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Defect in QFT
• Defects are usually defined by non-local operators/B.C. in QFT . 

• Defects are classified by their dimensions: line defects, 
surface defects..(Wilson line, Wilson surface).

• Physically, defect may arise from p-dimensional degrees of 
freedom coupled to D-dimensional bulk QFT

2

where Xµ(x̂) is the embedding function parameterizing
⌃ ,! M. Physically, the defect can arise from coupling
p-dimensional degrees of freedom to the bulk CFT.1 As
mentioned in the introduction, we treat p-dimensional
degrees of freedom as internal degrees of freedom, which
means that one should integrate out them to obtain the
defect operator. If a Lagrangian description exists, the
DCFT action has the ambient part and the defect part

IDCFT =

Z
dDx

p
gLCFT[�] +

Z
dpx̂

p
�Ldefect[�, ] ,

(1)
where � denotes the bulk degrees of freedom and  the
defect degrees of freedom.2

Stress tensor. Let us restrict our attention to confor-
mal defects, which are hyperplanes or spheres, to preserve
part of the conformal symmetry. A p-dimensional con-
formal defect breaks the ambient conformal symmetry
SO(1, D + 1) to SO(1, p + 1) ⇥ SO(D � p). For a CFT
in flat space, conformal symmetry forces hTµ⌫(x)i = 0.
However, in the presence of defect, the one-point func-
tion of ambient stress-energy tensor does not necessarily
vanish. To illustrate, consider a p-dimensional planar
defect in R

D. The metric is then divided into parallel
and transverse directions: ds2 = dx̂adx̂a + dxidxi with
a = 0, . . . , p� 1 and i = p, . . . , D � 1. The stress-energy
tensor follows from varying the defect partition function
and it is often useful to split it into the ambient part Tµ⌫

and the defect localized part tab. See for instance [48, 63].
The ambient stress-energy tensor is a symmetric traceless
tensor of dimensionD and spin 2, hence the (partial) con-
servation plus residual conformal symmetry fix its form
completely [63, 64]3
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|xi|D
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ii = 0 ,
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ii =

h

|xi|D

✓
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D
�ij �

xixj

|xi|2

◆
,

(2)

where h characterizes the property of the defect. Fur-
thermore, at the fixed point of defect RG flow, the defect
localized stress tensor tab is a defect local operator of
dimension p whose vev must vanish due to the residual
conformal symmetry on the defect [48]

hhtabii = 0 . (3)

This does not hold if we are away from the fixed point of
defect RG flow.

1
Or from imposing boundary conditions on the bulk CFT fields.

In the codimension one case, if one of the two sides is trivial, the

defect becomes a boundary.
2
See [60] for such an explicit construction of Wilson loop operator

in gauge theory.
3
In this paper the notation hhOii refers to the correlation function

measured in the presence of defect

hhOii ⌘ hODi/hDi ,

where D denots the defect.

C. Defect localized entropy

Now we define defect localized entropy based on the
previous setup. Consider a p � 2 dimensional sphere of
radius ` localized on the static defect which divides the
defect into two parts. We want to compute the EE be-
tween the two parts for the defect state constructed by
integrating out the bulk, which is von Neumann entropy

S = �Tr(⇢ log ⇢)

of the defect reduced density matrix ⇢̂A constructed by
only cutting along the defect subregion A

[⇢̂A]ab =
1

ZDCFT

Z

M
D�

Z

⌃
D e�ICFT�Idefect

⇥

Y

x̂2A

�( (0+, x̂)�  b(x̂))�( (0
�, x̂)�  a(x̂)) ,

(4)

where � denotes the bulk degrees of freedom and  the
defect degrees of freedom (more details about this density
matrix are given in appendix A). The defect localized en-
tropy can be considered as a correlation measure for the
defect degrees of freedom  . And it can also be viewed as
a generalization of the ordinary EE to the defect. As we
will see, this generalization defines an intrinsic property
of the defect and quantifies the defect degrees of freedom.
As usual, the entanglement entropy can be computed

by replica trick. Let us start by considering a codi-
mension two bulk sphere (D � 2 dimensional) of the
same radius ` centered at the defect, with the previous
p � 2 sphere a subsphere, as shown in figure 1. Follow-
ing [48, 65–67] we perform CHM map for our system. We
parameterize the flat metric as

ds2 = dt2
E
+ dx̂adx̂a + (d|xi

|)2 + |xi
|
2 ds2SD�p�1 , (5)

with the defect along {tE , x̂a
} (here a = 1, . . . , p � 1)

and located at |xi
| = 0. Defining r2 = |x̂a

|
2 + |xi

|
2, the

coordinate transformation

tE =
` cos ✓ sin

�
⌧

`

�

1 + cos ✓ cos
�
⌧

`

� , r =
` sin ✓

1 + cos ✓ cos
�
⌧

`

� ,

|x̂a
| = r cos� , |xi

| = r sin� ,

(6)

maps the D dimensional flat space to a D dimensional
sphere S

D,

e⌦2ds2 = cos2 ✓d⌧2 + `2(d✓2 + sin2 ✓d⌦2) , (7)

d⌦2 =
�
cos2 �ds2Sp�2 + d�2 + sin2 �ds2SD�p�1

�
, (8)

where e⌦ = 1 + cos ✓ cos(⌧/`), ⌧ 2 (0, 2⇡], ✓ 2 [0,⇡/2],
and � 2 [0,⇡/2]. Now the defect is located at � = 0,
wrapping a maximal S

p as illustrated in figure 1. The
defect free energy can be computed

FD = � log
�
ZDCFT/ZCFT

�
⌘ � loghD[Sp]i , (9)



Defect landscape
• Topological defects, generalized symmetry. 

• Conformal defects, impurities&critical system.

• Boundary, Cross-Cap, monodromy, entangling surface…



Fun with defects

• Localization with defects 

• Defect RG, Defect ER=EPR

• Bootstrap with defects

• Defect fusion, intersection [Yifan’s talk & Tom’s talk]



Conformal defect Kapustin 2006, Billò-Gonçalves-Lauria-Meineri 2016

• Defect breaks part of conformal symmetry. 

• Bulk stress tensor 1-pt function can be 
fixed up to a constant
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We consider p-dimensional defects inD-dimensional conformal field theories (CFTs) and construct
defect localized entropy by performing the replica trick only on the defect while keeping the bulk
intact. The defect localized entropy is a measure of entanglement between the degrees of freedom
localized on the defect. We show that at the fixed point of defect renormalization group (RG) flow,
defect localized entropy is equal to minus defect free energy for universal part. We construct defect
C-functions in various dimensions and provide a proof of the monotonicity for p = 2, 3.

A. Introduction

Defects are usually defined by non-local operators with
fixed spacetime location in QFT. Therefore they can be
classified by their dimensions, such as line defects, surface
defects, etc. The familiar examples of defects are Wilson
lines and Wilson surfaces in gauge theory. Not all defects
can be described by operators in terms of bulk elemen-
tary fields. A large class of defects are defined through
boundary conditions. For instance, boundary or interface
can be viewed as codimension one defects. Local opera-
tors in QFT can be regarded as zero dimensional defects
although we usually do not treat them in this way.

Counting the degrees of freedom under RG flow is of
great importance in QFT. Zamolodchikov proved the ex-
istence of a C-function which decreases monotonically
under RG flows and coincides with the CFT central
charge at the conformal fixed point in D = 2 [1]. Further
results in diverse dimensions were discussed in [2–31]. For
our purposes we highlight the entropic method in [6, 13],
which establishes the C-theorem using the entanglement
entropy across an entangling surface which divides the
space into two regions on a time slice.

Let us now consider QFT with defects. A defect RG
may be triggered by perturbing the defect CFT (DCFT)
with relevant defect operators. One natural question is if
there exists a defect C-function, which counts the defect
degrees of freedom. Defect RG flows have been studied
in [32–51]. For our purposes, it is important to high-
light the conjecture by Kobayashi, Nishioka, Sato and
Watanabe [44] that a defect C-function should coincide
with defect free energy at fixed point. In the case of
line defects, Cuomo, Komargodski and Raviv-Moshe [51]
proved the monotonicity of an entropy formula.

The focus of this letter is the construction of defect
C-functions for various dimensional defects. We first de-
fine defect localized entropy by counting entanglement
between degrees of freedom localized on the defect. De-
fect localized entropy can be computed by performing

⇤ mkyuan19@fudan.edu.cn
† yang zhou@fudan.edu.cn

replica trick only for the defect degrees of freedom while
keeping the bulk intact. Notice that the entanglement
entropy we defined here is di↵erent from that defined
in [52]. The latter is given by the defect contribution
to the bulk entanglement entropy and generally not a
decreasing function along defect RG as shown in [44].
Employing Casini-Huerta-Myers mapping, we show that
defect localized entropy equals to minus defect free en-
ergy for universal terms at fixed points of defect RG. We
will construct defect C-functions from the defect local-
ized entropy for surface defects and volume defects, and
show that they monotonically decrease in both cases us-
ing quantum information approach.

B. Setup of DCFT

We consider a local, unitary, Euclidean CFT on a
D-dimensional spacetime M with coordinates x

µ (µ =
0, . . . , D � 1) and metric gµ⌫ , the so called “bulk” CFT.
We introduce a codimension D � p defect along a p-
dimensional submanifold ⌃ with coordinates x̂

a (a =
0, . . . , p � 1). We parameterize ⌃ ,! M by embed-
ding functions X

µ(x̂) such that ⌃’s induced metric is
�ab ⌘ gµ⌫@aX

µ
@bX

⌫ . Physically, the defect can arise
from p-dimensional degrees of freedom coupled to the
bulk CFT and/or boundary conditions imposed on the
bulk CFT fields. If a Lagrangian description exists, the
DCFT action has the ambient part and the defect part

IDCFT =

Z
dDx

p
gLCFT +

Z
dpx̂

p
�Ldefect . (1)

In the case of codimension one, if one of the two sides is
trivial, the defect becomes a boundary.
Stress tensor. Let us restrict our attention to confor-

mal defects, which are hyperplanes or spheres, to pre-
serve part of the conformal symmetry. p-dimensional
conformal defects break the ambient conformal symme-
try SO(1, D+1) to SO(1, p+1)⇥SO(D�p). For a CFT
in flat space, conformal symmetry forces hTµ⌫(x)i = 0.
However, in the presence of defect, the one-point func-
tion of ambient stress-energy tensor does not necessarily
vanish. To illustrate, let us consider a p-dimensional pla-
nar defect in R

D. The metric is then divided into parallel
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and transverse directions: ds2 = dx̂adx̂a + dxidxi with
a = 0, . . . , p� 1 and i = p, . . . , D � 1. The stress-energy
tensor follows from varying the defect partition function
and it is often useful to split it into the ambient part Tµ⌫

and the defect localized part tab. See for instance [44, 53].
The ambient stress-energy tensor is a symmetric traceless
tensor of dimensionD and spin 2, hence the (partial) con-
servation plus residual conformal symmetry fix its form
completely [53, 54]

hT
ab
i = �

D � p� 1

D

h

|xi|D
�
ab

, hT
ai
i = 0 ,

hT
ij
i =

h

|xi|D

✓
p+ 1

D
�
ij
�

x
i
x
j

|xi|2

◆
,

(2)

where h characterizes the property of the defect. Fur-
thermore, at the fixed point of the defect RG flow, the
defect localized stress tensor tab is a defect local operator
of dimension p whose vev must vanish due to the residual
conformal symmetry on the defect [44]

ht
ab
i = 0 . (3)

This does not hold if we leave away from the fixed point
of defect RG.

C. Defect localized entropy

Now we want to define defect localized entropy based
on the previous setup with p-dimensional defect in D-
dimensional spacetime. Let us consider a p � 2 dimen-
sional sphere of radius ` localized on the static defect
which divides the defect into two parts. We want to
compute the entanglement entropy (EE) between the two
parts within the defect. This can be considered as a cor-
relation measure for the degrees of freedom localized on
the defect. And it can also be viewed as a submanifold
generalization of the ordinary EE. However as we will
see, this generalization defines an intrinsic property of
the defect and quantifies the defect degrees of freedom.

As usual, the entanglement entropy can be computed
by replica trick. Let us start by considering a codimen-
sion two bulk sphere (D � 2 dimensional) with the same
radius ` centered at the defect, with the previous p � 2
sphere a subsphere. Following [44, 55–57] we perform
Casini-Huerta-Myers map for our system. We parame-
terize the Minkowski flat metric as

ds2 = �dt2 + dx̂a
dx̂

a + (d|xi
|)2 + |x

i
|
2 ds2SD�p�1 , (4)

with the defect along {t, x̂
a
} (here a = 1, . . . , p� 1) and

located at |xi
| = 0. Defining r

2 = |x̂
a
|
2 + |x

i
|
2, the bulk

sphere’s causal development is given by r ± t  `. The
coordinate transformation

t =
` cos ✓ sinh

�
⌧
`

�

1 + cos ✓ cosh
�
⌧
`

� , r =
` sin ✓

1 + cos ✓ cosh
�
⌧
`

� ,

|x̂
a
| = r cos� , |x

i
| = r sin� ,

(5)

maps the bulk sphere’s causal development to the static
patch of D-dimensional de Sitter space, dSD, with metric

e⌦2ds2 = � cos2 ✓d⌧2 + `
2(d✓2 + sin2 ✓d⌦2) , (6)

d⌦2 =
�
cos2 �ds2Sp�2 + d�2 + sin2 �ds2SD�p�1

�
, (7)

where e⌦ = 1+cos ✓ cosh(⌧/`), ⌧ 2 (�1,1), ✓ 2 [0,⇡/2],
and � 2 [0,⇡/2]. The defect is then located at � = 0, i.e.
along a maximal dSp.

defect

FIG. 1. Illustration of the Casini-Huerta-Myers map (5) and
the following analytic continuation.

Analytically continuing to Euclidean time, ⌧ ! �i⌧E

with ⌧E ⇠ ⌧E + 2⇡`, (6) becomes the metric of S
D,

with the defect wrapping a maximal S
p as illustrated

in FIG. 1. As a result, the CFT free energy can be com-
puted by Euclidean path integral, F = � logZ, with Z

the DCFT’s Euclidean partition function on S
D. The

defect free energy can be further computed

FD = � log (Z/ZCFT) ⌘ � loghD[Sp]i , (8)

where we use D[Sp] to denote the defect operator on
the p-dimensional subsphere. Under the replica trick, we
should consider the n-fold cover S

p
n in S

D, which means
that we only replica the defect degrees of freedom while
keeping the bulk intact. This can be understood as a con-
struction of a new defect operator by inserting a p�2 di-
mensional twist operator at the entangling surface within
the defect. Recalling the analytic continuation n ! 1 of
Rényi entropy in the replica trick, one can naturally de-
fine the defect localized EE by taking n ! 1,

SD = lim
n!1

1

1� n
log

hD[Sp
n]i

hD[Sp]in
. (9)

To compute (9), let us consider the n � 1 deformation
as the deformation of the ⌧⌧ component of metric, and
expand the defect free energy,

loghD[Sp
n]i = loghD[Sp]i �

1

2

Z

Sp

��⌧⌧ ht
⌧⌧
i+ · · · , (10)

where ��
⌧
⌧ = n

2
� 1. Since the higher orders do not

contribute to the entropy we obtain

SD = loghD[Sp]i +

Z

Sp

ht
⌧
⌧ i . (11)

• Displacement operator



Weyl anomaly on surface defect
• For a surface defect, there is an anomaly, analogy to 

conformal anomaly in CFT2, but now we have b, d1,d2

• This can also be seen from log divergence of expectation value

a p-dimensional planar defect in Rd. The metric is then divided into parallel and

transverse directions:

ds2 = dx̂adx̂a + dxidxi (2.1)

with a = 0, . . . , p � 1 and i = p, . . . , d � 1. The stress-energy tensor follows from

varying the defect partition function and can be split into the ambient part T µ⌫ and

the defect localized part T̂ ab. See [3, 40] for instance. The ambient stress-energy

tensor is a symmetric traceless tensor of dimension d and spin 2, hence the (partial)

conservation plus residual conformal symmetry fix its form completely [40]1

hhT ab
ii = �

d� p� 1

d

h

|xi|d
�ab , hhT ai

ii = 0 ,

hhT ij
ii =

h

|xi|d

✓
p+ 1

d
�ij �

xixj

|xi|2

◆
,

(2.2)

where h characterizes the property of the defect.2

2.1 Defect anomalies

Even-dimensional defects have Weyl anomalies, which means that the trace of the

defect localized stress-energy tensor does not vanish. For surface defects [7, 11, 41]3

hhT̂ a

a
ii = �

1

12⇡

h
bR⌃ + d1⇧̃

µ

ab
⇧̃ab

µ
� d2W

ab

ab

i
, (2.3)

where R⌃ is the intrinsic Ricci scalar of the defect submanifold ⌃, ⇧̃µ

ab
is the traceless

part of the second fundamental form, and Wabcd is the pullback of the bulk Weyl

tensor to ⌃. b, d1 and d2 are defect central charges, where d1 is related to the

coe�cient of the displacement operator 2-point correlator and d2 is related to h in

(2.2) through (3.17).

Another way to see the Weyl anomalies of surface defects is that there are ultra-

violet divergences in the expectation value of surface operators

loghD⌃i �

Z

⌃

A⌃vol⌃ log `/✏ , (2.4)

with the anomaly density A⌃ given by

A⌃ =
1

12⇡

h
bR⌃ + d1⇧̃

µ

ab
⇧̃ab

µ
� d2W

ab

ab

i
. (2.5)

1The notation hhOii refers to the correlation function measured in the presence of defect

hhOii ⌘ hODi/hDi ,

where D denotes the defect.
2In our convention, h in (2.2) corresponds to �aT in [40].
3Our normalization di↵ers from [37] by a factor of 2.
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Defect Supersymmetric Rényi Entropy and Weyl Anomaly
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We present a closed-form expression for the contribution of surface defects to the supersymmetric
Rényi entropy in six-dimensional (2, 0) theories. Our results show that this defect contribution is a
linear function of 1/n and is directly proportional to 2b� d2, where b and d2 are the surface defect
Weyl anomaly coe�cients. We also derive a closed-form expression for the defect contribution to
the supersymmetric Casimir energy, which simplifies to �d2 (up to a proportionality constant) in
the chiral algebra limit.

Introduction. Defects play a pivotal role in quantum
field theory, with familiar examples including Wilson
lines and Wilson surfaces. These defects often represent
external probes coupled to the theory, such as a charged
heavy probe particle in gauge theory, which is described
by a Wilson line and serves as a key tool for understand-
ing the theory’s non-perturbative properties. Meanwhile,
entanglement entropy and Rényi entropy have garnered
significant attention in recent years for their role in link-
ing information theory, field theory, and gravity. These
quantities are closely related to conformal anomalies in
conformal field theories and can be computed holographi-
cally. As a one-parameter generalization of entanglement
entropy, Rényi entropy provides deeper insights into the
structure of quantum field theories, making it essential
to account for defect contributions to Rényi entropy.

While the defect contribution to entanglement entropy
has been studied in previous works [1–6], a method for
computing the corresponding contributions to Rényi en-
tropy has remained elusive. In this letter, we take a
significant step forward by calculating the contribution
of surface defects to the supersymmetric Rényi entropy.
A key motivation for studying surface defects in six di-
mensions is to gain insights into (2, 0) theories, whose
proper formulation remains a challenging open problem.
By combining supersymmetry with Rényi entropy, one
can define a supersymmetric refinement of the ordinary
Rényi entropy for these theories, as proposed in prior
works [7, 8]. This approach involves placing (2, 0) the-
ories on S1

�
⇥ H5 with an additional R-symmetry back-

ground field. Notably, the supersymmetric Rényi entropy
exhibits universal relations with conformal and ’t Hooft
anomalies and can be computed holographically via two-
charge hyperbolic black holes in the large N limit.

Building on these developments, we analyze the contri-
bution of the most natural operator, the surface opera-
tor, in (2, 0) theories on S

1
�
⇥H

5. Our findings reveal that
the surface operator contribution to the supersymmetric
Rényi entropy is a linear function of 1/n and directly
proportional to 2b � d2, where b and d2 are the Weyl
anomaly coe�cients associated with the surface defect.
Additionally, we derive a closed-form expression for the
defect contribution to the supersymmetric Casimir en-
ergy, which simplifies to �d2 (up to a proportionality

constant) in the chiral algebra limit.
Defects in CFTs. Starting with a d-dimensional Eu-

clidean CFT in flat space R
d, introducing a p-dimensional

planar conformal defect will break its conformal symme-
try SO(1, d+ 1) to SO(1, p+ 1)⇥ SO(d� p). The CFT
stress-energy tensor one-point function hTµ⌫i in flat space
vanishes due to the conformal symmetry. However, in
the presence of defect, this one-point function does not
necessarily vanish. Consider a p-dimensional defect (lo-
cated at xi = 0) on submanifold R

p ,! R
d and we can

write the ambient metric as ds2 = dx̂adx̂a+dxidxi, with
a = 0, . . . , p � 1 the indices labeling the directions par-
allel to the defect and i = p, . . . , d� 1 for the transverse
directions. Varying the defect partition function gives
the defect CFT stress-energy tensor, which can be split
into the ambient part Tµ⌫ and the defect localized part
T̂ ab [3, 9]. The ambient stress-energy tensor is a sym-
metric traceless tensor of dimension d and spin 2, and
from the (partial) conservation and residual conformal
symmetry, its one-point function in the presence of the
defect can be fixed [10]

hhT ab
ii = �

d� p� 1

d

h

|xi|d
�ab , hhT ai

ii = 0 ,

hhT ij
ii =

h

|xi|d

✓
p+ 1

d
�ij �

xixj

|xi|2

◆
,

(1)

up to a factor h, which characterizes the property of the
defect [9]. In this letter we are particularly interested in
surface defects with p = 2. In this case, there will be
defect Weyl anomalies, similar to the Weyl anomalies in
even dimensional CFTs.
Defect Weyl anomalies. Even-dimensional defects suf-

fer fromWeyl anomalies, i.e., the trace of the defect local-
ized stress-energy tensor T̂ does not vanish. For surface
defects [11–13],

hhT̂ a

a
ii = �

1

24⇡

h
bR⌃ + d1⇧̃

µ

ab
⇧̃ab

µ
� d2W

ab

ab

i
, (2)

with R⌃ the intrinsic Ricci scalar of the defect submani-
fold ⌃, ⇧̃µ

ab
the traceless part of the second fundamental

form, and Wabcd the pullback of the bulk Weyl tensor.
The coe�cients b, d1 and d2 are defect central charges,
where d1 is proportional to the coe�cient of the displace-
ment operator 2-point correlator and d2 is related to h

2

in (1) through

d2 = 6⇡⌦d�3
d� 1

d
h . (3)

The Weyl anomaly of surface defect is also manifested
in the logarithmic divergence of its expectation value

loghD[⌃]i �

Z

⌃
A⌃vol⌃ log `/✏ , (4)

with the anomaly density A⌃ given by

A⌃ =
1

24⇡

h
bR⌃ + d1⇧̃

µ

ab
⇧̃ab

µ
� d2W

ab

ab

i
. (5)

From (4) and (5), one can see that the free energy of
spherical surface defect is [14]

F = � loghD[S2]i = �
b

3
log `/✏ . (6)

Defect Weyl anomalies also determine the defect contri-
bution to entanglement entropy (EE) S̃. In [15] it was
shown that the surface defect contribution to EE is [16]

S̃ = �F + �E = loghD[S2]i+

Z
hhT ⌧

⌧
ii

=
1

3

✓
b�

d� 3

d� 1
d2

◆
log `/✏ .

(7)

This formula can be used to determine central charges for
a class of surface defects. For 1/2-BPS Wilson surfaces
in the 6d AN�1 N = (2, 0) SCFT, both hhTµ⌫

ii and S̃ in
(7) can be calculated holographically [4, 5]. Using these
results, (1) and (7) give

b = 24 (⇤, ⇢)+3 (⇤,⇤) , d2 = 24 (⇤, ⇢)+6 (⇤,⇤) , (8)

with ⇤ the highest weight of the defect representation
R in the AN�1 Lie algebra su(N), ⇢ the Weyl vector of
su(N), and (·, ·) the inner product in the Lie algebra. In
the case of symmetric representation (k), (8) gives

b(k) = 12Nk + 3k2 � 12k � 3k2/N ,

d2(k) = 12Nk + 6k2 � 12k � 6k2/N .
(9)

While for anti-symmetric representation [k],

b[k] = 12Nk � 12k2 + 3k � 3k2/N ,

d2[k] = 12Nk � 12k2 + 6k � 6k2/N .
(10)

The main purpose of this letter is to show that, for Wilson
surfaces in 6d (2, 0) theories, the defect contribution to
supersymmetric Rényi entropy is fixed by b and d2.

Supersymmetric Rényi entropy. Rényi entropy is a one
parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we

compute entanglement entropy using replica trick and
returns to EE in the limit n ! 1,

Sn ⌘
1

1� n
log Tr⇢n =

1

1� n
log

Zn

Zn
, (11)

where n is the Rényi index and Zn is the partition func-
tion on the n-replica space. For d-dimensional CFT
in flat space, using a conformal transformation, the n-
replica space with a spherical entangling surface can be
mapped to S

1
�
⇥ H

d�1 with � = 2⇡n. In this letter we
mainly focus on 6d (2, 0) theories with d = 6 and the
Rényi entropy can be transformed to thermal entropy
on S

1
�
⇥ H

5. The replica trick generally breaks the su-
persymmetry because of conic singularity. Namely there
will be no surviving Killing spinors for n 6= 1 [7]. To
preserve supersymmetry, one should turn on extra R-
symmetry background fields, leading to the observable
of supersymmetric Rényi entropy (SRE) [7, 8]. The R-
symmetry group of 6d (2, 0) theories is SO(5), which has
two U(1) Cartans. Therefore one can turn on two inde-
pendent R-symmetry background gauge fields (chemical
potentials) to twist the boundary conditions along the
replica circle S

1
�
. A general analysis of the Killing spinor

equation on the conic space (S6
n
or S

1
�=2⇡n⇥H

5) leads to
the solution of the R-symmetry chemical potential [7] [17]

µ(n) := qiA
i =

n� 1

2
, (12)

with q1 = q2 = 1/2 the R-charges of the Killing spinor
under the two U(1) Cartans. A general background sat-
isfying (12) can be expressed as [8]

A1 = (n� 1) r1 , A2 = (n� 1) r2 , (13)

with r1 + r2 = 1. Assuming SRE is a polynomial of 1/n,
which is verified by free field calculations as well as large
N results, it has been shown [8] that SRE enjoys uni-
versal relations with Weyl anomalies (as well as ’t Hooft
anomalies). The goal of this letter is to show that the de-
fect SRE also enjoys universal relations with defect Weyl
anomalies.
Summary of the results. The main result of this letter

is the exact N = (4, 4) surface defect contribution to the
supersymmetric Rényi entropy (defect SRE) of 6d (2, 0)
theories. We show that for theories characterized by A-
type Lie algebra g, it is a linear function of � := 1/n

S� [g] =
2bg � d2g

6

hr1r2
2

(� � 1) + 1
i
log `/✏ , (14)

for any representation R, where bg and d2g are given
by (8) and r1,2 are background parameters denoting the
weights of the two U(1) R-symmetry chemical potentials,
satisfying the constraint r1 + r2 = 1. The basic ingredi-
ents of our argument are the following:
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1 Introduction

We compute the entanglement entropy of a spherical region that contains an external

heavy quark (or Wilson line) at its center, see figure 1(a). We compute the additional

entanglement entropy relative to the one present in the vacuum. This is a UV finite

quantity. In a conformal field theory this computation can be done if one knows the result

for the circular Wilson loop as well as the one point function of the stress tensor in the

presence of the circular Wilson loop. The reason is simple, this problem can be mapped to

the computation of the ordinary entropy for a thermal field theory on hyperbolic space at

inverse temperature � = 2⇡ [1]. To compute the entropy we need to know the free energy

as well as its first derivative with respect to the temperature. The latter can be computed

by slightly changing the size of the thermal circle in the euclidean geometry, which is of

the form S1
⇥ Hd�1. This is achieved by an insertion of the stress tensor. Both of these

can be computed at inverse temperature � = 2⇡ since this space is conformal to ordinary

flat space. In flat space the one point function of the stress tensor in the presence of a

Wilson loop is fixed by conformal symmetry up to an overall coe�cient.

Then the additional entanglement entropy due to the Wilson loop has the form

SW = (1� n@n) loghW i|n=1 = loghW i+

Z
hT⌧⌧ iW (1.1)

The simplest example is a pure Chern Simons theory. Here T = 0 and the entanglement

entropy is just given by the Wilson loop expectation value [2, 3].

In certain supersymmetric field theories one has exact methods for reducing the compu-

tation of the Wilson loop to a certain matrix integral [4, 5]. It is also possible to compute

the one point function of the stress tensor in the presence of the Wilson loop. We will pro-

vide a precise way to relate these computations to the entanglement entropy in question.

In three dimensional theories, [6] have defined a certain supersymmetric Rényi entropy

which coincides with the ordinary entanglement entropy as we take the replica number

n ! 1. We can also apply their method to this computation and the answer is related to

the computation of a Wilson loop in the b-deformed theory [7].

The results are as follows. For N = 4 super Yang Mills we obtain

SW = (1�
4

3
�@�) loghW�i (1.2)

2

Interesting observable related to both log<W> and h
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Figure 1. (a) is the entanglement entropy of a disk in the presence of a Wilson line.2 (b) is
the thermal entropy in thermal hyperbolic space in the presence of a Polyakov loop and (c) is the
entropy of a plane in the presence of a circular loop, which can also be interpreted as the entropy
induced by a quark/anti-quark pair undergoing hyperbolic motion.

Figure 2. (a) String coming from the boundary and ending at the horizon. (b) In Euclidean space
we have a worlsheet wrapping the radial and time directions with a disk topology. We can use it
to compute the entropy.

arises from the string. This contribution has two pieces. One is related to a term of the form

− log gs that comes from the fact that the topology of the Euclidean worldsheet is a disk, see

figure 2(b). This is related to a factor ofN that appears in the computation of a Wilson loop.

In addition, we have a term that depends on the string tension. The simplest contribution

comes from the area of a euclidean string worldsheet wraps around the Euclidean black

– 3 –

J
H
E
P
0
5
(
2
0
1
4
)
0
2
5

Figure 1. (a) is the entanglement entropy of a disk in the presence of a Wilson line.2 (b) is
the thermal entropy in thermal hyperbolic space in the presence of a Polyakov loop and (c) is the
entropy of a plane in the presence of a circular loop, which can also be interpreted as the entropy
induced by a quark/anti-quark pair undergoing hyperbolic motion.

Figure 2. (a) String coming from the boundary and ending at the horizon. (b) In Euclidean space
we have a worlsheet wrapping the radial and time directions with a disk topology. We can use it
to compute the entropy.

arises from the string. This contribution has two pieces. One is related to a term of the form

− log gs that comes from the fact that the topology of the Euclidean worldsheet is a disk, see

figure 2(b). This is related to a factor ofN that appears in the computation of a Wilson loop.

In addition, we have a term that depends on the string tension. The simplest contribution

comes from the area of a euclidean string worldsheet wraps around the Euclidean black

– 3 –



Free fields
• free scalar and 2-form in 6d

• Surface defects in free fields

3 Surface defects in free fields

In this section we compute the surface defect contribution to bulk Rényi entropy in

free fields, and verify a previous formula for entanglement entropy (3.16) [3, 37]. We

will first compute the surface defect in free scalar theory and then move to the theory

of free two-form fields. The results are compared with the line defect results in four

dimensions obtained in [2].

We consider a free conformal scalar � and 2-form field B with surface operators

introduced in six dimensions. The bulk theories are

L� =
1

2
(@�)2 +

1

10
R�2 , (3.1)

LB =
1

12
Fµ1µ2µ3F

µ1µ2µ3 , (3.2)

and the surface operators are

D� = exp

✓Z

⌃

d2��(�)

◆
, (3.3)

DB = exp

✓
i

Z

⌃

B

◆
. (3.4)

For these free theories, h can be computed by considering a planar surface [40]

h� =
1

20⇡4
, hB =

1

4⇡4
. (3.5)

Now we are going to compute the defect contribution to bulk Rényi entropy by

mapping the system to S1
⇥H5. We start from the Euclidean flat space Rd

ds2Rd = dt2
E
+ dr2 + r2d⌦2

d�2 , (3.6)

with the surface defect along tE and r and located at ✓ = 0, ⇡. The entangling

surface is given by (tE = 0, r = `). Using the following coordinate transformation

tE = `
sin ⌧

cosh ⇢+ cos ⌧
, r = `

sinh ⇢

cosh ⇢+ cos ⌧
, (3.7)

with ⌧ 2 [0, 2⇡) and ⇢ 2 [0,+1), Rd is mapped to S1
⇥ H5 with a warp factor

⌦ = (cosh ⇢+ cos ⌧)�1

ds2Rd = ⌦2ds2
S1⇥H5 = ⌦2`2(d⌧ 2 + d⇢2 + sinh2 ⇢ d⌦2

d�2) . (3.8)

At the same time, the surface defect is mapped to S1
⇥H1, i.e., along ⌧ and ⇢ and

located at ✓ = 0, ⇡, as illustrated in Figure 1.
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Renyi entropy
• Map to Sβ*H5, with defect wrapped on Sβ*H1
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ect

Figure 1. Illustration of the map (3.7).

3.1 Rényi entropy for a free scalar field

We use heat kernel method to compute the Green function. The heat kernel of

Laplacian for a free scalar on H5 is given by

KH5(t, ⇢) =
e�4t� ⇢

2

4t (⇢2 + 2⇢ t coth ⇢� 2t) csch2⇢

32⇡5/2t5/2
, (3.9)

where ⇢ is the geodesic distance on H5. The factor e�4t should be cancelled by the

additional conformal mass. The heat kernel on S1
�
is

KS
1
�

(t, ⌧) =
+1X

n=�1

exp
⇣
�

(�n+⌧)2

4t

⌘

p
4⇡t

, (3.10)

where � is the length of the circle and ⌧ is the Euclidean time distance. If we set

one point at (⌧ = 0, ⇢ = 0, ✓ = 0, ✓1 = 0, ✓2 = 0,' = 0) and the other point at an

arbitrary place, then the propagator is given by

G�(⌧, ⇢) =

Z +1

0

dtKS
1
�

(t, ⌧) ⇤KH5(t, ⇢)e4t . (3.11)

Evaluating this integral we obtain a complicate expression for G�,

csch2⇢
h
� coth ⇢

⇣
coth ⇡(⇢+i⌧)

�
+ coth ⇡(⇢�i⌧)

�

⌘
+ ⇡

⇣
csch2

⇣
⇡(⇢+i⌧)

�

⌘
+ csch2

⇣
⇡(⇢�i⌧)

�

⌘⌘i

16⇡2�2
.

(3.12)

However, if we take � ! 2⇡, this becomes the familiar propagator on S1
2⇡ ⇥H5

G(⌧, ⇢) =
1

16⇡3 (cos ⌧ � cosh ⇢)2
. (3.13)

To calculate the Rényi entropy, we need the defect free energy as a function of �,

which can be calculated by integrating (3.12) over S1
�
⇥H1. This integral diverges at
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Figure 1. Illustration of the map (3.7).

3.1 Rényi entropy for a free scalar field
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where ⇢ is the geodesic distance on H5. The factor e�4t should be cancelled by the

additional conformal mass. The heat kernel on S1
�
is
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Boundary term
• Additional term on the boundary of H5, from 

conformal coupling of the scalar to curvature

• Evaluate it in the presence of defect, 

⇢ = ⌧ = 0. To regularize this divergence we exclude the region ⌧ 2 + ⇢2 < ✏2 and end

up with zero universal term (See Appendix A for a detailed calculation). This means

that the surface defect contribution to free energy vanishes at any temperature,

similar to what happens for line defect in 4d [2]. However, as pointed out in [2], we

should not forget the boundary contribution from the tip of the cone.

The additional contribution to the entropy is an area-like term (the Wald term)

from the conformal coupling of the scalar to curvature,

S = �
4⇡

10

Z

⌃̂

dAhh�2
ii , (3.14)

where ⌃̂ is the tip of the cone located at ⇢ = 1. Evaluating this integral, we obtain

the surface defect contribution to the bulk Rényi entropy in free scalar theory

S� = �
1

10⇡
log `/✏ , (3.15)

which does not rely on �. A detailed calculation of (3.15) is given in Appendix B.

Now let us check against a recently found formula of entanglement entropy with

surface defect [37],
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log `/✏ , (3.16)

where d2 is related to h� by
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d
h� , (3.17)

with ⌦d�3 the area of d � 3 dimensional sphere. From our heat kernel analysis we

have b = 0 (this is consistent with [15, 27]). Plug in h� = 1/20⇡4 and d = 6, we find

that our entropy result is perfectly consistent with (3.16).

3.2 Rényi entropy for a free 2-form field

Having verified the relation between entanglement entropy and defect central charges

b and h, one can compute the entanglement entropy for a free 2-form field in six

dimensions. The b central charge comes from the logarithmic divergence term in the

expectation value of spherical defect. This was essentially computed in [15]4 and in

our normalization it is given by

b =
3

2⇡
, (3.18)

where a factor of 2 was included since we are dealing with a 2-form field without

reducing half of its degrees of freedom. Plug in hB = 1/4⇡4 and d = 6, we have

SB =
1

3

�
b� 6⇡3hB

�
log `/✏ = 0 . (3.19)

4See [7–9] for early calculations.
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Defect EE
• Defect EE in terms of central charges was derived 

before

• Consistency check:
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S� = �
1

10⇡
log `/✏ , (3.15)

which does not rely on �. A detailed calculation of (3.15) is given in Appendix B.

Now let us check against a recently found formula of entanglement entropy with

surface defect [37],

S =
1

3

✓
b�

d� 3

d� 1
d2

◆
log `/✏ , (3.16)

where d2 is related to h� by

d2 = 6⇡⌦d�3
d� 1

d
h� , (3.17)

with ⌦d�3 the area of d � 3 dimensional sphere. From our heat kernel analysis we

have b = 0 (this is consistent with [15, 27]). Plug in h� = 1/20⇡4 and d = 6, we find

that our entropy result is perfectly consistent with (3.16).
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Two form
• We use defect EE formula

• From information theory, we conjecture that Renyi entropy also 
vanishes.
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3.2 Rényi entropy for a free 2-form field

Having verified the relation between entanglement entropy and defect central charges

b and h, one can compute the entanglement entropy for a free 2-form field in six

dimensions. The b central charge comes from the logarithmic divergence term in the

expectation value of spherical defect. This was essentially computed in [15]4 and in

our normalization it is given by

b =
3

2⇡
, (3.18)

where a factor of 2 was included since we are dealing with a 2-form field without

reducing half of its degrees of freedom. Plug in hB = 1/4⇡4 and d = 6, we have

SB =
1

3

�
b� 6⇡3hB

�
log `/✏ = 0 . (3.19)

4See [7–9] for early calculations.

– 6 –



(2,0) free theory
• free tensor multiplet: 5 real scalars + 2 Weyl fermions 

+ 1 two-form(with self-dual strength)

• Defect contribution to Renyi entropy is a sum,

This result indicates that the expectation value of surface defect with 2-form on

S1
�
⇥H5 is proportional to �, which is similar to line defect in 4d Maxwell theory [2].

Furthermore, from information theory, Rényi entropy also vanishes. It is interesting

to demonstrate this result by heat kernel computation, which we leave for future

work.

4 Surface defects in large N limit

Let us now move to the most famous six dimensional theory, the (2, 0) theory, and

apply the ideas in the previous sections to the well-known observable, the surface

operator, which has been studied both from field theory perspective [7–9] and from

holography [10, 11]. A six-dimensional (2, 0) tensor multiplet includes 5 real scalars,

2 Weyl fermions, and a 2-form field with self-dual strength, which can be considered

as a chiral 2-form field with half of the degrees of freedom. In the free theory with a

tensor multiplet, the surface operator can be defined in analogy to Maldacena-Wilson

loop,

W = exp

Z

⌃

(iB+
� ni�ivol⌃) . (4.1)

As a simple example, the surface operator may include (the pullback of) a chiral 2-

form and a real scalar. Therefore the defect contribution to the bulk Rényi entropy

is given by the sum

S = S� +
1

2
SB = �

1

10⇡
log `/✏ . (4.2)

It was conjectured that the AN�1 (2, 0) SCFT is dual to M-theory on AdS7⇥S4

with N units of 4-form flux on S4 [42],

ds211 = L2(ds2AdS7 +
1

4
ds2

S4) , F4 = dC3 = ⇡2L3volS4 , L3 = 8⇡N`3
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Rényi entropy in flat space. The dual M-theory background may then have the AdS7

part with the corresponding S1
�
⇥H5 boundary. However it was pointed out in [38]

that, supersymmetries are broken for � 6= 2⇡ since there are no surviving Killing

spinors in this generic background. To preserve supersymmetry, one can turn on an

– 7 –

This result indicates that the expectation value of surface defect with 2-form on

S1
�
⇥H5 is proportional to �, which is similar to line defect in 4d Maxwell theory [2].
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4.1 Holographic surface defect

We want to compute the expectation value of a surface defect wrapping on (⌧, ⇢)

direction using the relationship

SM2 = � loghW in , (4.11)

where the M2-brane action is

SM2 = T2

Z
d3�

p
�det[g] . (4.12)

In the probe limit, the M2-brane solution is given by

�0 = ⌧ , �1 = ⇢ , �2 = r , (4.13)

and the on-shell action is

SM2 = T2

Z
�

0

d⌧

Z 1

�1
d⇢

Z ⇤

rH

rH(H1H2)
�1/5

p

� , (4.14)

where �1/3 is the warp factor in front of seven-dimensional solution in the eleven-

dimensional uplift. In [43], � is specified to be

� = X0µ
2
0 +X1µ

2
1 +X2µ

2
2 , (4.15)

where µ0,1,2 are related to 2-sphere angles by

µ0 = sin ✓ , µ1 = cos ✓ sin� , µ2 = cos ✓ cos� . (4.16)

As explained for string embedding in [44], the M2-brane should sit at the point on

the internal manifold in order to preserve the R-symmetry (twist part). Under this

condition we find

SM2 = �2⇡nT2VH1r2
H

. (4.17)

For a single charged black hole with only 1 6= 0, which corresponds to the field theory

twisting by a single U(1) Cartan of the R-symmetry, the M2-brane embedding can

be chosen at µ1 = 0, and we find

r2
H
=

n+ 1

2n
, SM2 = �2⇡T2VH1

✓
n+ 1

2

◆
. (4.18)

A consistent check: When n = 1, we have

SM2 = �2⇡T2VH1 = �4N log `/✏ , (4.19)

which agrees with the result in [10, 15]. The surface defect contribution to super-

symmetric Rényi entropy is

Sn =
loghW in � n loghW i1

1� n
= ⇡T2VH1 , (4.20)
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supersymmetric Renyi entropy (SRE): a polynomial of 

[YZ 2016,Yankielowicz-YZ 2017]
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one can fully determine the partition function on a q-branched sphere,3 which is directly

related to the supersymmetric Rényi entropy Sq.

Supersymmetric Rényi entropy was first introduced in three dimensions [34–36], and

later studied in four dimensions [37–39], in five dimensions [40, 41], in six dimensions

((2, 0) theories) [42, 43] and also in two dimensions ((2, 2) SCFTs) [44, 45]. By turning

on a certain R-symmetry background field µ(q), one can calculate the supersymmetric

partition function Zq[µ(q)] on a q-branched sphere Sdq ,

ds2
Sdq
/!2 = q2 sin2 θdτ2 + dθ2 + cos2 θdΩ2

d−2 , (1.4)

where θ ∈ [0,π/2] and τ ∈ [0, 2π). The supersymmetric Rényi entropy is defined as

Sq =
qI1 − Iq
1− q

, Iq := − logZq[µ(q)] . (1.5)

The quantities defined in (1.5) are UV divergent in general but one can extract universal

parts free of ambiguities. Notice that the ordinary Rényi entropy is not supersymmetric

because of the conical singularity.4

1.1 Summary of results

The main result of this paper is the exact universal part of the supersymmetric Rényi

entropy in 6d (1, 0) SCFTs. We show that, for theories characterized by the anomaly

polynomial (1.2), it is given by a cubic polynomial of ν = 1/q

S(1,0)
ν =

3∑

n=0

sn(ν − 1)n , (1.6)

with four coefficients

s0 =
1

6
(8α− 8β + 8γ + 3δ) ,

s1 =
1

4
(2α− 3β + 4γ + δ) ,

s2 =
1

24
(2α− 5β + 8γ) ,

s3 =
1

192
(α− 4β + 16γ) . (1.7)

where α ,β , γ , δ are the ’t Hooft anomaly coefficients defined in (1.2). The basic ingredients

in our arguments are the following:

3A q-branched sphere is a sphere with a conical singularity with the deformation parameter q − 1,

see (1.4).
4Consider CFTs in flat space with the metric, ds2

Rd = dτ2
E +dr2 + r2dΩ2

d−2. The entangling surface Σ is

(τE = 0, r = R). In the replica trick approach, the Rényi entropy can be computed from the path integral

on the conic space with Σ the fixed sphere. After the transformations τE = " sin τ
cosh η+cos τ

, r = " sinh η
cosh η+cos τ

,

the conic space becomes a hyperbolic space S
1
q × H

d−1 up to a warp factor ds2
Rd/"

2 = Ω2(dτ2 + dη2 +

sinh2 ηdΩ2
d−2), where θ ∈ [0,π/2], τ ∈ [0, 2π] and Ω = 1

cosh η+cos τ
. A further Weyl transformation with

cot θ = sinh η maps S
1
q × H

d−1 to the branched sphere S
d
q (1.4), where Σ is mapped to θ = 0. Throughout

this work we take the same boundary condition as the “smooth cone” boundary condition in [46], which

means that we smooth out the cone.
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on the tensor branch [15]1

ā =
a

au(1)
=

16

7
(α− β + γ) +

6

7
δ , (1.1)

where α ,β , γ , δ are the coefficients appearing in the anomaly polynomial

I8 =
1

4!

(
α c22(R) + β c2(R)p1(T ) + γ p21(T ) + δ p2(T )

)
. (1.2)

Here c2(R) is the second Chern class of the R-symmetry bundle and p1,2 are the Pontryagin

classes of the tangent bundle. The relation (1.1) is analogous to the known relation [18]

in four-dimensional N = 1 SCFTs, ad=4 = 9
32kRRR − 3

32kR, where kRRR and kR are the

TrU(1)3R and TrU(1)R ’t Hooft anomalies. Although the anomaly multiplet in six dimen-

sions has not yet been constructed, such linear relations are believed to follow from the

anomaly supermultiplets which include ’t Hooft anomalies as well as the anomalous trace

of the stress tensor. The Weyl anomaly coefficients in 6d are defined from the latter [19–22]

〈T µ
µ 〉 ∼ aE6 +

3∑

i=1

ci Ii , (1.3)

where E6 is the Euler density and Ii=1,2,3 are three Weyl invariants. In the presence of

(1, 0) supersymmetry, ci=1,2,3, satisfying a constraint c1 − 2c2 + 6c3 = 0 [23–25], are also

believed to be linearly related to the ’t Hooft anomaly coefficients [26–28]. Assuming

that the linear relation indeed exist, one could determine its coefficients by considering

the known values of the corresponding Weyl and ’t Hooft anomalies in four independent

examples. Unfortunately only three are known, i.e. the free hyper multiplet, the free tensor

multiplet and supergravity [23, 29]. The naive vector multiplet is not conformal and the

conformal version [30] involves higher derivatives. Evaluating the anomalies via the heat

kernel method will involve higher powers of the Laplacian operator in curved space and,

hence, difficult to compute. We will, therefore, consider another approach.

In even dimensions, it is known that the a-anomaly determines both the universal log

divergence of the round-sphere partition function2 and the universal log divergence in the

vacuum state entanglement entropy associated with a ball in flat space [31]. On the other

hand, by the conformal Ward identities, the 2-point and 3-point functions of the stress

tensor in the vacuum in flat space can be determined up to 3 coefficients [32, 33], which are

linearly related to c-type Weyl anomalies c1,2,3. In the presence of (1, 0) supersymmetry,

only two of them are independent as mentioned before.

Because the round sphere is conformally flat, one expects that the nearly-round sphere

partition function, which includes the response to a small deviation of the metric from

the round sphere, is determined by the flat space stress tensor correlators. Due to these

intrinsic relations and supersymmetric constraints, it is therefore tempting to ask whether

1The subscript u(1) means an Abelian (2, 0) tensor multiplet. See [16] for the result in (2, 0) theories

and [17] for earlier investigation.
2The a-anomaly is proportional to the coefficient of the log divergence.
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[Nishioka-Yaakov 2013]

2

The Weyl anomaly of surface defect is also manifested
in the logarithmic divergence of its expectation value

log→D[!]↑ ↓
∫

!
A!vol! log ω/ε , (3)

with the anomaly density

A! =
1

24ϑ

[
bR

! + d1”̃
µ
ab”̃

ab
µ ↔ d2W

ab
ab

]
. (4)

From (3) and (4) one can see that the free energy of a
spherical surface defect is determined by the b-central
charge [19]

F = ↔ log→D[S2]↑ = ↔ b

3
log ω/ε . (5)

Defect Weyl anomalies also determine the defect contri-
bution to EE. For the surface defect, its contribution to
EE is [18] [20]

S̃ = ↔F + ϖE = log→D[S2]↑+
∫

→→T ω
ω ↑↑

=
1

3

(
b↔ d↔ 3

d↔ 1
d2

)
log ω/ε ,

(6)

where ϱ is the coordinate along the replica direction.
This formula can be used to calculate the central charges
for a class of surface defects. For 1/2-BPS Wilson sur-
faces in 6d AN→1 N = (2, 0) SCFT, both →→Tµε↑↑ and S̃

can be calculated holographically [4, 5]. Then using (1)
and (6) one derives

b = 24 (#, ς)+3 (#,#) , d2 = 24 (#, ς)+6 (#,#) , (7)

with # the highest weight of the defect representation R
in AN→1 Lie algebra su(N), ς the Weyl vector of su(N),
and (·, ·) the inner product in su(N). For rank-k sym-
metric representation (k), (7) gives

b(k) = 12Nk + 3k2 ↔ 12k ↔ 3k2/N ,

d2(k) = 12Nk + 6k2 ↔ 12k ↔ 6k2/N .
(8)

For rank-k anti-symmetric representation [k],

b[k] = 12Nk ↔ 12k2 + 3k ↔ 3k2/N ,

d2[k] = 12Nk ↔ 12k2 + 6k ↔ 6k2/N .
(9)

The main purpose of this letter is to show that, for 1/2-
BPS Wilson surfaces in 6d (2, 0) theories, the defect con-
tribution to supersymmetric Rényi entropy is fixed by b

and d2.
Supersymmetric Rényi entropy. Rényi entropy is a one

parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we
compute EE using the replica trick and returns to EE in
the limit n ↗ 1,

Sn ↘ 1

1↔ n
log Trςn =

1

1↔ n
log

Zn

Zn
, (10)

where n is the Rényi index and Zn is the partition func-
tion on the n-replica space. For a d-dimensional CFT
in flat space, the n-replica space with a spherical entan-
gling surface can be mapped to S

1
ϑ ≃H

d→1 with ϖ = 2ϑn
using conformal transformations [21, 22]. In this letter
we mainly focus on 6d (2, 0) theories. The replica trick
generally breaks the supersymmetry because of the conic
singularity. Namely, there will be no surviving Killing
spinors when n ⇐= 1 [9]. To preserve supersymmetry,
one should turn on extra R-symmetry background fields,
leading to the observable of supersymmetric Rényi en-
tropy (SRE) [7–10]. The R-symmetry group of 6d (2, 0)
theories is SO(5), which has two U(1) Cartans, and
therefore one can turn on two independent R-symmetry
background gauge fields (chemical potentials) to twist the
boundary conditions along the replica circle S

1
ϑ . A gen-

eral analysis of the Killing spinor equation on the conic
space (S6

n or S
1
ϑ=2ϖn ≃ H

5) leads to the solution of the
R-symmetry chemical potential [9] [23]

µ(n) := qiA
i =

n↔ 1

2
, (11)

where q1 = q2 = 1/2 are the R-charges of the Killing
spinor under the two U(1) Cartans. A general back-
ground satisfying (11) can be expressed as [10]

A
1 = (n↔ 1) r1 , A

2 = (n↔ 1) r2 , (12)

with r1+r2 = 1. Assuming that the SRE is a polynomial
of 1/n, which is verified by free field calculations as well
as large N results, it is shown that the SRE for 6d (2, 0)
theories enjoys universal relations with Weyl anomalies
(as well as ’t Hooft anomalies) [10]. The goal of this
letter is to show that the defect contribution to SRE also
enjoys universal relations with defect Weyl anomalies.

Summary of the results. The main result of this letter
is the exact contribution of N = (4, 4) surface defect to
the supersymmetric Rényi entropy (defect SRE) of 6d
(2, 0) theories. We show that for theories labelled by A-
type Lie algebra g, such defect SRE is a linear function
of φ := 1/n

Sϱ [g] =
2bg ↔ d2g
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2
(φ ↔ 1) + 1

]
log ω/ε , (13)

for any defect representation R in g, where bg and d2g are
given by (7) and r1,2 satisfying the constraint r1+r2 = 1
are parameters denoting the weights of the two U(1) R-
symmetry chemical potentials. The basic ingredients of
our argument are the following:

(A) At the largeN limit, Sϱ can be calculated holograph-
ically. The result for surface defect in the fundamen-
tal representation is (40)

Sϱ [AN↑↓] = N
(
r1r2(φ ↔ 1) + 2

)
log ω/ε . (14)
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The Weyl anomaly of surface defect is also manifested
in the logarithmic divergence of its expectation value
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where ϱ is the coordinate along the replica direction.
This formula can be used to calculate the central charges
for a class of surface defects. For 1/2-BPS Wilson sur-
faces in 6d AN→1 N = (2, 0) SCFT, both →→Tµε↑↑ and S̃

can be calculated holographically [4, 5]. Then using (1)
and (6) one derives

b = 24 (#, ς)+3 (#,#) , d2 = 24 (#, ς)+6 (#,#) , (7)

with # the highest weight of the defect representation R
in AN→1 Lie algebra su(N), ς the Weyl vector of su(N),
and (·, ·) the inner product in su(N). For rank-k sym-
metric representation (k), (7) gives
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The main purpose of this letter is to show that, for 1/2-
BPS Wilson surfaces in 6d (2, 0) theories, the defect con-
tribution to supersymmetric Rényi entropy is fixed by b

and d2.
Supersymmetric Rényi entropy. Rényi entropy is a one

parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we
compute EE using the replica trick and returns to EE in
the limit n ↗ 1,
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gling surface can be mapped to S
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d→1 with ϖ = 2ϑn
using conformal transformations [21, 22]. In this letter
we mainly focus on 6d (2, 0) theories. The replica trick
generally breaks the supersymmetry because of the conic
singularity. Namely, there will be no surviving Killing
spinors when n ⇐= 1 [9]. To preserve supersymmetry,
one should turn on extra R-symmetry background fields,
leading to the observable of supersymmetric Rényi en-
tropy (SRE) [7–10]. The R-symmetry group of 6d (2, 0)
theories is SO(5), which has two U(1) Cartans, and
therefore one can turn on two independent R-symmetry
background gauge fields (chemical potentials) to twist the
boundary conditions along the replica circle S
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spinor under the two U(1) Cartans. A general back-
ground satisfying (11) can be expressed as [10]
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2 = (n↔ 1) r2 , (12)

with r1+r2 = 1. Assuming that the SRE is a polynomial
of 1/n, which is verified by free field calculations as well
as large N results, it is shown that the SRE for 6d (2, 0)
theories enjoys universal relations with Weyl anomalies
(as well as ’t Hooft anomalies) [10]. The goal of this
letter is to show that the defect contribution to SRE also
enjoys universal relations with defect Weyl anomalies.

Summary of the results. The main result of this letter
is the exact contribution of N = (4, 4) surface defect to
the supersymmetric Rényi entropy (defect SRE) of 6d
(2, 0) theories. We show that for theories labelled by A-
type Lie algebra g, such defect SRE is a linear function
of φ := 1/n

Sϱ [g] =
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for any defect representation R in g, where bg and d2g are
given by (7) and r1,2 satisfying the constraint r1+r2 = 1
are parameters denoting the weights of the two U(1) R-
symmetry chemical potentials. The basic ingredients of
our argument are the following:

(A) At the largeN limit, Sϱ can be calculated holograph-
ically. The result for surface defect in the fundamen-
tal representation is (40)
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Large N limit

• Large N limit is charged hyperbolic black hole with k=-1,m=0

extra R-symmetry background field, which leads to the observable of supersymmetric

Rényi entropy [38, 39].

Given the R-symmetry twist background on the boundary, the natural holo-

graphic dual is the seven dimensional gauged SO(5) supergravity, which can be

obtained by Kaluza-Klein reduction of 11d supergravity on S4 [43]. It is su�cient to

consider only the action for the remaining fields after truncation, which include the

metric, two gauge fields and two scalars,

1
p
g
L = R�

1

2

⇣
@~�

⌘2

�
4

L2
V �

1

4

2X

i=1

1

X2
i

�
F i

�2
, (4.4)

where ~� = (�1,�2) are two scalars and

Xi = e�
1
2~ai

~� , i = 1, 2 , ~a1 = (
p
2,
p

2/5) , ~a2 = (�
p
2,
p
2/5) . (4.5)

The potential is V = �4X1X2 � 2X0X1 � 2X0X2 +
1
2X

2
0 , with X0 = (X1X2)�2.

This theory has a 2-charge 7d topological black hole solution, which asymptotes to

hyperbolically sliced AdS7,

ds27 = � (H1H2)
�4/5 fdt2 + (H1H2)

1/5 �f�1dr2 + r2d⌦2
5,k

�
, (4.6)

f(r) = k �
m

r4
+

r2

L2
H1H2 , Hi = 1 +

qi
r4

, (4.7)

together with scalars and gauge fields,

Xi = (H1H2)
2/5 H�1

i
, Ai =

⇣p
k
�
H�1

i
� 1

�
+ µi

⌘
dt . (4.8)

For our purpose we consider k = �1 and m = 0. Let us define a rescaled charge

i = qi/r4H , then the black hole horizon can be expressed in terms of i,

rH =
Lp

(1 + 1)(1 + 2)
. (4.9)

The Hawking temperature of this black hole is

T =
f 0(r)

4⇡
p
H1H2

��
r=rH

=
1� 1 � 2 � 312

2⇡L(1 + 1)(1 + 2)
. (4.10)

By matching to the boundary temperature 1/�, one can solve  and therefore solve

the black hole. The Bekenstein-Hawking entropy and the holographic supersymmet-

ric Rényi entropy were computed in [39]. In this note we want to solve a probe

M2-brane in this background.
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• One can check holographic SRE

J
H
E
P
0
4
(
2
0
1
7
)
1
2
8

(A) Sν of (1, 0) free hyper multiplet and free tensor multiplet can be computed by the

heat kernel method closely following [43]. The results are given by

Sh
ν =

7

2880
(ν − 1)3 +

7

720
(ν − 1)2 +

1

40
(ν − 1) +

11

360
, (1.8)

St
ν =

1

360
(ν − 1)3 +

1

90
(ν − 1)2 +

1

10
(ν − 1) +

199

360
. (1.9)

These are the main results of section 2.

(B) Sν of AN−1 type (2, 0) theories (which are of course (1, 0) conformal theories) in the

large N has been computed in [43]. The result is given by

Sν [AN→∞]

N3
=

1

192
(ν − 1)3 +

1

12
(ν − 1)2 +

1

2
(ν − 1) +

4

3
. (1.10)

(C) Based on (A)(B) and (F) below, a reasonable assumption is that the general form of

Sν for (1, 0) SCFTs is a cubic polynomial in ν − 1. However, so far we do not have a

sharp argument for this assumption.5 Furthermore, based on (D)(E)(F) below, the

four coefficients of the cubic polynomial are linear combinations of α,β, γ, δ.

(D) The value of Sν at ν = 1 is the entanglement entropy associated with a spherical

entangling surface, which is proportional to the a-anomaly (1.1).

(E) The first and second derivatives of Sν at ν = 1 can be written as linear combinations

of integrated two- and three-point functions of operators in supersymmetric stress

tensor multiplet. Because of this, one can relate the first and second derivatives at

ν = 1 to c1 and c2,

∂νSν

∣∣
ν=1

=
3

2
c2 −

3

4
c1 , ∂2

νSν

∣∣
ν=1

= c2 −
5

16
c1 , (1.11)

where c1 and c2 are believed to be given by linear combinations of ’t Hooft anomaly

coefficients α,β, γ, δ.

(F) The large ν behavior of Sν is controlled by the “supersymmetric Casimir energy” [47].

This gives

lim
ν→∞

Sν

ν3
=

1

192
(α− 4β + 16γ) . (1.12)

(G) In the large ν expansion, the second Pontryagin class (with coefficient δ) will not

contribute to the ν3 term (as we see from (F)) and the ν2 term. Because of the

latter, one has

∂δ
(
∂2
νSν

∣∣
ν=1

)
= 0 . (1.13)

5We are interested only in the universal part, i.e. the coefficient of the UV log divergent part. This

part should be given by a finite number of counter-terms, each of them an integral of local functions of the

supersymmetric background including the metric (squashed sphere). Unfortunately the supersymmetric

smooth squashed sphere in 6d has not yet been constructed.
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The Weyl anomaly of surface defect is also manifested
in the logarithmic divergence of its expectation value

log→D[!]↑ ↓
∫

!
A!vol! log ω/ε , (3)

with the anomaly density

A! =
1

24ϑ

[
bR

! + d1”̃
µ
ab”̃

ab
µ ↔ d2W

ab
ab

]
. (4)

From (3) and (4) one can see that the free energy of a
spherical surface defect is determined by the b-central
charge [19]

F = ↔ log→D[S2]↑ = ↔ b

3
log ω/ε . (5)

Defect Weyl anomalies also determine the defect contri-
bution to EE. For the surface defect, its contribution to
EE is [18] [20]

S̃ = ↔F + ϖE = log→D[S2]↑+
∫

→→T ω
ω ↑↑

=
1

3

(
b↔ d↔ 3

d↔ 1
d2

)
log ω/ε ,

(6)

where ϱ is the coordinate along the replica direction.
This formula can be used to calculate the central charges
for a class of surface defects. For 1/2-BPS Wilson sur-
faces in 6d AN→1 N = (2, 0) SCFT, both →→Tµε↑↑ and S̃

can be calculated holographically [4, 5]. Then using (1)
and (6) one derives

b = 24 (#, ς)+3 (#,#) , d2 = 24 (#, ς)+6 (#,#) , (7)

with # the highest weight of the defect representation R
in AN→1 Lie algebra su(N), ς the Weyl vector of su(N),
and (·, ·) the inner product in su(N). For rank-k sym-
metric representation (k), (7) gives

b(k) = 12Nk + 3k2 ↔ 12k ↔ 3k2/N ,

d2(k) = 12Nk + 6k2 ↔ 12k ↔ 6k2/N .
(8)

For rank-k anti-symmetric representation [k],

b[k] = 12Nk ↔ 12k2 + 3k ↔ 3k2/N ,

d2[k] = 12Nk ↔ 12k2 + 6k ↔ 6k2/N .
(9)

The main purpose of this letter is to show that, for 1/2-
BPS Wilson surfaces in 6d (2, 0) theories, the defect con-
tribution to supersymmetric Rényi entropy is fixed by b

and d2.
Supersymmetric Rényi entropy. Rényi entropy is a one

parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we
compute EE using the replica trick and returns to EE in
the limit n ↗ 1,

Sn ↘ 1

1↔ n
log Trςn =

1

1↔ n
log

Zn

Zn
, (10)

where n is the Rényi index and Zn is the partition func-
tion on the n-replica space. For a d-dimensional CFT
in flat space, the n-replica space with a spherical entan-
gling surface can be mapped to S

1
ϑ ≃H

d→1 with ϖ = 2ϑn
using conformal transformations [21, 22]. In this letter
we mainly focus on 6d (2, 0) theories. The replica trick
generally breaks the supersymmetry because of the conic
singularity. Namely, there will be no surviving Killing
spinors when n ⇐= 1 [9]. To preserve supersymmetry,
one should turn on extra R-symmetry background fields,
leading to the observable of supersymmetric Rényi en-
tropy (SRE) [7–10]. The R-symmetry group of 6d (2, 0)
theories is SO(5), which has two U(1) Cartans, and
therefore one can turn on two independent R-symmetry
background gauge fields (chemical potentials) to twist the
boundary conditions along the replica circle S

1
ϑ . A gen-

eral analysis of the Killing spinor equation on the conic
space (S6

n or S
1
ϑ=2ϖn ≃ H

5) leads to the solution of the
R-symmetry chemical potential [9] [23]

µ(n) := qiA
i =

n↔ 1

2
, (11)

where q1 = q2 = 1/2 are the R-charges of the Killing
spinor under the two U(1) Cartans. A general back-
ground satisfying (11) can be expressed as [10]

A
1 = (n↔ 1) r1 , A

2 = (n↔ 1) r2 , (12)

with r1+r2 = 1. Assuming that the SRE is a polynomial
of 1/n, which is verified by free field calculations as well
as large N results, it is shown that the SRE for 6d (2, 0)
theories enjoys universal relations with Weyl anomalies
(as well as ’t Hooft anomalies) [10]. The goal of this
letter is to show that the defect contribution to SRE also
enjoys universal relations with defect Weyl anomalies.

Summary of the results. The main result of this letter
is the exact contribution of N = (4, 4) surface defect to
the supersymmetric Rényi entropy (defect SRE) of 6d
(2, 0) theories. We show that for theories labelled by A-
type Lie algebra g, such defect SRE is a linear function
of φ := 1/n

Sϱ [g] =
2bg ↔ d2g

6

[
r1r2

2
(φ ↔ 1) + 1

]
log ω/ε , (13)

for any defect representation R in g, where bg and d2g are
given by (7) and r1,2 satisfying the constraint r1+r2 = 1
are parameters denoting the weights of the two U(1) R-
symmetry chemical potentials. The basic ingredients of
our argument are the following:

(A) At the largeN limit, Sϱ can be calculated holograph-
ically. The result for surface defect in the fundamen-
tal representation is (40)

Sϱ [AN↑↓] = N
(
r1r2(φ ↔ 1) + 2

)
log ω/ε . (14)
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The Weyl anomaly of surface defect is also manifested
in the logarithmic divergence of its expectation value

log→D[!]↑ ↓
∫
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with the anomaly density
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From (3) and (4) one can see that the free energy of a
spherical surface defect is determined by the b-central
charge [19]

F = ↔ log→D[S2]↑ = ↔ b

3
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Defect Weyl anomalies also determine the defect contri-
bution to EE. For the surface defect, its contribution to
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=
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where ϱ is the coordinate along the replica direction.
This formula can be used to calculate the central charges
for a class of surface defects. For 1/2-BPS Wilson sur-
faces in 6d AN→1 N = (2, 0) SCFT, both →→Tµε↑↑ and S̃

can be calculated holographically [4, 5]. Then using (1)
and (6) one derives

b = 24 (#, ς)+3 (#,#) , d2 = 24 (#, ς)+6 (#,#) , (7)

with # the highest weight of the defect representation R
in AN→1 Lie algebra su(N), ς the Weyl vector of su(N),
and (·, ·) the inner product in su(N). For rank-k sym-
metric representation (k), (7) gives

b(k) = 12Nk + 3k2 ↔ 12k ↔ 3k2/N ,

d2(k) = 12Nk + 6k2 ↔ 12k ↔ 6k2/N .
(8)

For rank-k anti-symmetric representation [k],

b[k] = 12Nk ↔ 12k2 + 3k ↔ 3k2/N ,

d2[k] = 12Nk ↔ 12k2 + 6k ↔ 6k2/N .
(9)

The main purpose of this letter is to show that, for 1/2-
BPS Wilson surfaces in 6d (2, 0) theories, the defect con-
tribution to supersymmetric Rényi entropy is fixed by b

and d2.
Supersymmetric Rényi entropy. Rényi entropy is a one

parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we
compute EE using the replica trick and returns to EE in
the limit n ↗ 1,

Sn ↘ 1
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where n is the Rényi index and Zn is the partition func-
tion on the n-replica space. For a d-dimensional CFT
in flat space, the n-replica space with a spherical entan-
gling surface can be mapped to S

1
ϑ ≃H

d→1 with ϖ = 2ϑn
using conformal transformations [21, 22]. In this letter
we mainly focus on 6d (2, 0) theories. The replica trick
generally breaks the supersymmetry because of the conic
singularity. Namely, there will be no surviving Killing
spinors when n ⇐= 1 [9]. To preserve supersymmetry,
one should turn on extra R-symmetry background fields,
leading to the observable of supersymmetric Rényi en-
tropy (SRE) [7–10]. The R-symmetry group of 6d (2, 0)
theories is SO(5), which has two U(1) Cartans, and
therefore one can turn on two independent R-symmetry
background gauge fields (chemical potentials) to twist the
boundary conditions along the replica circle S

1
ϑ . A gen-

eral analysis of the Killing spinor equation on the conic
space (S6

n or S
1
ϑ=2ϖn ≃ H

5) leads to the solution of the
R-symmetry chemical potential [9] [23]

µ(n) := qiA
i =

n↔ 1
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, (11)

where q1 = q2 = 1/2 are the R-charges of the Killing
spinor under the two U(1) Cartans. A general back-
ground satisfying (11) can be expressed as [10]

A
1 = (n↔ 1) r1 , A

2 = (n↔ 1) r2 , (12)

with r1+r2 = 1. Assuming that the SRE is a polynomial
of 1/n, which is verified by free field calculations as well
as large N results, it is shown that the SRE for 6d (2, 0)
theories enjoys universal relations with Weyl anomalies
(as well as ’t Hooft anomalies) [10]. The goal of this
letter is to show that the defect contribution to SRE also
enjoys universal relations with defect Weyl anomalies.

Summary of the results. The main result of this letter
is the exact contribution of N = (4, 4) surface defect to
the supersymmetric Rényi entropy (defect SRE) of 6d
(2, 0) theories. We show that for theories labelled by A-
type Lie algebra g, such defect SRE is a linear function
of φ := 1/n

Sϱ [g] =
2bg ↔ d2g
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for any defect representation R in g, where bg and d2g are
given by (7) and r1,2 satisfying the constraint r1+r2 = 1
are parameters denoting the weights of the two U(1) R-
symmetry chemical potentials. The basic ingredients of
our argument are the following:

(A) At the largeN limit, Sϱ can be calculated holograph-
ically. The result for surface defect in the fundamen-
tal representation is (40)

Sϱ [AN↑↓] = N
(
r1r2(φ ↔ 1) + 2

)
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The Weyl anomaly of surface defect is also manifested
in the logarithmic divergence of its expectation value
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∫
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From (3) and (4) one can see that the free energy of a
spherical surface defect is determined by the b-central
charge [19]

F = ↔ log→D[S2]↑ = ↔ b

3
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Defect Weyl anomalies also determine the defect contri-
bution to EE. For the surface defect, its contribution to
EE is [18] [20]
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=
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where ϱ is the coordinate along the replica direction.
This formula can be used to calculate the central charges
for a class of surface defects. For 1/2-BPS Wilson sur-
faces in 6d AN→1 N = (2, 0) SCFT, both →→Tµε↑↑ and S̃

can be calculated holographically [4, 5]. Then using (1)
and (6) one derives

b = 24 (#, ς)+3 (#,#) , d2 = 24 (#, ς)+6 (#,#) , (7)

with # the highest weight of the defect representation R
in AN→1 Lie algebra su(N), ς the Weyl vector of su(N),
and (·, ·) the inner product in su(N). For rank-k sym-
metric representation (k), (7) gives

b(k) = 12Nk + 3k2 ↔ 12k ↔ 3k2/N ,

d2(k) = 12Nk + 6k2 ↔ 12k ↔ 6k2/N .
(8)

For rank-k anti-symmetric representation [k],

b[k] = 12Nk ↔ 12k2 + 3k ↔ 3k2/N ,

d2[k] = 12Nk ↔ 12k2 + 6k ↔ 6k2/N .
(9)

The main purpose of this letter is to show that, for 1/2-
BPS Wilson surfaces in 6d (2, 0) theories, the defect con-
tribution to supersymmetric Rényi entropy is fixed by b

and d2.
Supersymmetric Rényi entropy. Rényi entropy is a one

parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we
compute EE using the replica trick and returns to EE in
the limit n ↗ 1,

Sn ↘ 1

1↔ n
log Trςn =

1

1↔ n
log

Zn

Zn
, (10)

where n is the Rényi index and Zn is the partition func-
tion on the n-replica space. For a d-dimensional CFT
in flat space, the n-replica space with a spherical entan-
gling surface can be mapped to S

1
ϑ ≃H

d→1 with ϖ = 2ϑn
using conformal transformations [21, 22]. In this letter
we mainly focus on 6d (2, 0) theories. The replica trick
generally breaks the supersymmetry because of the conic
singularity. Namely, there will be no surviving Killing
spinors when n ⇐= 1 [9]. To preserve supersymmetry,
one should turn on extra R-symmetry background fields,
leading to the observable of supersymmetric Rényi en-
tropy (SRE) [7–10]. The R-symmetry group of 6d (2, 0)
theories is SO(5), which has two U(1) Cartans, and
therefore one can turn on two independent R-symmetry
background gauge fields (chemical potentials) to twist the
boundary conditions along the replica circle S

1
ϑ . A gen-

eral analysis of the Killing spinor equation on the conic
space (S6

n or S
1
ϑ=2ϖn ≃ H

5) leads to the solution of the
R-symmetry chemical potential [9] [23]

µ(n) := qiA
i =

n↔ 1

2
, (11)

where q1 = q2 = 1/2 are the R-charges of the Killing
spinor under the two U(1) Cartans. A general back-
ground satisfying (11) can be expressed as [10]

A
1 = (n↔ 1) r1 , A

2 = (n↔ 1) r2 , (12)

with r1+r2 = 1. Assuming that the SRE is a polynomial
of 1/n, which is verified by free field calculations as well
as large N results, it is shown that the SRE for 6d (2, 0)
theories enjoys universal relations with Weyl anomalies
(as well as ’t Hooft anomalies) [10]. The goal of this
letter is to show that the defect contribution to SRE also
enjoys universal relations with defect Weyl anomalies.

Summary of the results. The main result of this letter
is the exact contribution of N = (4, 4) surface defect to
the supersymmetric Rényi entropy (defect SRE) of 6d
(2, 0) theories. We show that for theories labelled by A-
type Lie algebra g, such defect SRE is a linear function
of φ := 1/n

Sϱ [g] =
2bg ↔ d2g
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2
(φ ↔ 1) + 1

]
log ω/ε , (13)

for any defect representation R in g, where bg and d2g are
given by (7) and r1,2 satisfying the constraint r1+r2 = 1
are parameters denoting the weights of the two U(1) R-
symmetry chemical potentials. The basic ingredients of
our argument are the following:

(A) At the largeN limit, Sϱ can be calculated holograph-
ically. The result for surface defect in the fundamen-
tal representation is (40)

Sϱ [AN↑↓] = N
(
r1r2(φ ↔ 1) + 2

)
log ω/ε . (14)
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Defect Super-Renyi
• M2 brane action

• On-shell action

4.1 Holographic surface defect

We want to compute the expectation value of a surface defect wrapping on (⌧, ⇢)

direction using the relationship

SM2 = � loghW in , (4.11)

where the M2-brane action is

SM2 = T2

Z
d3�

p
�det[g] . (4.12)

In the probe limit, the M2-brane solution is given by

�0 = ⌧ , �1 = ⇢ , �2 = r , (4.13)

and the on-shell action is

SM2 = T2

Z
�

0

d⌧

Z 1

�1
d⇢

Z ⇤

rH

rH(H1H2)
�1/5

p

� , (4.14)

where �1/3 is the warp factor in front of seven-dimensional solution in the eleven-

dimensional uplift. In [43], � is specified to be

� = X0µ
2
0 +X1µ

2
1 +X2µ

2
2 , (4.15)

where µ0,1,2 are related to 2-sphere angles by

µ0 = sin ✓ , µ1 = cos ✓ sin� , µ2 = cos ✓ cos� . (4.16)

As explained for string embedding in [44], the M2-brane should sit at the point on

the internal manifold in order to preserve the R-symmetry (twist part). Under this

condition we find

SM2 = �2⇡nT2VH1r2
H

. (4.17)

For a single charged black hole with only 1 6= 0, which corresponds to the field theory

twisting by a single U(1) Cartan of the R-symmetry, the M2-brane embedding can

be chosen at µ1 = 0, and we find

r2
H
=

n+ 1

2n
, SM2 = �2⇡T2VH1

✓
n+ 1

2

◆
. (4.18)

A consistent check: When n = 1, we have

SM2 = �2⇡T2VH1 = �4N log `/✏ , (4.19)

which agrees with the result in [10, 15]. The surface defect contribution to super-

symmetric Rényi entropy is

Sn =
loghW in � n loghW i1

1� n
= ⇡T2VH1 , (4.20)
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symmetric Rényi entropy is

Sn =
loghW in � n loghW i1

1� n
= ⇡T2VH1 , (4.20)

– 9 –

4.1 Holographic surface defect

We want to compute the expectation value of a surface defect wrapping on (⌧, ⇢)

direction using the relationship

SM2 = � loghW in , (4.11)

where the M2-brane action is

SM2 = T2

Z
d3�

p
�det[g] . (4.12)

In the probe limit, the M2-brane solution is given by

�0 = ⌧ , �1 = ⇢ , �2 = r , (4.13)

and the on-shell action is

SM2 = T2

Z
�

0

d⌧

Z 1

�1
d⇢

Z ⇤

rH

rH(H1H2)
�1/5

p

� , (4.14)

where �1/3 is the warp factor in front of seven-dimensional solution in the eleven-

dimensional uplift. In [43], � is specified to be

� = X0µ
2
0 +X1µ

2
1 +X2µ

2
2 , (4.15)

where µ0,1,2 are related to 2-sphere angles by

µ0 = sin ✓ , µ1 = cos ✓ sin� , µ2 = cos ✓ cos� . (4.16)

As explained for string embedding in [44], the M2-brane should sit at the point on

the internal manifold in order to preserve the R-symmetry (twist part). Under this

condition we find

SM2 = �2⇡nT2VH1r2
H

. (4.17)

For a single charged black hole with only 1 6= 0, which corresponds to the field theory

twisting by a single U(1) Cartan of the R-symmetry, the M2-brane embedding can

be chosen at µ1 = 0, and we find

r2
H
=

n+ 1

2n
, SM2 = �2⇡T2VH1

✓
n+ 1

2

◆
. (4.18)

A consistent check: When n = 1, we have

SM2 = �2⇡T2VH1 = �4N log `/✏ , (4.19)

which agrees with the result in [10, 15]. The surface defect contribution to super-
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• Large N defect SRE 
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which is independent of n.

For two equally-charged black hole, which corresponds to twisting by two U(1)

Cartans of the R-symmetry, the M2-brane embedding can be chosen at ✓ = ⇡/2, and

we find

r2
H
=

(3n+ 1)2

16n2
, SM2 = �⇡T2VH1

✓
(3n+ 1)2

16n

◆
. (4.21)

The surface defect contribution to supersymmetric Rényi entropy is

Sn = ⇡T2VH1

✓
7n+ 1

16n

◆
. (4.22)

5 Discussion

In this note we developed a method to compute the surface defect contribution to

bulk Rényi entropy. We mainly focus on surface defect in six dimensions but the

method is applicable in other dimensions as well. We obtained explicit results for

free fields and for (2, 0) theories in the large N limit. For free fields we employ the

heat kernel method in S1
�
⇥H5 with defect wrapped on S1

�
⇥H1. For large N (2, 0)

theories, we use M2-brane action in the verified supergravity solution to compute

the surface defect contribution to the supersymmetric Rényi entropy.

One interesting question is if we can make a conjecture for all N . Recall that in

the absence of the defect, this was achieved for supersymmetric Rényi entropy in all

known (2, 0) theories. The closed formula of supersymmetric Rényi entropy connects

conformal anomalies, ’t Hooft anomalies, supersymmetric Casimir energy and also

holography in a compact way [39]. In the same spirit, one may hope that there

exists a closed formula for the surface defect contribution to the supersymmetric

Rényi entropy.

Another interesting question is about the M2-brane in the hyperbolic black hole.

By now we only count the classical M2-brane contribution to the entropy. It is inter-

esting to go further to compute the quantum fluctuations in the M2-brane worldvol-

ume. As corrections to the entropy this is expected to be related to the all N result

in a certain way.
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A Integral of (3.12) over S
1
�
⇥ H

1

Due to the symmetry between ✓ = 0 and ✓ = ⇡ we only need to evaluate the integral

over ⌧ 2 [0, �), ⇢ 2 [0,+1) and ✓ = 0, with the region ⌧ 2 + ⇢2 < ✏2 excluded. We

– 10 –

3

(A) At large N limit, S� can be calculated holographi-
cally. The result for surface defect in fundamental
representation takes the form (55)

S� [AN!1] = N
�
r1r2(� � 1) + 2

�
log `/✏ . (15)

(B) In the large � limit, the behavior of the surface defect
SRE is controlled by the “surface defect contribution
to supersymmetric Casimir energy (defect SCE)”,
which will be computed from localization as well as
anomaly polynomial in (D). In particular the result
from anomaly polynomial is valid for all N and all
representations. Both results show that in the large
� limit,

S�!1 ⇠ � log `/✏ . (16)

(C) From (A) and (B), it is tempting to assume that
defect SRE is a linear function of �.

(D) The defect SCE for g = AN�1 is computed from
localization (25)(26) and further justified using
anomaly polynomial (40). These results give (34)

lim
�!1

S� [g]

�
=

r1r2
12

(2bg � d2g) log `/✏ , (17)

which is consistent with the large N result in (A).

(E) The value of S� at � = 1 is the surface defect con-
tribution to supersymmetric entanglement entropy
(defect SUSY EE). Notice that to define EE we have
to specify the boundary condition at entangling sur-
face. For the defect contribution, the supersymmet-
ric boundary condition gives a di↵erent result from
(7). We assume that it is still a linear combination
of b and d2, which can be fixed by fitting to the
holographic result in (A),

S =
2b� d2

6
log `/✏ . (18)

We also verify the defect SUSY EE as a linear combi-
nation of loghW i and h for Wilson loop in 4D N = 4
SYM, which is the 4d analogy of 6d surface defect.

From (A)(B)(C)(D)(E) listed above, we can uniquely fix
the general expression of S� given in (14).

Defects in S
1
⇥ S

5 from Localization. Due to the lack
of Lagrangian description, it is unclear how to compute
6d (2,0) theories directly. However, its circle reduction

on S
1
�

with appropriate twist gives 5d N = 2 SU(N)

SYM theory with coupling g2YM = 2⇡�. It is therefore
tempting to conjecture that the full 5d partition func-
tion (including both perturbative and non-perturbative)
will capture the 6d partition function on S

1
⇥S

5. Mean-
while, Wilson surface wrapping S

1
⇥ S

1
⇢ S

1
⇥ S

5 in 6d
corresponds to Wilson loops in 5d, it was argued in [18]
that the 5d partition function with line defects from local-
ization is su�cient to compute the 6d partition function
with surface defects. We will adopt the same working
assumption. The perturbative 5d partition function in
the strong coupling limit � ! 1 was computed by su-
persymmetric localization [19] and the partition function
Z reduces to a matrix integral

Z NY

i=1

d⌫i exp


2⇡

!1!2!3

⇣
�
⇡

�

NX

i=1

⌫2
i
+
�1�2

2

X

j<i

(⌫i�⌫j)
⌘�

,

(19)
where ⌫i are the scalar eigenvalues with ⌫i < ⌫j for i < j,
!i are the chemical potentials for angular momentum Ji
and �1,2 are the chemical potentials for R-charge R1,2.
The chemical potentials satisfy �1 + �2 = !1 + !2 + !3.
One can evaluate the integral (19) using the saddle point
approximation. The saddle point solution for ⌫i is

�
2⇡

�
⌫i +

�1�2

2

�
(i� 1)� (N � i)

�
= 0

) ⌫i =
��1�2

4⇡
(2i�N � 1) ,

(20)

which gives the 6d supersymmetric Casimir energy [19]

�Ec = � logZ = ��
N(N2

� 1)�2
1�

2
2

24!1!2!3
. (21)

The Wilson surface on S
1
⇥ S

1
j
in 6d is expected to be

captured by the 5d Wilson loop inserted on S
1
j
. When

the Wilson loop is inserted along S
1
j
with length 2⇡/!j ,

the localization saddles enforce the Wilson loop to make
a classical contribution TrR exp [2⇡⌫/!j ]. Without loss
of generality, we choose j = 1. The trace in symmetric
representation (k) is

Tr(k)e
2⇡⌫/!1 =

X

1i1···ikN

exp

"
2⇡

!1

kX

l=1

⌫il

#
. (22)

In (22), the largest contribution in the summation comes
with ⌫il = ⌫N for all l. Therefore, the leading contribu-
tion to hW(k)i is

hW(k)i =
1

Z

Z NY

i=1

d⌫i exp

2

4 2⇡

!1!2!3

0

@�
⇡

�

NX

i=1

⌫2
i
+

�1�2

2

X

j<i

(⌫i � ⌫j) + !2!3k⌫N

1

A

3

5 . (23)



A closed formula

• Large gamma defect SRE shares the same behavior with 
defect SCE(supersymmetric Casimir energy on S5*H1) 

• Defect SCE is determined from localization, further 
confirmed by anomaly polynomial

• The constant term is fixed by assuming a linear shift of b/3 
by d2

[arXiv:2501.09498 with Huang and Yuan]

2

in (1) through

d2 = 6⇡⌦d�3
d� 1

d
h . (3)

The Weyl anomaly of surface defect is also manifested
in the logarithmic divergence of its expectation value

loghD[⌃]i �

Z

⌃
A⌃vol⌃ log `/✏ , (4)

with the anomaly density A⌃ given by

A⌃ =
1

24⇡

h
bR⌃ + d1⇧̃

µ

ab
⇧̃ab

µ
� d2W

ab

ab

i
. (5)

From (4) and (5), one can see that the free energy of
spherical surface defect is [14]

F = � loghD[S2]i = �
b

3
log `/✏ . (6)

Defect Weyl anomalies also determine the defect contri-
bution to entanglement entropy (EE) S̃. In [15] it was
shown that the surface defect contribution to EE is [16]

S̃ = �F + �E = loghD[S2]i+

Z
hhT ⌧

⌧
ii

=
1

3

✓
b�

d� 3

d� 1
d2

◆
log `/✏ .

(7)

This formula can be used to determine central charges for
a class of surface defects. For 1/2-BPS Wilson surfaces
in the 6d AN�1 N = (2, 0) SCFT, both hhTµ⌫

ii and S̃ in
(7) can be calculated holographically [4, 5]. Using these
results, (1) and (7) give

b = 24 (⇤, ⇢)+3 (⇤,⇤) , d2 = 24 (⇤, ⇢)+6 (⇤,⇤) , (8)

with ⇤ the highest weight of the defect representation
R in the AN�1 Lie algebra su(N), ⇢ the Weyl vector of
su(N), and (·, ·) the inner product in the Lie algebra. In
the case of symmetric representation (k), (8) gives

b(k) = 12Nk + 3k2 � 12k � 3k2/N ,

d2(k) = 12Nk + 6k2 � 12k � 6k2/N .
(9)

While for anti-symmetric representation [k],

b[k] = 12Nk � 12k2 + 3k � 3k2/N ,

d2[k] = 12Nk � 12k2 + 6k � 6k2/N .
(10)

The main purpose of this letter is to show that, for Wilson
surfaces in 6d (2, 0) theories, the defect contribution to
supersymmetric Rényi entropy is fixed by b and d2.

Supersymmetric Rényi entropy. Rényi entropy is a one
parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we

compute entanglement entropy using replica trick and
returns to EE in the limit n ! 1,

Sn ⌘
1

1� n
log Tr⇢n =

1

1� n
log

Zn

Zn
, (11)

where n is the Rényi index and Zn is the partition func-
tion on the n-replica space. For d-dimensional CFT
in flat space, using a conformal transformation, the n-
replica space with a spherical entangling surface can be
mapped to S

1
�
⇥ H

d�1 with � = 2⇡n. In this letter we
mainly focus on 6d (2, 0) theories with d = 6 and the
Rényi entropy can be transformed to thermal entropy
on S

1
�
⇥ H

5. The replica trick generally breaks the su-
persymmetry because of conic singularity. Namely there
will be no surviving Killing spinors for n 6= 1 [7]. To
preserve supersymmetry, one should turn on extra R-
symmetry background fields, leading to the observable
of supersymmetric Rényi entropy (SRE) [7, 8]. The R-
symmetry group of 6d (2, 0) theories is SO(5), which has
two U(1) Cartans. Therefore one can turn on two inde-
pendent R-symmetry background gauge fields (chemical
potentials) to twist the boundary conditions along the
replica circle S

1
�
. A general analysis of the Killing spinor

equation on the conic space (S6
n
or S

1
�=2⇡n⇥H

5) leads to
the solution of the R-symmetry chemical potential [7] [17]

µ(n) := qiA
i =

n� 1

2
, (12)

with q1 = q2 = 1/2 the R-charges of the Killing spinor
under the two U(1) Cartans. A general background sat-
isfying (12) can be expressed as [8]

A1 = (n� 1) r1 , A2 = (n� 1) r2 , (13)

with r1 + r2 = 1. Assuming SRE is a polynomial of 1/n,
which is verified by free field calculations as well as large
N results, it has been shown [8] that SRE enjoys uni-
versal relations with Weyl anomalies (as well as ’t Hooft
anomalies). The goal of this letter is to show that the de-
fect SRE also enjoys universal relations with defect Weyl
anomalies.
Summary of the results. The main result of this letter

is the exact N = (4, 4) surface defect contribution to the
supersymmetric Rényi entropy (defect SRE) of 6d (2, 0)
theories. We show that for theories characterized by A-
type Lie algebra g, it is a linear function of � := 1/n

S� [g] =
2bg � d2g

6

hr1r2
2

(� � 1) + 1
i
log `/✏ , (14)

for any representation R, where bg and d2g are given
by (8) and r1,2 are background parameters denoting the
weights of the two U(1) R-symmetry chemical potentials,
satisfying the constraint r1 + r2 = 1. The basic ingredi-
ents of our argument are the following:
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This formula can be used to determine central charges for
a class of surface defects. For 1/2-BPS Wilson surfaces
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The main purpose of this letter is to show that, for Wilson
surfaces in 6d (2, 0) theories, the defect contribution to
supersymmetric Rényi entropy is fixed by b and d2.

Supersymmetric Rényi entropy. Rényi entropy is a one
parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we

compute entanglement entropy using replica trick and
returns to EE in the limit n ! 1,
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where n is the Rényi index and Zn is the partition func-
tion on the n-replica space. For d-dimensional CFT
in flat space, using a conformal transformation, the n-
replica space with a spherical entangling surface can be
mapped to S

1
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⇥ H

d�1 with � = 2⇡n. In this letter we
mainly focus on 6d (2, 0) theories with d = 6 and the
Rényi entropy can be transformed to thermal entropy
on S
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⇥ H

5. The replica trick generally breaks the su-
persymmetry because of conic singularity. Namely there
will be no surviving Killing spinors for n 6= 1 [7]. To
preserve supersymmetry, one should turn on extra R-
symmetry background fields, leading to the observable
of supersymmetric Rényi entropy (SRE) [7, 8]. The R-
symmetry group of 6d (2, 0) theories is SO(5), which has
two U(1) Cartans. Therefore one can turn on two inde-
pendent R-symmetry background gauge fields (chemical
potentials) to twist the boundary conditions along the
replica circle S

1
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. A general analysis of the Killing spinor

equation on the conic space (S6
n
or S

1
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5) leads to
the solution of the R-symmetry chemical potential [7] [17]

µ(n) := qiA
i =

n� 1

2
, (12)

with q1 = q2 = 1/2 the R-charges of the Killing spinor
under the two U(1) Cartans. A general background sat-
isfying (12) can be expressed as [8]

A1 = (n� 1) r1 , A2 = (n� 1) r2 , (13)

with r1 + r2 = 1. Assuming SRE is a polynomial of 1/n,
which is verified by free field calculations as well as large
N results, it has been shown [8] that SRE enjoys uni-
versal relations with Weyl anomalies (as well as ’t Hooft
anomalies). The goal of this letter is to show that the de-
fect SRE also enjoys universal relations with defect Weyl
anomalies.
Summary of the results. The main result of this letter

is the exact N = (4, 4) surface defect contribution to the
supersymmetric Rényi entropy (defect SRE) of 6d (2, 0)
theories. We show that for theories characterized by A-
type Lie algebra g, it is a linear function of � := 1/n

S� [g] =
2bg � d2g

6

hr1r2
2

(� � 1) + 1
i
log `/✏ , (14)

for any representation R, where bg and d2g are given
by (8) and r1,2 are background parameters denoting the
weights of the two U(1) R-symmetry chemical potentials,
satisfying the constraint r1 + r2 = 1. The basic ingredi-
ents of our argument are the following:



Supersymmetric Casimir energy

• 5d partition function from localization (large β)

• Saddle point solution

• 6d supersymmetric Casimir energy of A-type (2,0)

3

(A) At large N limit, S� can be calculated holographi-
cally. The result for surface defect in fundamental
representation takes the form (55)

S� [AN!1] = N
�
r1r2(� � 1) + 2

�
log `/✏ . (15)

(B) In the large � limit, the behavior of the surface defect
SRE is controlled by the “surface defect contribution
to supersymmetric Casimir energy (defect SCE)”,
which will be computed from localization as well as
anomaly polynomial in (D). In particular the result
from anomaly polynomial is valid for all N and all
representations. Both results show that in the large
� limit,

S�!1 ⇠ � log `/✏ . (16)

(C) From (A) and (B), it is tempting to assume that
defect SRE is a linear function of �.

(D) The defect SCE for g = AN�1 is computed from
localization (25)(26) and further justified using
anomaly polynomial (40). These results give (34)

lim
�!1

S� [g]

�
=

r1r2
12

(2bg � d2g) log `/✏ , (17)

which is consistent with the large N result in (A).

(E) The value of S� at � = 1 is the surface defect con-
tribution to supersymmetric entanglement entropy
(defect SUSY EE). Notice that to define EE we have
to specify the boundary condition at entangling sur-
face. For the defect contribution, the supersymmet-
ric boundary condition gives a di↵erent result from
(7). We assume that it is still a linear combination
of b and d2, which can be fixed by fitting to the
holographic result in (A),

S =
2b� d2

6
log `/✏ . (18)

We also verify the defect SUSY EE as a linear combi-
nation of loghW i and h for Wilson loop in 4D N = 4
SYM, which is the 4d analogy of 6d surface defect.

From (A)(B)(C)(D)(E) listed above, we can uniquely fix
the general expression of S� given in (14).

Defects in S
1
⇥ S

5 from Localization. Due to the lack
of Lagrangian description, it is unclear how to compute
6d (2,0) theories directly. However, its circle reduction

on S
1
�

with appropriate twist gives 5d N = 2 SU(N)

SYM theory with coupling g2YM = 2⇡�. It is therefore
tempting to conjecture that the full 5d partition func-
tion (including both perturbative and non-perturbative)
will capture the 6d partition function on S

1
⇥S

5. Mean-
while, Wilson surface wrapping S

1
⇥ S

1
⇢ S

1
⇥ S

5 in 6d
corresponds to Wilson loops in 5d, it was argued in [18]
that the 5d partition function with line defects from local-
ization is su�cient to compute the 6d partition function
with surface defects. We will adopt the same working
assumption. The perturbative 5d partition function in
the strong coupling limit � ! 1 was computed by su-
persymmetric localization [19] and the partition function
Z reduces to a matrix integral
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(19)
where ⌫i are the scalar eigenvalues with ⌫i < ⌫j for i < j,
!i are the chemical potentials for angular momentum Ji
and �1,2 are the chemical potentials for R-charge R1,2.
The chemical potentials satisfy �1 + �2 = !1 + !2 + !3.
One can evaluate the integral (19) using the saddle point
approximation. The saddle point solution for ⌫i is

�
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�
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which gives the 6d supersymmetric Casimir energy [19]
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The Wilson surface on S
1
⇥ S

1
j
in 6d is expected to be

captured by the 5d Wilson loop inserted on S
1
j
. When

the Wilson loop is inserted along S
1
j
with length 2⇡/!j ,

the localization saddles enforce the Wilson loop to make
a classical contribution TrR exp [2⇡⌫/!j ]. Without loss
of generality, we choose j = 1. The trace in symmetric
representation (k) is
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⌫il

#
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In (22), the largest contribution in the summation comes
with ⌫il = ⌫N for all l. Therefore, the leading contribu-
tion to hW(k)i is

hW(k)i =
1
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(A) At large N limit, S� can be calculated holographi-
cally. The result for surface defect in fundamental
representation takes the form (55)

S� [AN!1] = N
�
r1r2(� � 1) + 2

�
log `/✏ . (15)

(B) In the large � limit, the behavior of the surface defect
SRE is controlled by the “surface defect contribution
to supersymmetric Casimir energy (defect SCE)”,
which will be computed from localization as well as
anomaly polynomial in (D). In particular the result
from anomaly polynomial is valid for all N and all
representations. Both results show that in the large
� limit,

S�!1 ⇠ � log `/✏ . (16)

(C) From (A) and (B), it is tempting to assume that
defect SRE is a linear function of �.

(D) The defect SCE for g = AN�1 is computed from
localization (25)(26) and further justified using
anomaly polynomial (40). These results give (34)
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(2bg � d2g) log `/✏ , (17)

which is consistent with the large N result in (A).

(E) The value of S� at � = 1 is the surface defect con-
tribution to supersymmetric entanglement entropy
(defect SUSY EE). Notice that to define EE we have
to specify the boundary condition at entangling sur-
face. For the defect contribution, the supersymmet-
ric boundary condition gives a di↵erent result from
(7). We assume that it is still a linear combination
of b and d2, which can be fixed by fitting to the
holographic result in (A),

S =
2b� d2

6
log `/✏ . (18)

We also verify the defect SUSY EE as a linear combi-
nation of loghW i and h for Wilson loop in 4D N = 4
SYM, which is the 4d analogy of 6d surface defect.

From (A)(B)(C)(D)(E) listed above, we can uniquely fix
the general expression of S� given in (14).

Defects in S
1
⇥ S

5 from Localization. Due to the lack
of Lagrangian description, it is unclear how to compute
6d (2,0) theories directly. However, its circle reduction

on S
1
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with appropriate twist gives 5d N = 2 SU(N)

SYM theory with coupling g2YM = 2⇡�. It is therefore
tempting to conjecture that the full 5d partition func-
tion (including both perturbative and non-perturbative)
will capture the 6d partition function on S

1
⇥S

5. Mean-
while, Wilson surface wrapping S

1
⇥ S

1
⇢ S

1
⇥ S

5 in 6d
corresponds to Wilson loops in 5d, it was argued in [18]
that the 5d partition function with line defects from local-
ization is su�cient to compute the 6d partition function
with surface defects. We will adopt the same working
assumption. The perturbative 5d partition function in
the strong coupling limit � ! 1 was computed by su-
persymmetric localization [19] and the partition function
Z reduces to a matrix integral

Z NY

i=1

d⌫i exp
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where ⌫i are the scalar eigenvalues with ⌫i < ⌫j for i < j,
!i are the chemical potentials for angular momentum Ji
and �1,2 are the chemical potentials for R-charge R1,2.
The chemical potentials satisfy �1 + �2 = !1 + !2 + !3.
One can evaluate the integral (19) using the saddle point
approximation. The saddle point solution for ⌫i is
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⌫i +
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which gives the 6d supersymmetric Casimir energy [19]
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The Wilson surface on S
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⇥ S

1
j
in 6d is expected to be

captured by the 5d Wilson loop inserted on S
1
j
. When

the Wilson loop is inserted along S
1
j
with length 2⇡/!j ,

the localization saddles enforce the Wilson loop to make
a classical contribution TrR exp [2⇡⌫/!j ]. Without loss
of generality, we choose j = 1. The trace in symmetric
representation (k) is

Tr(k)e
2⇡⌫/!1 =
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1i1···ikN

exp
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In (22), the largest contribution in the summation comes
with ⌫il = ⌫N for all l. Therefore, the leading contribu-
tion to hW(k)i is
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(A) At large N limit, S� can be calculated holographi-
cally. The result for surface defect in fundamental
representation takes the form (55)

S� [AN!1] = N
�
r1r2(� � 1) + 2

�
log `/✏ . (15)

(B) In the large � limit, the behavior of the surface defect
SRE is controlled by the “surface defect contribution
to supersymmetric Casimir energy (defect SCE)”,
which will be computed from localization as well as
anomaly polynomial in (D). In particular the result
from anomaly polynomial is valid for all N and all
representations. Both results show that in the large
� limit,

S�!1 ⇠ � log `/✏ . (16)

(C) From (A) and (B), it is tempting to assume that
defect SRE is a linear function of �.

(D) The defect SCE for g = AN�1 is computed from
localization (25)(26) and further justified using
anomaly polynomial (40). These results give (34)

lim
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(2bg � d2g) log `/✏ , (17)

which is consistent with the large N result in (A).

(E) The value of S� at � = 1 is the surface defect con-
tribution to supersymmetric entanglement entropy
(defect SUSY EE). Notice that to define EE we have
to specify the boundary condition at entangling sur-
face. For the defect contribution, the supersymmet-
ric boundary condition gives a di↵erent result from
(7). We assume that it is still a linear combination
of b and d2, which can be fixed by fitting to the
holographic result in (A),

S =
2b� d2

6
log `/✏ . (18)

We also verify the defect SUSY EE as a linear combi-
nation of loghW i and h for Wilson loop in 4D N = 4
SYM, which is the 4d analogy of 6d surface defect.

From (A)(B)(C)(D)(E) listed above, we can uniquely fix
the general expression of S� given in (14).

Defects in S
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5 from Localization. Due to the lack
of Lagrangian description, it is unclear how to compute
6d (2,0) theories directly. However, its circle reduction

on S
1
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with appropriate twist gives 5d N = 2 SU(N)

SYM theory with coupling g2YM = 2⇡�. It is therefore
tempting to conjecture that the full 5d partition func-
tion (including both perturbative and non-perturbative)
will capture the 6d partition function on S

1
⇥S

5. Mean-
while, Wilson surface wrapping S
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1
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1
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5 in 6d
corresponds to Wilson loops in 5d, it was argued in [18]
that the 5d partition function with line defects from local-
ization is su�cient to compute the 6d partition function
with surface defects. We will adopt the same working
assumption. The perturbative 5d partition function in
the strong coupling limit � ! 1 was computed by su-
persymmetric localization [19] and the partition function
Z reduces to a matrix integral
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where ⌫i are the scalar eigenvalues with ⌫i < ⌫j for i < j,
!i are the chemical potentials for angular momentum Ji
and �1,2 are the chemical potentials for R-charge R1,2.
The chemical potentials satisfy �1 + �2 = !1 + !2 + !3.
One can evaluate the integral (19) using the saddle point
approximation. The saddle point solution for ⌫i is
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which gives the 6d supersymmetric Casimir energy [19]
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The Wilson surface on S
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1
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in 6d is expected to be

captured by the 5d Wilson loop inserted on S
1
j
. When

the Wilson loop is inserted along S
1
j
with length 2⇡/!j ,

the localization saddles enforce the Wilson loop to make
a classical contribution TrR exp [2⇡⌫/!j ]. Without loss
of generality, we choose j = 1. The trace in symmetric
representation (k) is

Tr(k)e
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In (22), the largest contribution in the summation comes
with ⌫il = ⌫N for all l. Therefore, the leading contribu-
tion to hW(k)i is
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(A) At large N limit, S� can be calculated holographi-
cally. The result for surface defect in fundamental
representation takes the form (55)

S� [AN!1] = N
�
r1r2(� � 1) + 2

�
log `/✏ . (15)

(B) In the large � limit, the behavior of the surface defect
SRE is controlled by the “surface defect contribution
to supersymmetric Casimir energy (defect SCE)”,
which will be computed from localization as well as
anomaly polynomial in (D). In particular the result
from anomaly polynomial is valid for all N and all
representations. Both results show that in the large
� limit,

S�!1 ⇠ � log `/✏ . (16)

(C) From (A) and (B), it is tempting to assume that
defect SRE is a linear function of �.

(D) The defect SCE for g = AN�1 is computed from
localization (25)(26) and further justified using
anomaly polynomial (40). These results give (34)

lim
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(2bg � d2g) log `/✏ , (17)

which is consistent with the large N result in (A).

(E) The value of S� at � = 1 is the surface defect con-
tribution to supersymmetric entanglement entropy
(defect SUSY EE). Notice that to define EE we have
to specify the boundary condition at entangling sur-
face. For the defect contribution, the supersymmet-
ric boundary condition gives a di↵erent result from
(7). We assume that it is still a linear combination
of b and d2, which can be fixed by fitting to the
holographic result in (A),

S =
2b� d2

6
log `/✏ . (18)

We also verify the defect SUSY EE as a linear combi-
nation of loghW i and h for Wilson loop in 4D N = 4
SYM, which is the 4d analogy of 6d surface defect.

From (A)(B)(C)(D)(E) listed above, we can uniquely fix
the general expression of S� given in (14).
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5 from Localization. Due to the lack
of Lagrangian description, it is unclear how to compute
6d (2,0) theories directly. However, its circle reduction

on S
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with appropriate twist gives 5d N = 2 SU(N)

SYM theory with coupling g2YM = 2⇡�. It is therefore
tempting to conjecture that the full 5d partition func-
tion (including both perturbative and non-perturbative)
will capture the 6d partition function on S
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5. Mean-
while, Wilson surface wrapping S
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5 in 6d
corresponds to Wilson loops in 5d, it was argued in [18]
that the 5d partition function with line defects from local-
ization is su�cient to compute the 6d partition function
with surface defects. We will adopt the same working
assumption. The perturbative 5d partition function in
the strong coupling limit � ! 1 was computed by su-
persymmetric localization [19] and the partition function
Z reduces to a matrix integral
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i=1

d⌫i exp


2⇡

!1!2!3

⇣
�
⇡

�

NX

i=1

⌫2
i
+
�1�2

2

X

j<i

(⌫i�⌫j)
⌘�

,

(19)
where ⌫i are the scalar eigenvalues with ⌫i < ⌫j for i < j,
!i are the chemical potentials for angular momentum Ji
and �1,2 are the chemical potentials for R-charge R1,2.
The chemical potentials satisfy �1 + �2 = !1 + !2 + !3.
One can evaluate the integral (19) using the saddle point
approximation. The saddle point solution for ⌫i is

�
2⇡

�
⌫i +

�1�2

2

�
(i� 1)� (N � i)

�
= 0

) ⌫i =
��1�2

4⇡
(2i�N � 1) ,

(20)

which gives the 6d supersymmetric Casimir energy [19]

�Ec = � logZ = ��
N(N2

� 1)�2
1�

2
2

24!1!2!3
. (21)

The Wilson surface on S
1
⇥ S

1
j
in 6d is expected to be

captured by the 5d Wilson loop inserted on S
1
j
. When

the Wilson loop is inserted along S
1
j
with length 2⇡/!j ,

the localization saddles enforce the Wilson loop to make
a classical contribution TrR exp [2⇡⌫/!j ]. Without loss
of generality, we choose j = 1. The trace in symmetric
representation (k) is

Tr(k)e
2⇡⌫/!1 =

X

1i1···ikN

exp

"
2⇡

!1

kX

l=1

⌫il

#
. (22)

In (22), the largest contribution in the summation comes
with ⌫il = ⌫N for all l. Therefore, the leading contribu-
tion to hW(k)i is

hW(k)i =
1

Z

Z NY

i=1

d⌫i exp

2

4 2⇡

!1!2!3

0

@�
⇡

�

NX

i=1

⌫2
i
+

�1�2

2

X

j<i

(⌫i � ⌫j) + !2!3k⌫N

1

A

3

5 . (23)

[Bobev-Bullimore-Kim 2015]



Defect SCE

• Wilson loop insertion in localization

• For symmetric representation

• For anti-symmetric rep.

3

(A) At large N limit, S� can be calculated holographi-
cally. The result for surface defect in fundamental
representation takes the form (55)

S� [AN!1] = N
�
r1r2(� � 1) + 2

�
log `/✏ . (15)

(B) In the large � limit, the behavior of the surface defect
SRE is controlled by the “surface defect contribution
to supersymmetric Casimir energy (defect SCE)”,
which will be computed from localization as well as
anomaly polynomial in (D). In particular the result
from anomaly polynomial is valid for all N and all
representations. Both results show that in the large
� limit,

S�!1 ⇠ � log `/✏ . (16)

(C) From (A) and (B), it is tempting to assume that
defect SRE is a linear function of �.

(D) The defect SCE for g = AN�1 is computed from
localization (25)(26) and further justified using
anomaly polynomial (40). These results give (34)

lim
�!1

S� [g]

�
=

r1r2
12

(2bg � d2g) log `/✏ , (17)

which is consistent with the large N result in (A).

(E) The value of S� at � = 1 is the surface defect con-
tribution to supersymmetric entanglement entropy
(defect SUSY EE). Notice that to define EE we have
to specify the boundary condition at entangling sur-
face. For the defect contribution, the supersymmet-
ric boundary condition gives a di↵erent result from
(7). We assume that it is still a linear combination
of b and d2, which can be fixed by fitting to the
holographic result in (A),

S =
2b� d2

6
log `/✏ . (18)

We also verify the defect SUSY EE as a linear combi-
nation of loghW i and h for Wilson loop in 4D N = 4
SYM, which is the 4d analogy of 6d surface defect.

From (A)(B)(C)(D)(E) listed above, we can uniquely fix
the general expression of S� given in (14).

Defects in S
1
⇥ S

5 from Localization. Due to the lack
of Lagrangian description, it is unclear how to compute
6d (2,0) theories directly. However, its circle reduction

on S
1
�

with appropriate twist gives 5d N = 2 SU(N)

SYM theory with coupling g2YM = 2⇡�. It is therefore
tempting to conjecture that the full 5d partition func-
tion (including both perturbative and non-perturbative)
will capture the 6d partition function on S

1
⇥S

5. Mean-
while, Wilson surface wrapping S

1
⇥ S

1
⇢ S

1
⇥ S

5 in 6d
corresponds to Wilson loops in 5d, it was argued in [18]
that the 5d partition function with line defects from local-
ization is su�cient to compute the 6d partition function
with surface defects. We will adopt the same working
assumption. The perturbative 5d partition function in
the strong coupling limit � ! 1 was computed by su-
persymmetric localization [19] and the partition function
Z reduces to a matrix integral

Z NY

i=1

d⌫i exp


2⇡

!1!2!3

⇣
�
⇡

�

NX

i=1

⌫2
i
+
�1�2

2

X

j<i

(⌫i�⌫j)
⌘�

,

(19)
where ⌫i are the scalar eigenvalues with ⌫i < ⌫j for i < j,
!i are the chemical potentials for angular momentum Ji
and �1,2 are the chemical potentials for R-charge R1,2.
The chemical potentials satisfy �1 + �2 = !1 + !2 + !3.
One can evaluate the integral (19) using the saddle point
approximation. The saddle point solution for ⌫i is

�
2⇡

�
⌫i +

�1�2

2

�
(i� 1)� (N � i)

�
= 0

) ⌫i =
��1�2

4⇡
(2i�N � 1) ,

(20)

which gives the 6d supersymmetric Casimir energy [19]

�Ec = � logZ = ��
N(N2

� 1)�2
1�

2
2

24!1!2!3
. (21)

The Wilson surface on S
1
⇥ S

1
j
in 6d is expected to be

captured by the 5d Wilson loop inserted on S
1
j
. When

the Wilson loop is inserted along S
1
j
with length 2⇡/!j ,

the localization saddles enforce the Wilson loop to make
a classical contribution TrR exp [2⇡⌫/!j ]. Without loss
of generality, we choose j = 1. The trace in symmetric
representation (k) is

Tr(k)e
2⇡⌫/!1 =

X

1i1···ikN

exp

"
2⇡

!1

kX

l=1

⌫il

#
. (22)

In (22), the largest contribution in the summation comes
with ⌫il = ⌫N for all l. Therefore, the leading contribu-
tion to hW(k)i is

hW(k)i =
1

Z

Z NY

i=1

d⌫i exp

2

4 2⇡

!1!2!3

0

@�
⇡

�

NX

i=1

⌫2
i
+

�1�2

2

X

j<i

(⌫i � ⌫j) + !2!3k⌫N

1

A

3

5 . (23)

3

(A) At large N limit, S� can be calculated holographi-
cally. The result for surface defect in fundamental
representation takes the form (55)

S� [AN!1] = N
�
r1r2(� � 1) + 2

�
log `/✏ . (15)

(B) In the large � limit, the behavior of the surface defect
SRE is controlled by the “surface defect contribution
to supersymmetric Casimir energy (defect SCE)”,
which will be computed from localization as well as
anomaly polynomial in (D). In particular the result
from anomaly polynomial is valid for all N and all
representations. Both results show that in the large
� limit,

S�!1 ⇠ � log `/✏ . (16)

(C) From (A) and (B), it is tempting to assume that
defect SRE is a linear function of �.

(D) The defect SCE for g = AN�1 is computed from
localization (25)(26) and further justified using
anomaly polynomial (40). These results give (34)

lim
�!1

S� [g]

�
=

r1r2
12

(2bg � d2g) log `/✏ , (17)

which is consistent with the large N result in (A).

(E) The value of S� at � = 1 is the surface defect con-
tribution to supersymmetric entanglement entropy
(defect SUSY EE). Notice that to define EE we have
to specify the boundary condition at entangling sur-
face. For the defect contribution, the supersymmet-
ric boundary condition gives a di↵erent result from
(7). We assume that it is still a linear combination
of b and d2, which can be fixed by fitting to the
holographic result in (A),

S =
2b� d2

6
log `/✏ . (18)

We also verify the defect SUSY EE as a linear combi-
nation of loghW i and h for Wilson loop in 4D N = 4
SYM, which is the 4d analogy of 6d surface defect.

From (A)(B)(C)(D)(E) listed above, we can uniquely fix
the general expression of S� given in (14).

Defects in S
1
⇥ S

5 from Localization. Due to the lack
of Lagrangian description, it is unclear how to compute
6d (2,0) theories directly. However, its circle reduction

on S
1
�

with appropriate twist gives 5d N = 2 SU(N)

SYM theory with coupling g2YM = 2⇡�. It is therefore
tempting to conjecture that the full 5d partition func-
tion (including both perturbative and non-perturbative)
will capture the 6d partition function on S

1
⇥S

5. Mean-
while, Wilson surface wrapping S

1
⇥ S

1
⇢ S

1
⇥ S

5 in 6d
corresponds to Wilson loops in 5d, it was argued in [18]
that the 5d partition function with line defects from local-
ization is su�cient to compute the 6d partition function
with surface defects. We will adopt the same working
assumption. The perturbative 5d partition function in
the strong coupling limit � ! 1 was computed by su-
persymmetric localization [19] and the partition function
Z reduces to a matrix integral

Z NY

i=1

d⌫i exp


2⇡

!1!2!3

⇣
�
⇡

�

NX

i=1

⌫2
i
+
�1�2

2

X

j<i

(⌫i�⌫j)
⌘�

,

(19)
where ⌫i are the scalar eigenvalues with ⌫i < ⌫j for i < j,
!i are the chemical potentials for angular momentum Ji
and �1,2 are the chemical potentials for R-charge R1,2.
The chemical potentials satisfy �1 + �2 = !1 + !2 + !3.
One can evaluate the integral (19) using the saddle point
approximation. The saddle point solution for ⌫i is

�
2⇡

�
⌫i +

�1�2

2

�
(i� 1)� (N � i)

�
= 0

) ⌫i =
��1�2

4⇡
(2i�N � 1) ,

(20)

which gives the 6d supersymmetric Casimir energy [19]

�Ec = � logZ = ��
N(N2

� 1)�2
1�

2
2

24!1!2!3
. (21)

The Wilson surface on S
1
⇥ S

1
j
in 6d is expected to be

captured by the 5d Wilson loop inserted on S
1
j
. When

the Wilson loop is inserted along S
1
j
with length 2⇡/!j ,

the localization saddles enforce the Wilson loop to make
a classical contribution TrR exp [2⇡⌫/!j ]. Without loss
of generality, we choose j = 1. The trace in symmetric
representation (k) is

Tr(k)e
2⇡⌫/!1 =

X

1i1···ikN

exp

"
2⇡

!1

kX

l=1

⌫il

#
. (22)

In (22), the largest contribution in the summation comes
with ⌫il = ⌫N for all l. Therefore, the leading contribu-
tion to hW(k)i is

hW(k)i =
1

Z

Z NY

i=1

d⌫i exp

2

4 2⇡

!1!2!3

0

@�
⇡

�

NX

i=1

⌫2
i
+

�1�2

2

X

j<i

(⌫i � ⌫j) + !2!3k⌫N

1

A

3

5 . (23)

4

With this approximation, the Wilson loop insertion only
changes the saddle point of ⌫N , while all the other ⌫i<N

remain the same as (20). The new saddle point solution
of ⌫N is

�
2⇡

�
⌫N +

�1�2

2
(N � 1) + !2!3k = 0

) ⌫N =
�

4⇡

�
(N � 1)�1�2 + 2k!2!3

�
.

(24)

Evaluating the matrix integral (23) at the saddles (24) of
⌫N and (20) of ⌫i<N gives the defect SCE

�E(k) = � loghW(k)i

= �
�

2!1

�
k(N � 1)�1�2 + k2!2!3

�
.

(25)

Using the same method one can evaluate the result for
anti-symmetric representation (see the supplementary
material for details)

�E[k] = �
�

2!1

�
k(N � k)�1�2 + k!2!3

�
. (26)

Connection between defect SRE and defect SCE. Here
we make the connection between the asymptotic defect
SRE Sn!0 and the defect SCE (25) and (26). The ex-
pectation value of surface defect wrapped on S

1
�
⇥ S

1
n
⇢

S
1
�
⇥ S

5
n
is determined by the defect SCE on S

5
n
in the

limit � ! 1, i.e.,

E = � lim
�!1

@� loghDgi� . (27)

Since the defect is wrapped on S
1
n
⇢ S

5
n
, the shape pa-

rameters should be identified as

!1 =
1

n
, !2 = !3 = 1 . (28)

In the limit n ! 0, to match the chemical potentials (13),
the behavior of �1 and �2 should be set as [8]

�2
1(n ! 0) =

r21
n2

, �2
2(n ! 0) =

r22
n2

, (29)

with r1 + r2 = 1. Evaluating (25) and (26) under the
above parameter setting gives

E(k)

��
n!0

= �
k(N � 1)

2

r1r2
n

,

E[k]

��
n!0

= �
k(N � k)

2

r1r2
n

.

(30)

Based on (30), (9) and (10), we find that

E
��
n!0

= �
2b� d2

24

r1r2
n

, (31)

which can be further justified using anomaly polynomial.
In fact, from the derivation by anomaly polynomial in

next section we will see that the relation (31) holds for
all N and all defect representations. Because of a geo-
metric coincidence, there is a fact that the n ! 0 limit
of SRE coincides with the extremally squashed SCE up
to a factor. Therefore one can take use of the latter to
determine the large � limit of SRE. Here we use the same
idea to determine the large � behavior of defect SRE. The
defect free energy at � ! 1 and n ! 0 is

F [S1
n!0 ⇥ S

1
�
] = �Eg|n!0 = ��

2bg � d2g
24

r1r2
n

, (32)

When � ! 1, the defect free energy on S
1
n!0⇥H

1 di↵ers
only by a volume

F [S1
n!0 ⇥ H

1] = F [S1
n!0 ⇥ S

1
�
]
Vol[H1]

Vol[S1
�
]
, (33)

from which we can obtain the asymptotic defect SRE

Sn!0[g] = �F [S1
n!0 ⇥ H

1]

=
2bg � d2g

12

r1r2
n

log `/✏ .
(34)

Defect SCE and Anomaly polynomial. It is conjec-
tured in [19] that for a d-dimensional superconformal
field theory (d is even), its SCE on a space with topology
M = S

1
⇥ S

d�1 is given by the equivariant integral of
the anomaly polynomial, Id+2,

Ed =

Z
Id+2(M) . (35)

In [20], the authors proposed that for a 2d defect wrap-
ping ⌃ ,! M, it deforms the anomaly polynomial by a
defect localized term

Id+2(M) ! Id+2(M) + �⌃I4(⌃) , (36)

which indicates a defect version of the relation (35). In
this section, we use this idea to calculate the surface de-
fect contribution to SCE from the equivariant integral of
the defect anomaly polynomial.
The anomaly polynomial of a 2d N = (4, 4) surface

defect in the 6d N = (2, 0) SCFT labelled by ADE Lie
algebra g is given in [21, 22] [23]

I4 =
1

4
(⇤,⇤) (c2(FL)� c2(FR))

+
1

2
(⇤, ⇢) (c2(FI)� c2(FF )) ,

(37)

where FL,R,I,F are the background field strength of the
SU(2)L ⇥ SU(2)F ⇥ SU(2)R ⇥ SU(2)I R-symmetry of
the 2d N = (4, 4) surface defect, and c2(F ) = trfundF 2/2
is the second Chern class of the background SU(2)-
symmetry bundle [24]. See the supplementary materi-
als for the details of the superconformal algebra with the
surface defect insertion.

4

With this approximation, the Wilson loop insertion only
changes the saddle point of ⌫N , while all the other ⌫i<N

remain the same as (20). The new saddle point solution
of ⌫N is

�
2⇡

�
⌫N +

�1�2

2
(N � 1) + !2!3k = 0

) ⌫N =
�

4⇡

�
(N � 1)�1�2 + 2k!2!3

�
.

(24)

Evaluating the matrix integral (23) at the saddles (24) of
⌫N and (20) of ⌫i<N gives the defect SCE

�E(k) = � loghW(k)i

= �
�

2!1

�
k(N � 1)�1�2 + k2!2!3

�
.

(25)

Using the same method one can evaluate the result for
anti-symmetric representation (see the supplementary
material for details)

�E[k] = �
�

2!1

�
k(N � k)�1�2 + k!2!3

�
. (26)

Connection between defect SRE and defect SCE. Here
we make the connection between the asymptotic defect
SRE Sn!0 and the defect SCE (25) and (26). The ex-
pectation value of surface defect wrapped on S

1
�
⇥ S

1
n
⇢

S
1
�
⇥ S

5
n
is determined by the defect SCE on S

5
n
in the

limit � ! 1, i.e.,

E = � lim
�!1

@� loghDgi� . (27)

Since the defect is wrapped on S
1
n
⇢ S

5
n
, the shape pa-

rameters should be identified as

!1 =
1

n
, !2 = !3 = 1 . (28)

In the limit n ! 0, to match the chemical potentials (13),
the behavior of �1 and �2 should be set as [8]

�2
1(n ! 0) =

r21
n2

, �2
2(n ! 0) =

r22
n2

, (29)

with r1 + r2 = 1. Evaluating (25) and (26) under the
above parameter setting gives

E(k)

��
n!0

= �
k(N � 1)

2

r1r2
n

,

E[k]

��
n!0

= �
k(N � k)

2

r1r2
n

.

(30)

Based on (30), (9) and (10), we find that

E
��
n!0

= �
2b� d2

24

r1r2
n

, (31)

which can be further justified using anomaly polynomial.
In fact, from the derivation by anomaly polynomial in

next section we will see that the relation (31) holds for
all N and all defect representations. Because of a geo-
metric coincidence, there is a fact that the n ! 0 limit
of SRE coincides with the extremally squashed SCE up
to a factor. Therefore one can take use of the latter to
determine the large � limit of SRE. Here we use the same
idea to determine the large � behavior of defect SRE. The
defect free energy at � ! 1 and n ! 0 is

F [S1
n!0 ⇥ S

1
�
] = �Eg|n!0 = ��

2bg � d2g
24

r1r2
n

, (32)

When � ! 1, the defect free energy on S
1
n!0⇥H

1 di↵ers
only by a volume

F [S1
n!0 ⇥ H

1] = F [S1
n!0 ⇥ S

1
�
]
Vol[H1]

Vol[S1
�
]
, (33)

from which we can obtain the asymptotic defect SRE

Sn!0[g] = �F [S1
n!0 ⇥ H

1]

=
2bg � d2g

12

r1r2
n

log `/✏ .
(34)

Defect SCE and Anomaly polynomial. It is conjec-
tured in [19] that for a d-dimensional superconformal
field theory (d is even), its SCE on a space with topology
M = S

1
⇥ S

d�1 is given by the equivariant integral of
the anomaly polynomial, Id+2,

Ed =

Z
Id+2(M) . (35)

In [20], the authors proposed that for a 2d defect wrap-
ping ⌃ ,! M, it deforms the anomaly polynomial by a
defect localized term

Id+2(M) ! Id+2(M) + �⌃I4(⌃) , (36)

which indicates a defect version of the relation (35). In
this section, we use this idea to calculate the surface de-
fect contribution to SCE from the equivariant integral of
the defect anomaly polynomial.
The anomaly polynomial of a 2d N = (4, 4) surface

defect in the 6d N = (2, 0) SCFT labelled by ADE Lie
algebra g is given in [21, 22] [23]

I4 =
1

4
(⇤,⇤) (c2(FL)� c2(FR))

+
1

2
(⇤, ⇢) (c2(FI)� c2(FF )) ,

(37)

where FL,R,I,F are the background field strength of the
SU(2)L ⇥ SU(2)F ⇥ SU(2)R ⇥ SU(2)I R-symmetry of
the 2d N = (4, 4) surface defect, and c2(F ) = trfundF 2/2
is the second Chern class of the background SU(2)-
symmetry bundle [24]. See the supplementary materi-
als for the details of the superconformal algebra with the
surface defect insertion.

[arXiv:2501.09498 with Huang and Yuan]
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Defect SCE from anomaly polynomial
• Anomaly polynomial from inflow [Shimizu-Tachikawa 2016, Wang 2021]

• Equivariant integration

• Identify 2d and 6d parameters and use the recent defect anomaly formula

4

With this approximation, the Wilson loop insertion only
changes the saddle point of ⌫N , while all the other ⌫i<N

remain the same as (20). The new saddle point solution
of ⌫N is

�
2⇡

�
⌫N +

�1�2

2
(N � 1) + !2!3k = 0

) ⌫N =
�

4⇡

�
(N � 1)�1�2 + 2k!2!3

�
.

(24)

Evaluating the matrix integral (23) at the saddles (24) of
⌫N and (20) of ⌫i<N gives the defect SCE

�E(k) = � loghW(k)i

= �
�

2!1

�
k(N � 1)�1�2 + k2!2!3

�
.

(25)

Using the same method one can evaluate the result for
anti-symmetric representation (see the supplementary
material for details)

�E[k] = �
�

2!1

�
k(N � k)�1�2 + k!2!3

�
. (26)

Connection between defect SRE and defect SCE. Here
we make the connection between the asymptotic defect
SRE Sn!0 and the defect SCE (25) and (26). The ex-
pectation value of surface defect wrapped on S

1
�
⇥ S

1
n
⇢

S
1
�
⇥ S

5
n
is determined by the defect SCE on S

5
n
in the

limit � ! 1, i.e.,

E = � lim
�!1

@� loghDgi� . (27)

Since the defect is wrapped on S
1
n
⇢ S

5
n
, the shape pa-

rameters should be identified as

!1 =
1

n
, !2 = !3 = 1 . (28)

In the limit n ! 0, to match the chemical potentials (13),
the behavior of �1 and �2 should be set as [8]

�2
1(n ! 0) =

r21
n2

, �2
2(n ! 0) =

r22
n2

, (29)

with r1 + r2 = 1. Evaluating (25) and (26) under the
above parameter setting gives

E(k)

��
n!0

= �
k(N � 1)

2

r1r2
n

,

E[k]

��
n!0

= �
k(N � k)

2

r1r2
n

.

(30)

Based on (30), (9) and (10), we find that

E
��
n!0

= �
2b� d2

24

r1r2
n

, (31)

which can be further justified using anomaly polynomial.
In fact, from the derivation by anomaly polynomial in

next section we will see that the relation (31) holds for
all N and all defect representations. Because of a geo-
metric coincidence, there is a fact that the n ! 0 limit
of SRE coincides with the extremally squashed SCE up
to a factor. Therefore one can take use of the latter to
determine the large � limit of SRE. Here we use the same
idea to determine the large � behavior of defect SRE. The
defect free energy at � ! 1 and n ! 0 is

F [S1
n!0 ⇥ S

1
�
] = �Eg|n!0 = ��

2bg � d2g
24

r1r2
n

, (32)

When � ! 1, the defect free energy on S
1
n!0⇥H

1 di↵ers
only by a volume

F [S1
n!0 ⇥ H

1] = F [S1
n!0 ⇥ S

1
�
]
Vol[H1]

Vol[S1
�
]
, (33)

from which we can obtain the asymptotic defect SRE

Sn!0[g] = �F [S1
n!0 ⇥ H

1]

=
2bg � d2g

12

r1r2
n

log `/✏ .
(34)

Defect SCE and Anomaly polynomial. It is conjec-
tured in [19] that for a d-dimensional superconformal
field theory (d is even), its SCE on a space with topology
M = S

1
⇥ S

d�1 is given by the equivariant integral of
the anomaly polynomial, Id+2,

Ed =

Z
Id+2(M) . (35)

In [20], the authors proposed that for a 2d defect wrap-
ping ⌃ ,! M, it deforms the anomaly polynomial by a
defect localized term

Id+2(M) ! Id+2(M) + �⌃I4(⌃) , (36)

which indicates a defect version of the relation (35). In
this section, we use this idea to calculate the surface de-
fect contribution to SCE from the equivariant integral of
the defect anomaly polynomial.
The anomaly polynomial of a 2d N = (4, 4) surface

defect in the 6d N = (2, 0) SCFT labelled by ADE Lie
algebra g is given in [21, 22] [23]

I4 =
1

4
(⇤,⇤) (c2(FL)� c2(FR))

+
1

2
(⇤, ⇢) (c2(FI)� c2(FF )) ,

(37)

where FL,R,I,F are the background field strength of the
SU(2)L ⇥ SU(2)F ⇥ SU(2)R ⇥ SU(2)I R-symmetry of
the 2d N = (4, 4) surface defect, and c2(F ) = trfundF 2/2
is the second Chern class of the background SU(2)-
symmetry bundle [24]. See the supplementary materi-
als for the details of the superconformal algebra with the
surface defect insertion.
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Since the surface defect is inserted in the 2d plane
spanned by x0, x1 corresponding to !1, the equivariant
integral of the 2d defect anomaly polynomial (37) on this
R
2
!1

gives [25]

Eg = �
1

2⇡

Z
I4

= �
1

4!1


1

2
(⇤,⇤)

�
a2
L
� a2

R

�
+ (⇤, ⇢)

�
a2
I
� a2

F

��
,

(38)

where aL, aR, aI , aF are the chemical potentials for the
Cartans JL, JR, JI , JF of the 2d N = (4, 4) R-symmetry,
respectively. By identifying the 2d R-symmetry Cartans
JL, JR, JI , JF with the bulk Cartans J2, J3, R1, R2, the
chemical potentials are given by (see the supplementary
material for the details of this identification),

aL = !2 + !3 , aR = !2 � !3 ,

aI = �(�1 + �2) , aF = �(�1 � �2) .
(39)

Using (39) and (8), the defect Casimir energy Eg can
be further expressed in terms of the 6d bulk chemical
potentials and defect central charges b, d2 as

Eg = �
1

!1


d2g � bg

6
!2!3 +

2bg � d2g
24

�1�2

�
. (40)

It can be checked that under the chiral limit !1 = !2 =
1, �1�2 = 2!3 [26], the defect Casimir energy (40) is
proportional to the defect central charge d2 [20]

Eg

��
chiral limit

= �
1

12
!3d2 . (41)

For the surface defect in the symmetric representation
(k) of g = su(N), plugging the corresponding central
charges (9) into (40) gives

E(k) = �
1

2!1


k2

✓
1�

1

N

◆
!2!3 + k(N � 1)�1�2

�
.

(42)
At the large N limit, the anomaly polynomial-result
(42) agrees with the localization result (25). One can
also check this consistency for anti-symmetric represen-
tation [k]. We stress that the defect SCE computed from
anomaly polynomial is exact.

Defect SUSY entanglement entropy. The value of de-
fect SRE at n = 1 is the surface defect contribution to
SUSY EE. To define EE we have to specify the boundary
condition at entangling surface. For the defect contri-
bution, the supersymmetric boundary condition gives a
di↵erent result from the non-SUSY one (7). We assume
that it is still a linear combination of b and d2,

S = loghDi+#d2 log `/✏ =

✓
b

3
+ #d2

◆
log `/✏ , (43)

where the undetermined constant # can be fixed to be
�1/6 by fitting to the holography result (55) at n = 1.

Therefore, the surface defect contribution to SUSY EE
takes the following form

S =
2b� d2

6
log `/✏ . (44)

We also verified a similar linear combination for Wilson
loop in 4d SYM theory, S = loghW i � 6⇡2hW . See sup-
plementary materials for details.
Defects in large N limit. The AN�1 (2, 0) SCFT is

conjectured to be dual to M-theory on AdS7 ⇥ S
4 with

N units of 4-form flux on S
4 [27]. Furthermore, the holo-

graphic SRE of AN�1 (2, 0) SCFT can be computed from
2-charge 7d topological black hole [8],

ds27 =
�f(r)dt2

(H1H2)
4/5

+ (H1H2)
1/5

✓
dr2

f(r)
+ r2d⌦2

5,k

◆
,

f(r) = k �
m

r4
+

r2

L2
H1H2 , Hi = 1 +

qi
r4

,

(45)

together with two scalars and two gauge fields,

Xi = (H1H2)
2/5 H�1

i
, Ai =

⇣p
k
�
H�1

i
� 1

�
+ µi

⌘
dt ,

(46)
where we consider k = �1 and m = 0. Let us define a
rescaled charge i = qi/r4H , then the black hole horizon
can be expressed in terms of i,

rH =
Lp

(1 + 1)(1 + 2)
. (47)

The vanishing condition of Ai at the horizon fixes the
chemical potential

µi =
i

�1
i

+ 1
. (48)

The thermodynamics of this black hole can be solved
straightforwardly but we want to focus on solving a probe
M2-brane, which is the holographic dual of the surface
operator in fundamental representation.
The expectation value of a half BPS surface defect

� loghDin can be computed from the M2-brane on-shell
action,

IM2 = T2

Z
d3�

p
�det [gind] . (49)

It has been shown in a recent work [28] that it only de-
pends on the horizon,

IM2 = �⇡nT2VH1r2
H

. (50)

To match the chemical potentials of the boundary CFT,
one should set

µ1 = i(��1)
r1
2

, µ2 = i(��1)
r2
2

, with r1+r2 = 1 .

(51)
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material for the details of this identification),
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At the large N limit, the anomaly polynomial-result
(42) agrees with the localization result (25). One can
also check this consistency for anti-symmetric represen-
tation [k]. We stress that the defect SCE computed from
anomaly polynomial is exact.

Defect SUSY entanglement entropy. The value of de-
fect SRE at n = 1 is the surface defect contribution to
SUSY EE. To define EE we have to specify the boundary
condition at entangling surface. For the defect contri-
bution, the supersymmetric boundary condition gives a
di↵erent result from the non-SUSY one (7). We assume
that it is still a linear combination of b and d2,
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where we consider k = �1 and m = 0. Let us define a
rescaled charge i = qi/r4H , then the black hole horizon
can be expressed in terms of i,

rH =
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(1 + 1)(1 + 2)
. (47)

The vanishing condition of Ai at the horizon fixes the
chemical potential

µi =
i
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i

+ 1
. (48)

The thermodynamics of this black hole can be solved
straightforwardly but we want to focus on solving a probe
M2-brane, which is the holographic dual of the surface
operator in fundamental representation.
The expectation value of a half BPS surface defect

� loghDin can be computed from the M2-brane on-shell
action,

IM2 = T2

Z
d3�

p
�det [gind] . (49)

It has been shown in a recent work [28] that it only de-
pends on the horizon,

IM2 = �⇡nT2VH1r2
H

. (50)

To match the chemical potentials of the boundary CFT,
one should set

µ1 = i(��1)
r1
2

, µ2 = i(��1)
r2
2

, with r1+r2 = 1 .

(51)
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in (1) through

d2 = 6⇡⌦d�3
d� 1

d
h . (3)

The Weyl anomaly of surface defect is also manifested
in the logarithmic divergence of its expectation value

loghD[⌃]i �

Z

⌃
A⌃vol⌃ log `/✏ , (4)

with the anomaly density A⌃ given by

A⌃ =
1

24⇡

h
bR⌃ + d1⇧̃

µ

ab
⇧̃ab

µ
� d2W

ab

ab

i
. (5)

From (4) and (5), one can see that the free energy of
spherical surface defect is [14]

F = � loghD[S2]i = �
b

3
log `/✏ . (6)

Defect Weyl anomalies also determine the defect contri-
bution to entanglement entropy (EE) S̃. In [15] it was
shown that the surface defect contribution to EE is [16]

S̃ = �F + �E = loghD[S2]i+

Z
hhT ⌧

⌧
ii

=
1

3

✓
b�

d� 3

d� 1
d2

◆
log `/✏ .

(7)

This formula can be used to determine central charges for
a class of surface defects. For 1/2-BPS Wilson surfaces
in the 6d AN�1 N = (2, 0) SCFT, both hhTµ⌫

ii and S̃ in
(7) can be calculated holographically [4, 5]. Using these
results, (1) and (7) give

b = 24 (⇤, ⇢)+3 (⇤,⇤) , d2 = 24 (⇤, ⇢)+6 (⇤,⇤) , (8)

with ⇤ the highest weight of the defect representation
R in the AN�1 Lie algebra su(N), ⇢ the Weyl vector of
su(N), and (·, ·) the inner product in the Lie algebra. In
the case of symmetric representation (k), (8) gives

b(k) = 12Nk + 3k2 � 12k � 3k2/N ,

d2(k) = 12Nk + 6k2 � 12k � 6k2/N .
(9)

While for anti-symmetric representation [k],

b[k] = 12Nk � 12k2 + 3k � 3k2/N ,

d2[k] = 12Nk � 12k2 + 6k � 6k2/N .
(10)

The main purpose of this letter is to show that, for Wilson
surfaces in 6d (2, 0) theories, the defect contribution to
supersymmetric Rényi entropy is fixed by b and d2.

Supersymmetric Rényi entropy. Rényi entropy is a one
parameter generalization of EE and provides information
about the entanglement spectrum. It appears when we

compute entanglement entropy using replica trick and
returns to EE in the limit n ! 1,

Sn ⌘
1

1� n
log Tr⇢n =

1

1� n
log

Zn

Zn
, (11)

where n is the Rényi index and Zn is the partition func-
tion on the n-replica space. For d-dimensional CFT
in flat space, using a conformal transformation, the n-
replica space with a spherical entangling surface can be
mapped to S

1
�
⇥ H

d�1 with � = 2⇡n. In this letter we
mainly focus on 6d (2, 0) theories with d = 6 and the
Rényi entropy can be transformed to thermal entropy
on S

1
�
⇥ H

5. The replica trick generally breaks the su-
persymmetry because of conic singularity. Namely there
will be no surviving Killing spinors for n 6= 1 [7]. To
preserve supersymmetry, one should turn on extra R-
symmetry background fields, leading to the observable
of supersymmetric Rényi entropy (SRE) [7, 8]. The R-
symmetry group of 6d (2, 0) theories is SO(5), which has
two U(1) Cartans. Therefore one can turn on two inde-
pendent R-symmetry background gauge fields (chemical
potentials) to twist the boundary conditions along the
replica circle S

1
�
. A general analysis of the Killing spinor

equation on the conic space (S6
n
or S

1
�=2⇡n⇥H

5) leads to
the solution of the R-symmetry chemical potential [7] [17]

µ(n) := qiA
i =

n� 1

2
, (12)

with q1 = q2 = 1/2 the R-charges of the Killing spinor
under the two U(1) Cartans. A general background sat-
isfying (12) can be expressed as [8]

A1 = (n� 1) r1 , A2 = (n� 1) r2 , (13)

with r1 + r2 = 1. Assuming SRE is a polynomial of 1/n,
which is verified by free field calculations as well as large
N results, it has been shown [8] that SRE enjoys uni-
versal relations with Weyl anomalies (as well as ’t Hooft
anomalies). The goal of this letter is to show that the de-
fect SRE also enjoys universal relations with defect Weyl
anomalies.
Summary of the results. The main result of this letter

is the exact N = (4, 4) surface defect contribution to the
supersymmetric Rényi entropy (defect SRE) of 6d (2, 0)
theories. We show that for theories characterized by A-
type Lie algebra g, it is a linear function of � := 1/n

S� [g] =
2bg � d2g

6

hr1r2
2

(� � 1) + 1
i
log `/✏ , (14)

for any representation R, where bg and d2g are given
by (8) and r1,2 are background parameters denoting the
weights of the two U(1) R-symmetry chemical potentials,
satisfying the constraint r1 + r2 = 1. The basic ingredi-
ents of our argument are the following:
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Based on (24), (8) and (9), we find that

E
∣∣
n→0

= →2b→ d2

24

r1r2

n
, (25)

which can be further justified using anomaly polynomial.
In fact, from the derivation by anomaly polynomial in the
next section, we will see that the relation (25) holds for
all N and all defect representations. It has been observed
in [10, 24] that the n ↑ 0 limit of SRE is controlled by
the extremally squashed SCE up to a factor. Therefore
one can take use of the latter to determine the large ω

limit of SRE. Here we use the same idea to determine the
large ω behavior of defect SRE. The defect free energy at
ε ↑ ↓ and n ↑ 0 is

F [S1
n→0 ↔ S

1
ω ] = εEg|n→0 = →ε

2bg → d2g

24

r1r2

n
. (26)

When ε ↑ ↓, the defect free energy on S
1
n→0↔H

1 di!ers
from that on S

1
n→0 ↔ S

1
ω only by a volume

F [S1
n→0 ↔ H

1] = F [S1
n→0 ↔ S

1
ω ]
Vol[H1]

Vol[S1
ω ]

, (27)

from which we can obtain the asymptotic defect SRE

Sn→0[g] = →F [S1
n→0 ↔ H

1] =
2bg → d2g

12

r1r2

n
log ϑ/ϖ .

(28)

Defect SCE and Anomaly polynomial. It is conjectured
in [30] that for an even d-dimensional superconformal
field theory, its SCE on M = S

1 ↔ S
d↑1 is given by the

equivariant integral of the anomaly polynomial Id+2,

Ed = → 1

(2ϱ)d/2

∫
Id+2(M) . (29)

A 2d defect wrapping ” ς↑ M deforms the anomaly poly-
nomial by a defect localized term,

Id+2(M) ↑ Id+2(M) + φ!I4(”) , (30)

which indicates a defect version of the relation (29). In
this section, we use this idea to calculate the surface de-
fect contribution to SCE from the equivariant integral of
the defect anomaly polynomial.

The anomaly polynomial of a 2d N = (4, 4) surface
defect in the 6d N = (2, 0) SCFT labelled by ADE Lie
algebra g is given in [34, 35]

I4 =
1

2
(#,#)

(
c2(FL)→ c2(FR)

)

+ (#, ↼)
(
c2(FI)→ c2(FF )

)
,

(31)

where FL,R,I,F are the background field strength for the
SU(2)L↔SU(2)F ↔SU(2)R↔SU(2)I R-symmetry of the
2d N = (4, 4) defect, and c2(F ) is the second Chern class
of the corresponding SU(2)-bundle [36]. Since the surface

defect is inserted in the 2d plane spanned by {x0
, x

1},
the equivariant integral of the defect anomaly polynomial
(31) on this R

2
ε1

gives [37]

Eg = → 1

2ϱ

∫
I4

= → 1

4↽1

[
1

2
(#,#)

(
a
2
L → a

2
R

)
+ (#, ↼)

(
a
2
I → a

2
F

)]
,

(32)

where aL,R,I,F are the chemical potentials for the 2dN =
(4, 4) R-symmetry. By identifying the 2d R-symmetry
Cartans JL,R,I,F with the bulk Cartans J2, J3, R1, R2,
the chemical potentials are related as [38],

aL = ↽2 + ↽3 , aR = ↽2 → ↽3 ,

aI = →(⇀1 + ⇀2) , aF = →(⇀1 → ⇀2) .
(33)

Using (33) and (7), the defect Casimir energy Eg can be
expressed in terms of the 6d bulk chemical potentials and
the defect central charges b, d2 as

Eg = → 1

↽1

[
d2g → bg

6
↽2↽3 +

2bg → d2g

24
⇀1⇀2

]
. (34)

It can be checked that under the chiral algebra limit
↽1 = ↽2 = 1, ⇀1⇀2 = 2↽3 [39], the defect SCE (34) is
proportional to the defect central charge d2 [40]

Eg

∣∣
chiral limit

= → 1

12
↽3d2 . (35)

For the surface defect in the symmetric representation (k)
of g = su(N), plugging the corresponding central charges
(8) into (34) gives

E(k) = → 1

2↽1

[
k
2

(
1→ 1

N

)
↽2↽3 + k(N → 1)⇀1⇀2

]
.

(36)
At the large N limit, the anomaly polynomial-result (36)
agrees with the localization-result (19). One can also
check this consistency for anti-symmetric representation
[k]. We stress that the defect SCE (34) computed from
anomaly polynomial is exact.
Defect SUSY entanglement entropy. The value of de-

fect SRE at n = 1 is the surface defect contribution to
SUSY EE. To define EE we have to specify the boundary
condition at the entangling surface. For the defect con-
tribution, the supersymmetric boundary condition gives
a di!erent result from the non-SUSY one (6). We assume
that it is still a linear combination of b and d2,

S = log↗D↘+#d2 log ϑ/ϖ =

(
b

3
+ #d2

)
log ϑ/ϖ , (37)

where the undetermined constant # can be fixed to be
→1/6 by fitting to the holography result (40) at n = 1.
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SU(2)L↔SU(2)F ↔SU(2)R↔SU(2)I R-symmetry of the
2d N = (4, 4) defect, and c2(F ) is the second Chern class
of the corresponding SU(2)-bundle [36]. Since the surface

defect is inserted in the 2d plane spanned by {x0
, x

1},
the equivariant integral of the defect anomaly polynomial
(31) on this R

2
ε1

gives [37]

Eg = → 1

2ϱ

∫
I4

= → 1

4↽1

[
1

2
(#,#)

(
a
2
L → a

2
R

)
+ (#, ↼)

(
a
2
I → a

2
F

)]
,

(32)

where aL,R,I,F are the chemical potentials for the 2dN =
(4, 4) R-symmetry. By identifying the 2d R-symmetry
Cartans JL,R,I,F with the bulk Cartans J2, J3, R1, R2,
the chemical potentials are related as [38],

aL = ↽2 + ↽3 , aR = ↽2 → ↽3 ,

aI = →(⇀1 + ⇀2) , aF = →(⇀1 → ⇀2) .
(33)

Using (33) and (7), the defect Casimir energy Eg can be
expressed in terms of the 6d bulk chemical potentials and
the defect central charges b, d2 as

Eg = → 1

↽1

[
d2g → bg

6
↽2↽3 +

2bg → d2g

24
⇀1⇀2

]
. (34)

It can be checked that under the chiral algebra limit
↽1 = ↽2 = 1, ⇀1⇀2 = 2↽3 [39], the defect SCE (34) is
proportional to the defect central charge d2 [40]

Eg

∣∣
chiral limit

= → 1

12
↽3d2 . (35)

For the surface defect in the symmetric representation (k)
of g = su(N), plugging the corresponding central charges
(8) into (34) gives

E(k) = → 1

2↽1

[
k
2

(
1→ 1

N

)
↽2↽3 + k(N → 1)⇀1⇀2

]
.

(36)
At the large N limit, the anomaly polynomial-result (36)
agrees with the localization-result (19). One can also
check this consistency for anti-symmetric representation
[k]. We stress that the defect SCE (34) computed from
anomaly polynomial is exact.
Defect SUSY entanglement entropy. The value of de-

fect SRE at n = 1 is the surface defect contribution to
SUSY EE. To define EE we have to specify the boundary
condition at the entangling surface. For the defect con-
tribution, the supersymmetric boundary condition gives
a di!erent result from the non-SUSY one (6). We assume
that it is still a linear combination of b and d2,

S = log↗D↘+#d2 log ϑ/ϖ =

(
b

3
+ #d2

)
log ϑ/ϖ , (37)

where the undetermined constant # can be fixed to be
→1/6 by fitting to the holography result (40) at n = 1.

[Chalabi-O’bannon-Robinson-Sisti 2020]



Conclusion&Discussion

• We propose a closed formula for defect contribution to 
Super-Renyi entropy as well as supersymmetric Casimir 
energy in terms of central charges in M5 brane theories.

• A defect Cardy formula?

• Bounds on defect anomalies? 

• (1,0)? Other dimensional defects? Gukov-Witten in 4d?


