151
https://arxiv.org/abs/2210.01502


1) String theory is (almost) the only consistent UV completion of D  9 supergravity≥

2) Combining Bootstrap and experimental data to extract the spectrum

AQG = ∫ −g(R + 0 × R2 + 0 × R3+αDR4 + …)

String/M theory Bootstrap αmin
DDimension

0.1389
≥
≥
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QCD spectrum that couples to  statesππ

Universal prediction: αmin
D < αD < ∞

?

We predict the measurable signal

ALG, Haring, Su 2410.23333 

ALG, Penedones, Vieira  2212.00151 
ALG, Muerali, Penedones, Vieira 2210.01502

https://arxiv.org/abs/2410.23333
https://arxiv.org/abs/2212.00151
https://arxiv.org/abs/2210.01502


The total Cross-Section

Everytime there is an S-matrix talk and David Gross is present he asks:  
what about the total cross section?
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The total Cross-Section

Consider the 2->2 scattering amplitude of identical scalar particles of mass m=1

s = (p1 + p2)2, t = (p1 − p3)2, s + t + u = 4

p1 p2

p3 p4

Im T(s, t, u) = = ∑
X

p1 p2

2
X

σtot(s) =
Im T(s, t = 0)

s(s − 4)
≲ π log2 s

 <—> t = 0 b = ∞
Total Cross Section

Everytime there is an S-matrix talk and David Gross is present he asks:  
what about the total cross section?

Froissart bound



The Froissart-Martin Bound and its shortcomings

σtot(s) ≲
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 because we are in D=4log2
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The Froissart-Martin Bound and its shortcomings

σtot(s) ≲
gs

t0
log2(s)

gs = 4π

1) An asymptotic bound hard to measure

 imaximum momentum transfer allowed by analyticity e.g. t0 t0 = 4

2) Affected by the Martin Pathology: a spin-2 at threshold is not forbidden by unitarity

 because we are in D=4log2

LHC

Current fit:  σtot(s) ∼ As0.008 + Bs−0.43

For  scattering is ok, but not in general!ππT ⊃
P2((u − t)/(u + t))

s − 4
+ …



Non-perturbative S-matrix Bootstrap

Sℓ = 1 + i
s − 4

s
fℓ(s)

Maximize your favorite observable following the procedure below
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4m2

ρs =
4m2 − s0 − 4m2 − s

4m2 − s0 + 4m2 − s

s0
s0 4m2

T(s, t, u) =
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∑
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α(abc)ρa
s ρb

t ρc
u
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Non-perturbative S-matrix Bootstrap

CROSSING SYMMETRY + ANALYTICITY

Sℓ = 1 + i
s − 4

s
fℓ(s)

|Sℓ |2 ≤ 1 sgrid > 4m2, ℓ = 0,…, LmaxTruncated set of semidefinite-positive constraints
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Non-perturbative S-matrix Bootstrap

Nmax → ∞, Lmax → ∞, sgrid → s

CROSSING SYMMETRY + ANALYTICITY

Sℓ = 1 + i
s − 4

s
fℓ(s)

|Sℓ |2 ≤ 1 sgrid > 4m2, ℓ = 0,…, LmaxTruncated set of semidefinite-positive constraints

Paulos, Penedones, Toledo, van Rees, Vieira ’17

UNITARITY

Triple Extrapolation

Maximize your favorite observable following the procedure below

4m2

ρs =
4m2 − s0 − 4m2 − s

4m2 − s0 + 4m2 − s

s0
s0 4m2

T(s, t, u) =
Nmax

∑
a,b,c

α(abc)ρa
s ρb

t ρc
u

z = cos θ
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Bounds on the cross-section at finite energies I

1) We decompose the cross section in partial waves 1 − Re Sℓ ≤ 2

2) Divide et impera: split the sum and bound separately low and high spins

Yndurain proposal (1970) 
Zhiboedov GGI lecture notes
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Bounds on the cross-section at finite energies II

lim
s→∞

T(s, t < 4)
|s |2 = 0

Lowest dimensional dispersive coefficient

≥ 32π

S-channelU-channel

T-channel

t = 4 − 2s

Cross. Symm. Point 
s = t = u = 4/3

3) We use causality and Regge boundedness
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True bound for any s, L,  given t0 c2(t0)

In particular, if  will give a universal boundc2(t0) ≡ max c2(t0)
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1 2 3 4

0.05

0.10

0.50

1

5

10

50

Nmax = 8

t0

Martin Pathology 
c2(t0 → 4) → ∞0 ≤ c2(t0) ≤ max c2(t0)

Nmax = 20

Non-perturbative S-matrix Bootstrap

Nmax → ∞

We cannot set , and then take the limit!!t0 = 4
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Bounds on the cross-section at finite energies IV
For any s, optimal in , L t0

max σ̄tot(s)

Non-perturbative S-
matrix Bootstrap
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The extremal amplitude at finite s

Factor 5 discrepancy:  
 in the analytic for low ?1 − ReSℓ = 2 ℓ

In the analytic bound we are missing unitarity in t-channel

Regge trajectory shoots 
up, similar to a Coon 
amplitude!
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We look for it in the space of S-matrix Data

s̄ = s − 4/3 Shifted Mandesltam at the crossing 
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The Froissart Amplitude I

We look for it in the space of S-matrix Data

s̄ = s − 4/3

c0,0 := c0

c2,0 := c2 ≡ c2(4/3)

Shifted Mandesltam at the crossing 
symmetric point s=t=u=4/3

What is the amplitude that maximizes the interaction at all scales?

What happens when ?s → ∞



The Froissart Amplitude II
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We can extract the spectrum looking at complex zeros of  and compare with the peaksSℓ(s) = 0

Non-perturbative S-matrix Bootstrap:  max c2



The Froissart Amplitude III
We can also continue in spin using Froissart-Gribov and analytically continue the spectrum
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The Froissart Amplitude III
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We can also continue in spin using Froissart-Gribov and analytically continue the spectrum
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Regge theory interpretation

For , and fixed-t, Regge theory implies  s → ∞ T(s, t) ∼ f(t)sα(t)

Leading intercept should be , but the  ansatz goes to a constant!s1.15 ρ

Compatible Effective Growth

1

s

s
∂
∂s

log T(s,0)
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We cleaned the dust around the Froissart bound (1964)

We conjectured the amplitude that maximizes asymptotically the cross-section is at a cusp in the S-matrix Data

Still to do: diffractive peak analysis, impact parameter representation

For the future: the realistic case of proton-proton scattering
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Conclusions

“As far as I'm aware, Chew and I originally 
drew straight-line trajectories purely for simplicity. In the early days of 

Regge poles, speakers who had calculated the trajectories for some nonrelativistic potentials could always get a good laugh by 
contrasting our straight lines with their non-linear, crooked, cusp-ridden results.” Frautschi (1985)
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