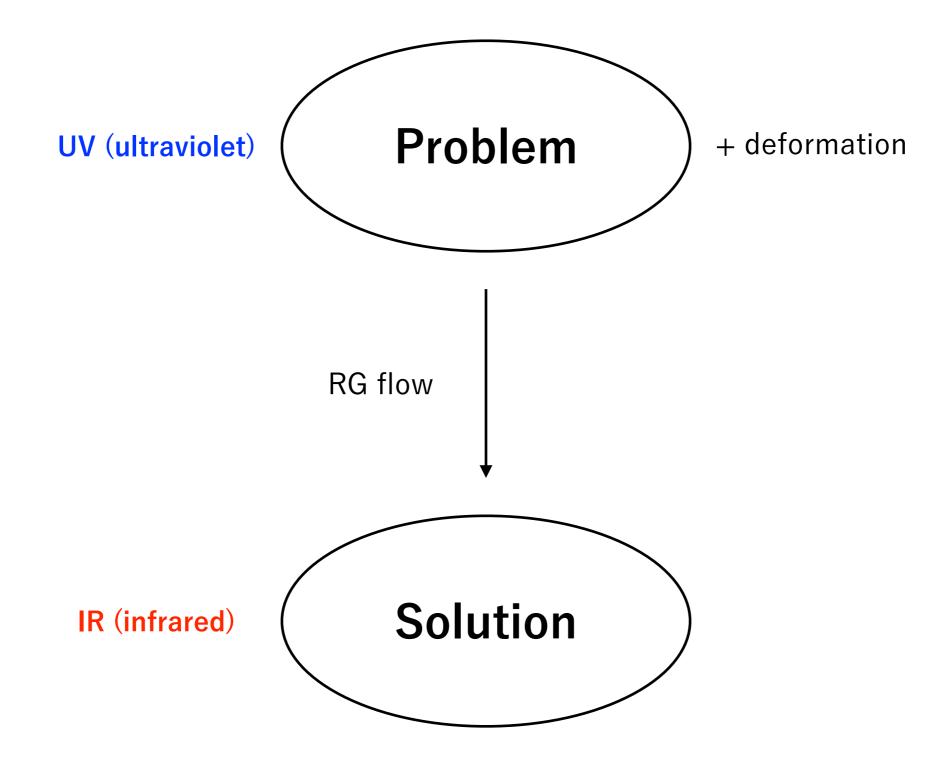
Rational RG flow, extension, and Witt class

Ken KIKUCHI 謙 菊池

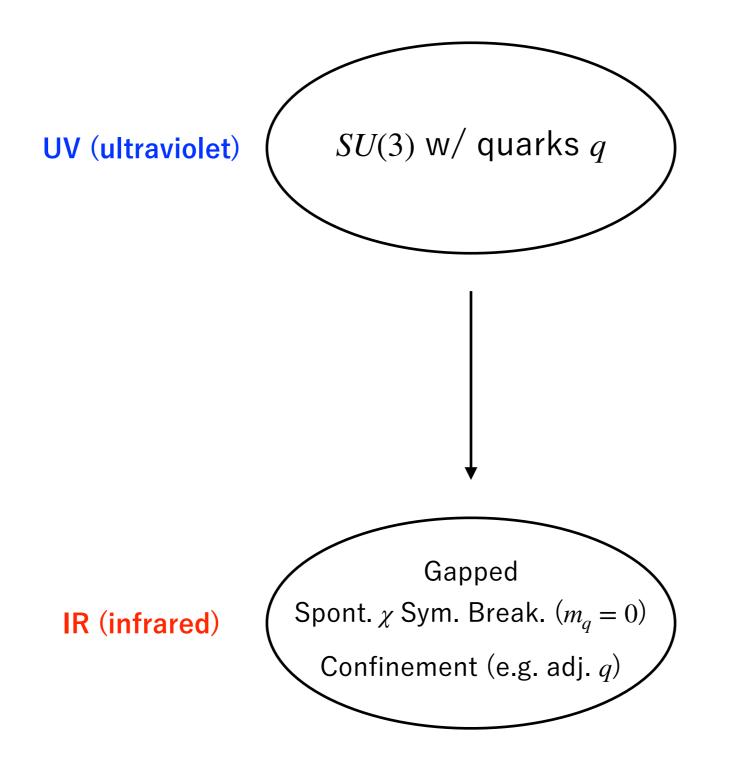
National Taiwan University

Based on 2412.08935 [hep-th] (KK)

Renormalization Group (RG) flow



Example: Quantum ChromoDynamics



Possible answers

Symmetry\Gap	Gapped (or TQFT)	Gapless (~CFT)
Preserved		
Spont. broken		

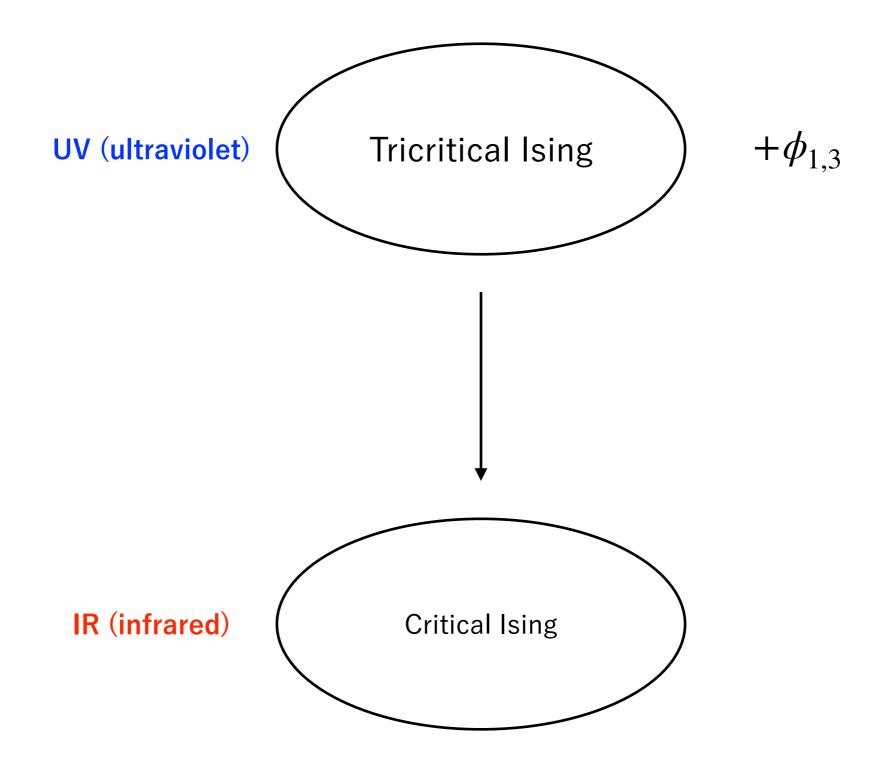
Example: QCD

Symmetry\Gap	Gapped (or TQFT)	Gapless (~CFT)
Preserved	Confinement	
Spont. broken	SxSB	

Are **discrete** quantities invariant under **RG flows**?

No! conformal dimension

Counterexample: Tricritical Ising+ $\phi_{1,3} \rightarrow$ Critical Ising



Counterexample: Tricritical Ising+ $\phi_{1,3} \rightarrow$ Critical Ising

The relevant deformation preserves 3 symmetries {1,x,y}:

UV (ultraviolet) Tricritical Ising:
$$1_0 \quad x_{\frac{3}{2}} \quad y_{\frac{7}{16}}$$

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
IR (infrared) Critical Ising: $1_0 \quad X_{\frac{1}{2}} \quad Y_{\frac{1}{16}}$

Counterexample: Tricritical Ising+ $\phi_{1,3} \rightarrow$ Critical Ising

The relevant deformation preserves 3 symmetries {1,x,y}:

UV (ultraviolet) Tricritical Ising :
$$1_0 \quad x_{\frac{3}{2}} \quad y_{\frac{7}{16}}$$

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
IR (infrared) Critical Ising : $1_0 \quad X_{\frac{1}{2}} \quad Y_{\frac{1}{16}}$

While conformal dimensions (mod 1) are **discrete**, they **jump** at conformal fixed point! $y_{\frac{7}{16}} \rightarrow Y_{\frac{1}{16}}$

- Why conformal dimensions jump?
- What values are allowed for *h*^{*IR*}?
- Can we use the jump to **solve RG flows**?

We answer all by proposing **mathematical definition** of (certain) **RG flow**.

Anticipated question

Then why ('t Hooft) anomalies match?

Anticipated question

Then why ('t Hooft) anomalies match?

An RG flow gives a group homomorphism

$$\phi:G_{UV}\to G_{IR}.$$

Its pullback matches anomalies α_{UV}, α_{IR} as

$$\alpha_{UV} = \phi^* \alpha_{IR}.$$

Content

1. Math background

2. Definition

3. Examples

Content

1. Math background

2. Definition

3. Examples

Generalized symmetry = fusion category

fusion category =analogue of representation

2-dim. irrep. of SU(2) obeys

$2 \otimes 2 = 4 = 1 \oplus 3.$

Analogously, fusion category C has

- simple objects $c_i \in C$,
- fusion product \otimes ,
- direct sum \oplus .

Example: Ising fusion category (FC)

Ising FC={1,x,y}
i.e., rank=3

It has fusion product

 $x \otimes x = 1$, $x \otimes y = y = y \otimes x$, $y \otimes y = 1 \oplus x$.

• Fusion category C may have braiding $c_{c_1,c_2}: c_1 \otimes c_2 \to c_2 \otimes c_1$. $(c_1,c_2 \in C)$

- Braided fusion category (BFC):=fusion category w/ braiding c.
 (w/ consistency conditions)
- **Pre-modular fusion category** (Pre-MFC):=spherical BFC w/ **the** quantum dimension d_i of $c_i \in C$.

• A Pre-MFC *C* is called **modular** or **modular fusion category** if the modular *S*-matrix

$$\widetilde{S}_{i,j} := tr(c_{j,i}c_{i,j})$$
$$= \sum_{c_k \in C} N_{ij}^{\ k} \frac{e^{2\pi i h_k}}{e^{2\pi i (h_i + h_j)}} d_k$$

is **non-singular**, i.e., det $\widetilde{S} \neq 0$.

Example: Ising modular fusion category (MFC)

Ising MFC= $\{1, x, y\}$

$$x \otimes x = 1$$
, $x \otimes y = y = y \otimes x$, $y \otimes y = 1 \oplus x$

$$\widetilde{S} = \begin{pmatrix} 1 & 1 & \sqrt{2} \\ 1 & 1 & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0 \end{pmatrix}$$

(in basis $\{1, x, y\}$)

Content

1. Math background

2. Definition

3. Examples

(certain) RG flow w/ MFC C_{UV}

:=``simple fusion subcategory''

of $C_{UV} \boxtimes C_{IR}$

Just like groups, fusion categories can also be divided.

<u>Group.</u> Let G be a group and $N \subset G$ a normal subgroup.

 \Rightarrow quotient subgroup *G*/*N*

Just like groups, fusion categories can also be divided.

<u>Group.</u> Let G be a group and $N \subset G$ a normal subgroup.

 \Rightarrow quotient subgroup *G*/*N*

<u>Category.</u> Let C be an MFC and $A \in C$ a ``normal subcat. " . (connected étale algebra)

⇒``quotient" subcat. C/A (category of local A-modules)

- We introduce equivalence relation $C \sim C/A$.
- The equivalence class [*C*] is called the Witt equivalence class.

- We introduce equivalence relation $C \sim C/A$.
- The equivalence class [C] is called the Witt equivalence class.

[Davydov-Muger-Nikshych-Ostrik '10]

[Davydov-Nikshych-Ostrik '11]

 $\forall [C], \exists !``simple'' representative C' \in [C].$ (completely anisotropic)

[2209.00016 (KK)]

An RG flow preserving a fusion category C_{UV} gives

a monoidal functor $F: C_{UV} \rightarrow C_{IR}$.

 $(:: C_{UV} = C_{IR} \text{ as fusion category})$

[2209.00016 (KK)]

An RG flow is called **rational** if IR theory=RCFT.

[2209.00016 (KK)]

An RG flow is called **rational** if IR theory=RCFT.

Definition (conjecture).

[2412.08935 (KK)]

{Rational RG flow w/ MFC C_{UV} }

 \cong {Completely anisotropic representative of [$C_{UV} \boxtimes C_{IR}$]}

<u>Theorem.</u>

[2212.13851 (KK)] [2412.08935 (KK)]

Let C_{UV} be the surviving MFC and C_{IR} be its image MFC in IR RCFT under monoidal functor $F: C_{UV} \rightarrow C_{IR}$. If the rational RG flow admits RG domain wall (a.k.a. RG interface), then surviving symmetry objects $c_j^{UV} \in C_{UV}, c_j^{IR} = F(c_j^{UV})$ obey half-integer condition

$$h_j^{UV} + h_j^{IR} \in \frac{1}{2}\mathbb{Z}$$
.

<u>Theorem.</u>

$$h_j^{UV} + h_j^{IR} \in \frac{1}{2}\mathbb{Z}$$

[2212.13851 (KK)]

[2412.08935 (KK)]

Proof.

- Let (h_i, h_j) be conformal dimensions of local operators.
- **Single-valued** correlation functions $\Rightarrow h_i h_j \in \frac{1}{2}\mathbb{Z}$.

• Chiral operators should have $(h_i, 0), (0, h_j) \le \frac{1}{2}\mathbb{Z}$.

• As $c_j^{UV}c_j^{IR} \otimes 1 = c_j^{UV}c_j^{IR}$, the product object has chiral ops. w/ $(h_j^{UV} + h_j^{IR}, 0), (0, h_j^{UV} + h_j^{IR})$.

Where did we use RG domain wall?

[2412.08935 (KK)] [Gaiotto '12]

 $RCFT_{UV}$

Where did we use RG domain wall?

Where did we use RG domain wall?

[2412.08935 (KK)] [Gaiotto '12]

RCFT_{UV} +deformation

Where did we use RG domain wall?

RCFT_{IR}

Where did we use RG domain wall?

[2412.08935 (KK)] [Gaiotto '12]

+deformation

Where did we use RG domain wall?

*RCFT*_{UV} *RCFT*_{IR}

Where did we use RG domain wall?

*RCFT*_{UV} *RCFT*_{IR} c_j^{UV} c_k^{IR}

Where did we use RG domain wall?

 $RCFT_{UV} \times RCFT_{IR}$

Where did we use RG domain wall?

 $RCFT_{UV} \times RCFT_{IR}$ $c_j^{UV} c_k^{IR}$

Content

1. Math background

2. Definition

3. Examples

[2412.08935 (KK)]

Example 1. Tricritical Ising $+\phi_{1,3} \rightarrow \text{Critical Ising}$

The deformation preserves Ising MFC

 $C_{UV} = \{1, x, y\}.$

They flow as

Tricritical Ising : $1_0 \quad x_{\frac{3}{2}} \quad y_{\frac{7}{16}}$ $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$ Critical Ising : $1_0 \quad X_{\frac{1}{2}} \quad Y_{\frac{1}{16}}$

consistent w/ half-integer condition $(h_1, h_{xX}, h_{yY}) = (0, 2, \frac{1}{2})$.

[2412.08935 (KK)]

Example 1. Tricritical Ising $+\phi_{1,3} \rightarrow \text{Critical Ising}$

``Normal subcat." $A = 1 \oplus xX$ gives ``quotient subcat."

 $C_{UV} \boxtimes C_{IR} / A = \text{ToricCode}.$

The MFC is ``simple."

[2312.13353 (KK)]

[2412.08935 (KK)]

Example 2. Non-unitary $M(3,5) + \phi_{1,2} \rightarrow M(2,5)$

The deformation preserves Fibonacci MFC

 $C_{UV} = \{1, x\}.$

They flow as

$$M(3,5): \begin{array}{ccc} 1_0 & x_{\frac{1}{5}} \\ & \downarrow & \downarrow \\ M(2,5): \begin{array}{ccc} 1_0 & X_{-\frac{1}{5}} \end{array}$$

consistent w/ half-integer condition $(h_1, h_{xX}) = (0,0)$.

[2412.08935 (KK)]

Example 2. Non-unitary $M(3,5) + \phi_{1,2} \rightarrow M(2,5)$

``Normal subcat." $A = 1 \oplus xX$ gives ``quotient subcat."

 $C_{UV} \boxtimes C_{IR} / A = \{1\}.$

The MFC is ``simple."

Example 3. Wess-Zumino-Witten $\hat{su}(3)_2 + \phi_{adj} \rightarrow \hat{su}(3)_1$

The deformation preserves \mathbb{Z}_3 MFC

$$C_{UV} = \{1, x, y\}.$$

They flow as

$$\widehat{\mathfrak{su}}(3)_2: \begin{array}{ccc} 1_0 & x_{\frac{2}{3}} & y_{\frac{2}{3}} \\ & \downarrow & \downarrow & \downarrow \\ \widehat{\mathfrak{su}}(3)_1: \begin{array}{ccc} 1_0 & X_{\frac{1}{3}} & Y_{\frac{1}{3}} \end{array}$$

consistent w/ half-integer condition $(h_1, h_{xX}, h_{yY}) = (0, 1, 1)$.

Example 3. Wess-Zumino-Witten $\hat{su}(3)_2 + \phi_{adj} \rightarrow \hat{su}(3)_1$

``Normal subcat." $A = 1 \oplus xX \oplus yY$ gives ``quotient subcat."

 $C_{UV} \boxtimes C_{IR} / A = \{1\}.$

The MFC is ``simple."

Let's solve new RG flow armed w/ the new constraint

[2412.08935 (KK)]

Example 4. E-type $(A_{10}, E_6) + \phi_{h=\frac{1}{11}} \rightarrow \text{Critical Ising}$

The deformation preserves Ising MFC

$$C_{UV} = \{1, x, y\}.$$

As $F: C_{UV} \rightarrow C_{IR}$ is monoidal, we know $C_{IR} = \text{Ising FC} \{1, X, Y\}$.

They have $(h_X, h_Y) = (\frac{1}{2}, \frac{2n+1}{16}) \le \mathbb{Z}$. [Drinfeld-Gelaki-Nikshych-Ostrik '09]

[2412.08935 (KK)]

Example 4. E-type $(A_{10}, E_6) + \phi_{h=\frac{1}{11}} \rightarrow \text{Critical Ising}$

Assume the flow admits RG domain wall à la Gaiotto. [Gaiotto '12] Then, h_i^{IR} obeys half-integer condition.

 h_X is automatic, but h_Y can only take $h_Y = \frac{1}{16}, \frac{9}{16}$.

There is no RCFT w/
$$c < \frac{21}{22} = c_{(A_{10}, E_6)}, h_Y = \frac{9}{16}.$$

The only possibility is $h_Y = \frac{1}{16}$, critical Ising.

[2412.08935 (KK)]

Example 4. E-type $(A_{10}, E_6) + \phi_{h=\frac{1}{11}} \rightarrow \text{Critical Ising}$

They flow as

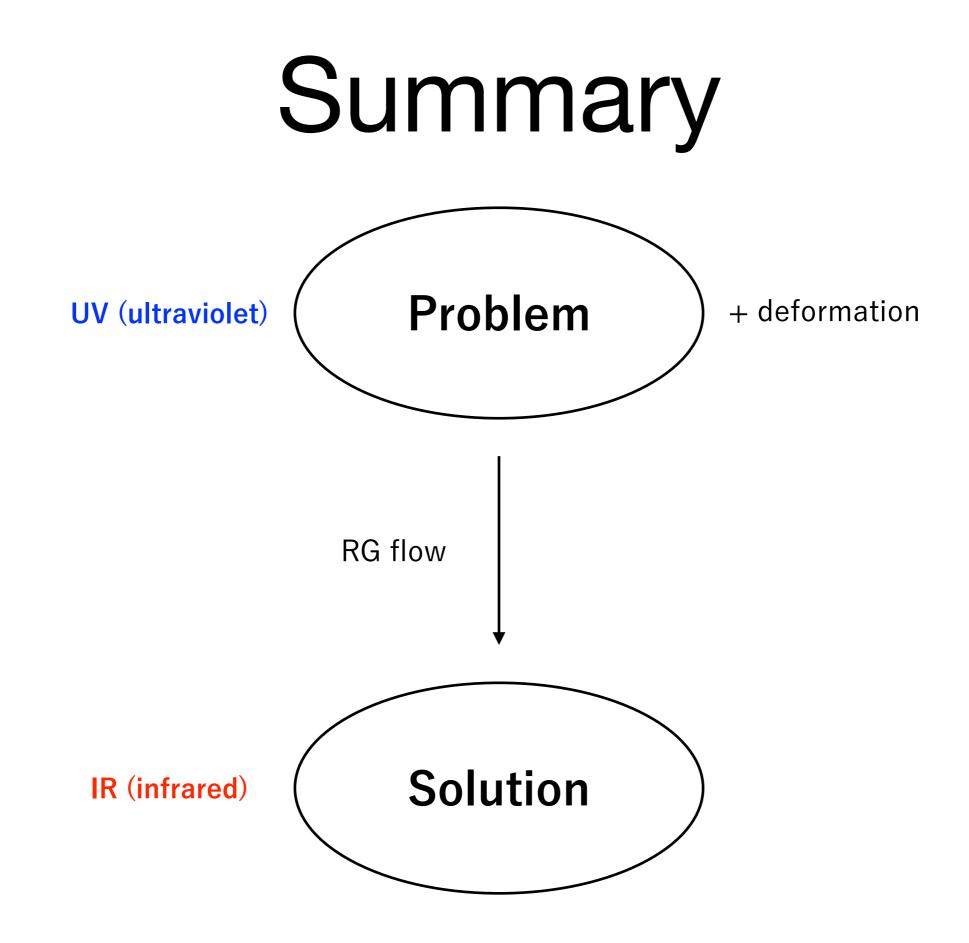
$$(A_{10}, E_6): \qquad \begin{array}{ccc} 1_0 & x_{\frac{7}{2}} & y_{\frac{31}{16}} \\ \downarrow & \downarrow & \downarrow \\ \end{array}$$

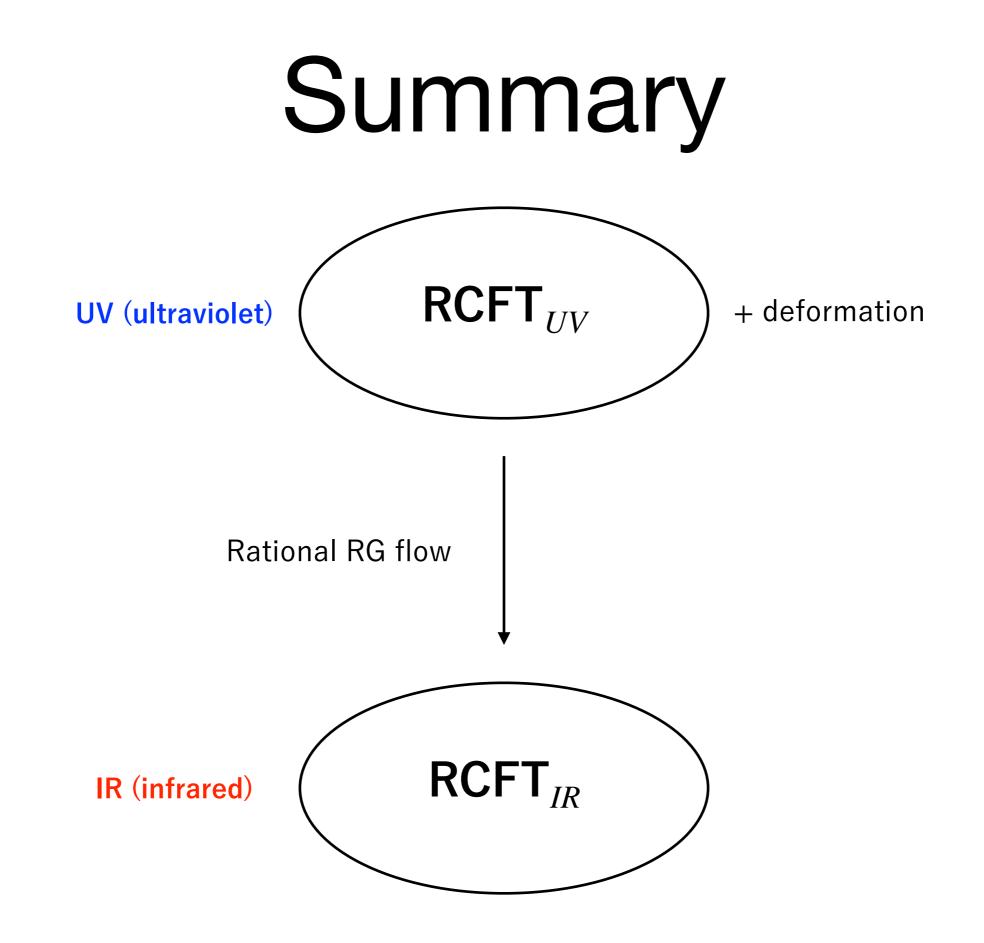
Critical Ising:
$$\begin{array}{ccc} 1_0 & X_{\frac{1}{2}} & Y_{\frac{1}{16}} \end{array}$$

consistent w/ half-integer condition $(h_1, h_{xX}, h_{yY}) = (0, 4, 2)$.

``Normal subcat." $A = 1 \oplus xX \oplus yY$ gives ``simple quotient"

$$C_{UV} \boxtimes C_{IR} / A = \{1\}.$$





Summary

[2412.08935 (KK)]

• Discrete quantities can jump under RG flows.

- Gave definition {Rational RG flow w/MFC C_{UV} } \cong {Completely anisotropic representative of $[C_{UV} \boxtimes C_{IR}]$ }.
- Proved half-integer condition $h_j^{UV} + h_j^{IR} \in \frac{1}{2}\mathbb{Z}$. [2212.13851 (KK)]
- Used the new constraint to **solve** $(A_{10}, E_6) \rightarrow \text{Critical Ising}$.